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Stéphane Le Ménec2, Valerii S. Patsko1

1 Institute of Mathematics and Mechanics, Ural Branch,
Russian Academy of Sciences,

S.Kovalevskaya str., 16, Ekaterinburg, 620990, Russia
E-mail: patsko@imm.uran.ru

2 EADS/MBDA France,
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Abstract An antagonistic differential game is considered where motion oc-
curs in a straight line. Deviations between the first and second pursuers and
the evader are computed at the instants T1 and T2, respectively. The pursuers
act in coordination. Their aim is to minimize the resultant miss, which is
equal to the minimum of the deviations happened at the instants T1 and T2.
Numerical study of value function level sets (Lebesgue sets) for qualitatively
different cases is given.
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1. Introduction and Problem Formulation

In the paper (Ganebny et al., 2011), we have started a systematic study of the
following differential game.

Three inertial objects moves in the straight line. The dynamics descriptions for
pursuers P1 and P2 are

z̈P1 = aP1 , z̈P2 = aP2 ,

ȧP1 = (u1 − aP1)/lP1 , ȧP2 = (u2 − aP2)/lP2 ,

|u1| ≤ μ1, |u2| ≤ μ2,

aP1(t0) = 0, aP2(t0) = 0.

(1)

Here, zP1 and zP2 are the geometric coordinates of the pursuers, aP1 and aP2 are
their accelerations generated by the controls u1 and u2. The time constants lP1 and
lP2 define how fast the controls affect the systems.

The dynamics of the evader E is similar:

z̈E = aE , ȧE = (v − aE)/lE ,

|v| ≤ ν, aE(t0) = 0.
(2)

� This work was supported by Program of Presidium RAS “Dynamic Systems and Control
Theory” under financial support of UrB RAS (project No.12-Π-1-1002) and also by the
Russian Foundation for Basic Research under grants Nos.10-01-96006 and 11-02-12088.



84 Sergey A. Ganebny, Sergey S. Kumkov, Stéphane Le Ménec, Valerii S. Patsko

Let us fix some instants T1 and T2. At the instant T1, the miss of the first
pursuer with the respect to the evader is computed, and at the instant T2, the miss
of the second one is computed:

rP1,E(T1) = |zE(T1)− zP1(T1)|, rP2,E(T2) = |zE(T2)− zP2(T2)|. (3)

Assume that the pursuers act in coordination. This means that we can join
them into one player P (which will be called the first player). This player governs
the vector control u = (u1, u2). The evader is counted as the second player. The
result miss is the following value:

ϕ = min{rP1,E(T1), rP2,E(T2)}. (4)

At any instant t, all players know exact values of all state coordinates zP1 ,
żP1 , aP1 , zP2 , żP2 , aP2 , zE, żE , aE . The first player choosing its feedback control
minimizes the miss ϕ, the second one maximizes it.

Relations (1)–(4) define a standard antagonistic differential game with linear
dynamics. One needs to construct the value function of this game.

The main difficulty of studying game (1)–(4) is not that T1 �= T2, generally
speaking. Game (1)–(4) is difficult and interesting due to non-convexity of the
payoff function even when T1 = T2. Emphasize that we do not apply any lim-
iting conditions of “uniformity” of the objects under consideration. Conditions
of this type are usual for problems of group pursuit; see, for example, follow-
ing books (Petrosjan, 1977), (Rikhsiev, 1989), (Grigorenko, 1990), (Chikrii, 1997),
(Blagodatskih and Petrov, 2009).

In the paper (Ganebny et al., 2011), we analyze solutions of game (1)–(4) for
two extreme cases: 1) both pursuers P1 and P2 are dynamically stronger than the
evader E; 2) both pursuers are dynamically weaker.

This paper deals with studying level sets of the value function for intermediate
cases of the game.

2. Passage to Two-Dimensional Differential Game

Let us apply to game (1)–(4) the standard passage to an equivalent differential
game of the order 2 on the phase variable.

At first, let us pass to relative geometric coordinates

y1 = zE − zP1 , y2 = zE − zP2 (5)

in dynamics (1), (2) and payoff function (4). After this, we have the following
notations:

ÿ1 = aE − aP1 , ÿ2 = aE − aP2 ,

ȧP1 = (u1 − aP1)/lP1 , ȧP2 = (u2 − aP2)/lP2 ,

ȧE = (v − aE)/lP1 , |u2| ≤ μ2,

|u1| ≤ μ1, |v| ≤ ν, ϕ = min{|y1(T1)|, |y2(T2)|}.

(6)

State variables of system (6) are y1, ẏ1, aP1 , y2, ẏ2, aP2 , aE ; u1 and u2 are
controls of the first player; v is the control of the second one. The payoff function
ϕ depends on the coordinate y1 at the instant T1 and on the coordinate y2 at the
instant T2.
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A standard approach to study linear differential games with fixed terminal in-
stant and payoff function depending on some state coordinates at the terminal
instant is to pass to new state coordinates (see (Krasovskii and Subbotin, 1974),
(Krasovskii and Subbotin, 1988)) that can be treated as values of the target co-
ordinates forecasted to the terminal instant under zero controls. Often, these co-
ordinates are called the zero effort miss coordinates (Shinar and Gutman, 1980),
(Shima and Shinar, 2002), (Shinar and Shima, 2002). In our case, we have two in-
stants T1 and T2, but coordinates computed at these instants are independent;
namely, at the instant T1, we should take into account y1(T1) only, and at the in-
stant T2, we use the value y2(T2). This fact allows us to use the mentioned approach
when solving the differential game (6). With that, we pass to new state coordinates
x1 and x2 where x1(t) is the value of y1 forecasted to the instant T1 and x2(t) is
the value of y2 forecasted to the instant T2.

The forecasted values are computed by formula

xi = yi + ẏiτi − aPi l
2
Pi
h(τi/lPi) + aEl

2
Eh(τi/lE), i = 1, 2. (7)

Here, xi, yi, ẏi, aPi , and aE depend on t; τi = Ti − t ≥ 0. Function h is described
by the relation

h(α) = e−α + α− 1.

Emphasize that the values τ1 and τ2 are connected to each other by the relation
τ1 − τ2 = const = T1 − T2. It is very important that xi(Ti) = yi(Ti). Let X(t, z) be
a two-dimensional vector composed of the variables x1, x2 defined by formulae (5)
and (7).

The dynamics in the new coordinates x1, x2 is the following (Le Ménec, 2011):

ẋ1 = −lP1h(τ1/lP1)u1 + lEh(τ1/lE)v,

ẋ2 = −lP2h(τ2/lP2)u2 + lEh(τ2/lE)v,

|u1| ≤ μ1, |u2| ≤ μ2, |v| ≤ ν,

ϕ
(
x1(T1), x2(T2)

)
= min{|x1(T1)|, |x2(T2)|}.

(8)

The first player governs the controls u1, u2 and minimizes the payoff ϕ; the
second one has the control v and maximizes ϕ. Using system 8, we assume that
if T1 > T2 and t0 ∈ (T2, T1] then ϕ =

∣∣x1(T1)
∣∣; if T2 > T1 and t0 ∈ (T1, T2] then

ϕ =
∣∣x2(T2)

∣∣.
Note that the control u1 (u2) affects only the horizontal (vertical) component

ẋ1 (ẋ2) of the velocity vector ẋ = (ẋ1, ẋ2)
T. When T1 = T2, the second summand

in dynamics (8) is the same for ẋ1 and ẋ2.
Let x = (x1, x2)

T and V (t, x) be the value of the value function of game (8) at
the position (t, x). From general results of the theory of differential games, it follows
that

V(t, z) = V
(
t,X(t, z)

)
. (9)

Relation (9) allows to compute the value function of the original game (1)–(4) using
the value function for game (8).

For any c ≥ 0, a level set (a Lebesgue set)

Wc =
{
(t, x) : V (t, x) ≤ c

}
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of the value function in game (8) can be treated as the solvability set for the con-
sidered game with the result not greater than c, that is, for a differential game with
dynamics (8) and the terminal set

Mc =
{
(t, x) : t = T1, |x1| ≤ c

}
∪
{
(t, x) : t = T2, |x2| ≤ c

}
.

When c = 0, one has the situation of the exact capture. The exact capture means
equality to zero of, at least, one of x1(T1) and x2(T2).

Let
Wc(t) = {x : (t, x) ∈ Wc}

be the time section (t-section) of the set Wc at the instant t. Similarly, let Mc(t)
for t = T1 and t = T2 be the t-section of the set Mc at the instant t.

Comparing dynamics capabilities of each of pursuers P1 and P2 and the evader
E, one can introduce the parameters (Shinar and Shima, 2002), (Le Ménec, 2011)

ηi = μi/ν, εi = lE/lPi , i = 1, 2.

They define the shape of the solvability sets in the individual games P1 against E
and P2 against E.

Namely, depending on values of ηi and ηiεi (which are not equal to 1 simulta-
neously), there are 4 cases (Shinar and Shima, 2002) of the solvability set evolution
(see Fig. 1):

– expansion in the backward time (a strong pursuer);
– contraction in the backward time (a weak pursuer);
– expansion until some backward time instant and further contraction;
– contraction until some backward time instant and further expansion (if the

solvability set still has not broken).

In this paper, we study level sets of the value function for the following cases:
3) one of the pursuers is stronger than the evader, and the second one is weaker;

Figure1: Variants of the solvability set evolution in an individual game
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4) dynamic capabilities of the pursuers P1 and P2 are equal; corresponding indi-
vidual solvability sets contract at the beginning of the backward time and expand
further.
5) solvability sets in the game P1−E are as in Fig. 1 in bottom-left, and solvability
sets in the game P2 − E are as in Fig. 1 in bottom-right.

Up to now, many algorithms have been suggested for numeric solution of dif-
ferential games of quite general type (see, for example, (Cardaliaguet et al., 1999),
(Mitchell, 2002), (Taras’ev et al., 2006), (Cristiani and Falcone, 2009)). We study
problem (8), which is of the second order in the phase variable and can be rewritten
as

ẋ = D1(t)u1 +D2(t)u2 + E(t)v,

|u1| ≤ μ1, |u2| ≤ μ2, |v| ≤ ν.
(10)

Here, x = (x1, x2)
T; vectors D1(t), D2(t), and E(t) are defined as

D1(t) =
(
−lP1h((T1 − t)/lP1)

T, 0
)
, D2(t) =

(
0, −lP2h((T2 − t)/lP2)

)T
,

E(t) =
(
lEh((T1 − t)/lE), lEh((T2 − t)/lE)

)T
.

The control of the first player has two independent components u1 and u2. The
vector D1(t) (D2(t)) is directed along the horizontal (vertical) axis. The second
player’s control v is scalar.

Due to specifity of our problem, we use special methods for constructing level
sets of the value function. This allows us to make very fast computations of variants
of the game.

3. Maximal Stable Bridge: Control with Discrimination of Opponent.
The Main Idea of Backward Numerical Construction

A level set Wc of the value function V is a maximal stable bridge (MSB) (see
(Krasovskii and Subbotin, 1974), (Krasovskii and Subbotin, 1988)), which breaks
on the terminal set Mc.

Let T1 = T2. Denote Tf = T1. Using the concept of MSB, we can say that Wc is
the set maximal by inclusion in the space (t ≤ Tf , x) such that Wc(Tf ) = Mc(Tf )
and the stability property holds: for any position (t∗, x∗) ∈ Wc(t∗), t∗ < Tf , any
instant t∗ > t∗, t

∗ ≤ Tf , any constant control v of the second player, which obeys

the constraint |v| ≤ ν, there is a measurable control t→
(
u1(t), u2(t)

)T
of the first

player, t ∈ [t∗, t
∗), |u1(t)| ≤ μ1, |u2(t)| ≤ μ2, guiding system (8) from the state x∗

to the set Wc(t
∗) at the instant t∗.

The stability property assumes discrimination of the second player by the first
one: the choice of the first player’s control in the interval [t∗, t

∗) is made after the
second player announces his control in this interval.

It is known (Krasovskii and Subbotin, 1974), (Krasovskii and Subbotin, 1988)
that any MSB is close. The set

W (2)
c (t) = cl

(
R2 \Wc(t)

)
(here, the symbol cl denotes the operation of closure) is the time section of MSB

W
(2)
c for the second player at the instant t. The bridge terminates at the instant Tf

on the setM
(2)
c (Tf ) = cl

(
R2\Mc(Tf)

)
. If the initial position of system (8) is inW

(2)
c
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and if the first player is discriminated by the second one, then the second player is

able to guide the motion of the system to the set M
(2)
c (Tf) at the instant Tf . Thus,

∂Wc = ∂W
(2)
c . It is proved that for any initial position (t0, x0) ∈ ∂Wc, the value

c is the best guaranteed result for the first (second) player in the class of feedback
controls.

Presence of an idealized element (the discrimination of the opponent) allowed
to create effective numerical methods for backward construction of MSBs (see, for
example, (Ushakov, 1998)). Linearity of the dynamics and two-dimensionality of
the state variable simplify the algorithms sufficiently.

The algorithm, which is suggested by the authors for constructing the approxi-
mating sets W̃c(t), uses a time grid in the interval [0, Tf ]: tN = Tf , tN−1, tn−2, . . . .

For any instant tk from the taken grid, the set W̃c(tk) is built on the basis of the

previous set W̃c(tk+1) and a dynamics obtained from (8) by fixing its value at the
instant tk+1. So, dynamics (8), which varies in the interval (tk, tk+1], is changed by a

dynamics with simple motions (Isaacs, 1965). The set W̃c(tk) is regarded as a collec-
tion of all positions at the instant tk where from the first player guarantees guiding
the system to the set W̃c(tk+1) under “frozen” dynamics (8) and discrimination of
the second player. The corresponding formula has the form

W̃c(tk) =
(
W̃c(tk+1)− (tk+1 − tk)D(tk+1) · P

) ∗− (tk+1 − tk)E(tk+1) ·Q. (11)

Here, D(tk+1) is a matrix composed of columns D1(tk+1) and D2(tk+1) of sys-
tem (10); the sets P and Q are

P =
{
(u1, u2) : |u1| ≤ μ1, |u2| ≤ μ2

}
, Q = {v : |v| ≤ ν}.

The symbol ∗− denotes the geometric difference (Minkowski difference) of two sets:

A ∗− B =
⋂
b∈B

(A− b).

The boundary condition for the recursive computations (11) is assumed to be

W̃c(tN ) = Mc(Tf ).
Due to symmetry of dynamics (8) and the setWc(Tf ) with respect to the origin,

one gets that for any t ≤ Tf the time section Wc(t) is symmetric also.
If T1 �= T2, then there is no appreciable complication in constructing MSBs for

the problem considered in comparison with the case T1 = T2. Indeed, let T1 > T2.
Then in the interval (T2, T1] in (8), we take into account only the dynamics of the
variable x1 when building the bridgeWc backwardly from the instant T1. With that,
the terminal set at the instant T1 is taken as Mc(T1) = {(x1, x2) : |x1| ≤ c}. When
the constructions are made up to the instant T2, we add the set Mc(T2), that is, we
take

Wc(T2) = Wc(T2 + 0)
⋃{

(x1, x2) : |x2| ≤ c
}
,

and further constructions are made on the basis of this set.
So, our tool for finding a level set of the value function in game (8) corresponding

to a number c is the backward procedure for constructing a MSB with the terminal
set Mc.

The solvability set with the index equal to c in the individual game P1–E
(P2–E) is the maximal stable bridge built in the coordinates t, x1 (t, x2) and
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terminating at the instant T1 (T2) on the set |x1| ≤ c (|x2| ≤ c). Its t-section, if it
is non-empty, is a segment in the axis x1 (x2) symmetric with respect to the origin.
In the plane x1, x2, this segment corresponds to a vertical (horizontal) strip of the
same width near the axis x2 (x1). It is evident that when t ≤ T1 (t ≤ T2) such a
strip is contained in the section Wc(t) of MSB Wc of game (8) with the terminal
set Mc.

4. One Strong and One Weak Pursuers

Let us take the following parameters of the game:

μ1 = 2, μ2 = 1, ν = 1, lP1 = 1/2, lP2 = 1/0.3, lE = 1.

In this case, the evader is more maneuverable than the second pursuer, and an exact
capture by this pursuer is unavailable. Assume T1 = 5, T2 = 7.

In Fig. 2, there are sections of MSBW5.0 (that is, c = 5.0) for 6 instants: t = 7.0,
5.0, 2.5, 1.4, 1.0, 0.0. The horizontal part of its time section W5.0(τ) decreases with
growth of τ , and breaks further. The vertical part grows. After breaking the indi-
vidual stable bridge of the second pursuer (and respective collapse of the horizontal
part of the cross), there is the vertical strip only with two additional parts deter-
mined by the joint actions of both pursuers.

The set Wc in the space t, x1, x2 for c = 5.0 is shown in Fig. 3 from two points
of view. During evolution of the sections W5.0(t) in t, they change their structure
at some instants. These places are marked by drops in the constructed surface of
the set.

Time sections
{
Wc(t)

}
are given in Fig. 4 at the instant t = 1 (τ1 = 4, τ2 = 6),

and at the instant t = 4 (τ1 = 1, τ2 = 3). There are 9 MSBs for c from 12 to 20
with the step 1.

Figure2: One strong and one weak pursuers, different termination instants: time
sections of the maximal stable bridge W5.0
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Figure3: One strong and one weak pursuers, different termination instants: two
three-dimensional views of the maximal stable bridge W5.0

Figure4: One strong and one weak pursuers, different termination instants: time
sections of MSBs at t = 1 (at the left) and at t = 4 (at the right)

5. Varying Advantage of Pursuers

5.1. Variant 1

Let us pass to the case of varying advantage of pursuers. Consider a variant
when both pursuers P1 and P2 are equal, with that at the beginning of the backward
time, the bridges in the individual games contract and further expand. Choose the
game parameters in such a way that for some c the section Wc(t) of MSB Wc with
decreasing of t disjoins into two parts, which join back with further decreasing of t.

Parameters of the game are taken as follows:

μ1 = μ2 = 1.1, ν = 1, lP1 = lP2 = 1/0.6, lE = 1.

Termination instants are equal: T1 = T2 = 20.
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Figure5: Varying advantage of the pursuers, variant 1: time sections of the maximal
stable bridge W0.526

In Fig. 5, the time sections of MSB W0.526 are shown for 6 instants: t = 20.0,
18.0, 16.75, 15.9, 7.5, 5.0. At the termination instant, the terminal set is taken as a
cross (the upper-left subfigure).

At the beginning of backward time, the widths of both vertical and horizontal
strips of the “cross” decreases, and two straight-linear additional triangles of joint
capture zone appear (the upper-middle subfigure). Then at some instant, both strips
collapse, and only the triangles constitute the time section of the bridge (the upper-
right subfigure). Further, the triangles continue to contract, so they become two
pentagons separated by an empty space near the origin (the lower-left subfigure).
Transformation to pentagons can be explained in the following way: the first player
using its controls expands the triangles vertically and horizontally, and the second
player contracts them in diagonal direction. So, vertical and horizontal edges appear,
but the diagonal part becomes shorter. Also, in general, size of each figure decreases
slowly.

Due to action of the second player, the diagonal disappears and the pentagons
convert to squares at some instant (this is not shown in Fig. 5). After that, the
pursuers have advantage, and total contraction is changed by growth: the squares
start to enlarge. After some time passes, the squares touch each other at the origin
due to the growth (the lower-middle subfigure). Since the enlargement continues,
their sizes grow, and the squares start to overlap forming one “eight-like” shape
(the lower-right subfigure).

Three-dimensional views of MSBs Wc corresponding to c = 0.526 and c =
3.684 are shown in Fig. 6. Backward construction in this figure are made up to the
instant t = 5.0 (τ = 15.0).

Fig. 7 shows time sections {Wc(t)} of a collection of MSBs for the instants t =
12.5 and t = 16.0. There are 12 MSBs for c from 0.5 to 6.0 with the step 0.5.
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Figure6: Varying advantage of the pursuers, variant 1, equal termination instants:
three-dimensional views of the maximal stable bridges W0.526 and W3.684

Figure7: Varying advantage of the pursuers, variant 1, equal termination instants:
time sections of MSBs

{
Wc(t)

}
at t = 12.5 (at the left) and at t = 16.0 (at the

right)
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5.2. Variant 2

Let now MSBs in the individual game P1–E expand at the beginning of the
backward time and further contract (η1 < 1, η1ε1 > 1). Vice versa, in the individual
game P2–E, let MSBs contract at first and expand further (η2 > 1, η2ε2 < 1).
Parameters of the game are taken as follows:

μ1 = 0.8, μ2 = 1.3, ν = 1, lP1 = 1/20, lP2 = 1/0.5, lE = 1.

Termination instants: T1 = 15, T2 = 13.5.
In Fig. 8, t-sections of MSB W0.263 are shown for eight instants: t = 13.5, 11.95,

9.4, 7.5, 6.45, 5.4, 4.7, 4.45. At the instant t = T1 = 15, the terminal set is taken as
a vertical strip with the half-width equal to 0.263.

At the beginning of the backward time, the t-section of MSB is a vertical strip
and has growing width. At the instant t = T2 = 13.5, a horizontal strip of half-
width 0.263 is added to the vertical one, which is at that instant. With further
growing of the backward time, additional curvilinear triangles appear in the II and
IV quadrants. Outside them, the horizontal component of the set W0.263(t) con-

Figure8: Varying advantage of the pursuers, variant 2, different termination instants:
t-sections of MSB W0.263
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Figure9: Varying advantage of the pursuers, variant 2, different termination instants:
a view of the maximal stable bridge W0.263 in the three-dimensional space t, x1, x2

tracts. At the instant t = 11.95, the infinite horizontal component vanishes. Then,
some growth in the horizontal direction takes place with high vertical expand of
the knobs generated by the curvilinear triangles. Near the instant t = 9.4, hor-
izontal increasing is changed by contraction. At the instant t = 6.45, the infinite
vertical component disappears. Further with growing the backward time, horizontal
contraction and vertical dilatation have approximately equal speed. When t ≤ 5.4,
each t-section has two vertical protuberances, which collapse at some instant close
to t = 4.45. After that, t-sections are rectangles which dilate in the vertical direction
and constrict in the horizontal one. At the instant t = 0.15, MSB degenerates.

Figure10: Varying advantage of the pursuers, variant 2, different termination in-
stants: time sections of MSBs at t = 5.85 (at the left) and at t = 10.0 (at the
right)
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A three-dimensional view of the set W0.263 can be seen in Fig. 9. Time sections
of level sets of the value function for two instants t = 5.85 and t = 10.0 are given
in Fig. 10. There are 10 MSBs for c from 0.1 to 1.0 with the step 0.1.

6. Conclusion

The paper deals with numerical investigation of a differential game with two
pursuers and one evader. With the help of the standard change of variables, the
problem is reduced to a two-dimensional antagonistic game. The difficulty of so-
lution is connected to non-convexity of the terminal payoff function. For typical
variants of the game parameters, an analysis of the level sets (Lebesgue sets) of the
value function is done. Three-dimensional views of the level sets are given. Here, we
do not consider the problem of generating optimal strategies of the players.
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