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1. Introduction

In (Pontryagin, 1967) the new phenomena of an alternating integral was intro-
duced. Pontryagin’s second direct method for linear differential games of pursuit
(Pontryagin, 1980) being based on this conception has played the great role in de-
velopment of the thepry of differential games ((Azamov, 1988)-(Kurzhanskiy and
Melnikov, 2000)).

In the present paper it will be studied the notion of the alternating integral for
pursuit games, being described by differential inclusions ż(t) ∈ −F (t, υ), where F
is a continuous multivalued mapping (Azamov, 1988). The typical example of such
type of systems is a quasilinear differential game (Mishchenko and Satimov (1974))
ẋ = Cx − f(u, υ), u ∈ P, υ ∈ Q, which easily can be transformed to differential
inclusion ż(t) ∈ −e−tCf(P, υ).

Further we shall use the following notations: I = [α, β] is the fixed closed in-
terval of time; Δ is a subsegment of I; |Δ| is the length of Δ; cl(Rd) (Ccl(Rd),
respectively) is the collection of all nonempty closed (convex closed) subsets of Rd;
cm(Rd) (Ccm(Rd), respectively) is the collection of all nonempty compact (convex
compact) subsets of Rd; H = {z ∈ Rd | |z| ≤ 1} is the unit closed ball in Rd.
ω = {τ0, τ1, τ2, ..., τn} is partition of I (i.e. α = τ0 < τ1 < τ2 < ... < τn = β, n can
depend on ω); Ω is the collection of all partition of the segment I; Δi = [τi−1, τi];
δi = |Δi|; |ω| = max|δi| is the diameter of the partition ω;

∫
Δi

wil be shortened

as
∫
i
. If X is a subset of Euclidean space, then X [Δ] denotes the collection of all

measurable functions a(·) : Δ→ X . In the case of Δ = [α, β], we will simply write
X [α, β].

We consider the controlled differential inclusion

ż ∈ −F (t, υ), (1)

where z ∈ Rd, υ ∈ Q, t ∈ I, Q ∈ cm(Rq) and F : I ×Q → Ccm(Rd) is continuous
mapping. There is also given subset M , M ⊂ Rd (1) called terminal set of the
system (1).

For any partition ω, ω ∈ Ω, we define the alternating sum S(ω), by the following
recurrent scheme
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S0 = M, Si =
⋂

υ(·)∈Q(Δi)

[
Si−1 +

∫
i

F (t, υ(t))dt

]
, S(ω) = Sn. (2)

The set
W β

α (M) =
⋂

ω∈ Ω

S(ω)

is known Pontryagin’s alternating integral (it was introduced in (Pontryagin, 1967),
more exact definition in (Pontryagin, 1980), generalization for quasilinear games was
considered (Mishchenko and Satimov (1974)), see also (Azamov, 1982)– (Kurzhan-
skiy and Melnikov, 2000)).

Further, when necessary, we shall indicate in notations dependence of sums
and integrals not only of ω or α, β, but also of other initial data, for example
S1(M), S(ω, P,Q), W β

α (M,F ). In the case I = [0, τ ] we will write W τ (M) or even
W τ . The aim of the paper is to give simplified schemes in comparison with (2).

2. Preliminary properties

Lemma 1. (Azamov, 1982). Let a sequence Xk ∈ cl(Rd) decreases monotonically
by inclusion, and Y ∈ cm(Rd). Then the equality( ∞⋂

k=1

Xk

)
+ Y =

∞⋂
k=1

(Xk + Y )

is valid.

It should be noted, for any family Xα ⊂ Rd and a set Y ⊂ Rd the following
relation

(
⋂
α

Xα) + Y ⊂
⋂
α

(Xα + Y ). (3a)

holds.

Lemma 2. (Gusyatnikov, 1972). Let M ∈ cl(Rd) and a sequence of partitions ωn ∈
Ω decreases monotonically by inclusion, .. ωn ⊂ ωn+1, | ωn |→ 0 for n→∞. Then

W β
α (M) =

⋂
k≥1

S(ωk).

In (Gusyatnikov, 1972) this important lemma was proved using Zorn’s lemma
(see also (Pshenichniy and Sagaydak, 1970)–(Polovinkin, 1979)). There we are go-
ing to give its direct proof.

Let ω ∈ Ω be any partition. Values relating to partition ωk, we indicate by index

k, for example, nk is a number of parts, τ
(k)
j are division point of this partition,

j = 1, nk. It is obvious, there is a such N , that |ωk| < 1
4 min1≤i≤n δi if k > N .

Further we consider this condition is satisfied.
For each i by j(i) we denote the minimum value of the index j, such that

min1≤j≤nk
| τkj − τi | is reached. For k > N , numbers τ̄

(k)
i = τ

(k)
j(i) will be pairwise

different and form the partition ω̄k, which has the same number of division points
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as ω. we will mark out the objects of partition ω̄k by same way of symbolization as

τ̄
(k)
i . Notice that the value χk = max1≤i≤n | τi− τ̄

(k)
i | characterize the deviation of

ω̄k from partition ω.
It is easy to see∫

Δ̄i

F (t, υ(t))dt ⊂
∫
Δi

F (t, υ(t))dt+ 2λχkH, (4)

where λ = max{h(0, F (t, υ)) | t ∈ I, υ ∈ Q}.
Now it is possible to estimate partial sums S̄i according to partition ω̄k through

the partial sums Si of the partition ω. By virtue of (4), we obtain

S̄0 = M, S̄1 =
⋂

υ(·)∈Q(Δ̄1)

[
M +

∫
Δ̄1

F (t, υ(t))dt

]
⊂

⊂
⋂

υ(·)∈Q(Δ1)

[
M +

∫
Δ1

F (t, υ(t))dt+ 2λχkH

]
= S1(M + 2λχkH,ω).

Repeating this reasoning gives S̄(M, ω̄k) ⊂ S(M + 2λχknH, ω). Therefore⋂
k

S̄(M, ω̄k) ⊂
⋂
k≥N

S(M + 2λnχkH,ω).

Using lemma 1 we bring the operation of intersection inwards:⋂
k

S̄(M, ω̄k) ⊂ S(
⋂
k≥N

(M + 2λnχkH,ω).

Since the set M is convex closed and the number of division points n of the
partition ω is not depend of k and χk → 0 if k → ∞, then we get the inclusion⋂
k

S̄(M, ω̄k) ⊂ S(M,ω). Hence,
⋂
k

S̄(M, ω̄k) ⊂ W β
α (M). The reverse inclusion is

evident. Lemma 2 is proved.

Corollary 1. LetM ∈ cl(Rd) and Ω∗ is the collection of all partition of the interval
I, containing a fixed division point γ ∈ I. Then

W β
α (M) =

⋂
ω∈Ω∗

S(M,ω).

Lemma 3. ( on the semigroup property of the alternating integral). Let M ∈
cl(Rd) and γ ∈ I. Then W β

γ (W
γ
α (M)) = W β

α (M).

Proof. Let ω′, ω′′ be arbitrary partitions of the interval [α, γ] and [γ, β] correspond-
ingly. Then ω = ω′ ∪ ω′′ ∈ Ω∗. It is obvious that each partition ω ∈ Ω∗ has such
form. Therefore Corollary 1 implies

W β
α (M) =

⋂
ω∈ Ω∗

S(M,ω) =
⋂
ω′′

⋂
ω′

S(S(M,ω′), ω′′)

that is why

W β
α (M) ⊂

⋂
ω′′

⋂
k

S(S(M,ωk), ω
′′),
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where {ωk} is sequence of partitions of the segment [α, γ] decreasing with respect
to inclusion order. Applying Lemmas 1 and 2 to the left side of last relation, we
have

W β
α (M) ⊂

⋂
ω′′

S(
⋂
k

S(M,ωk)) =
⋂
ω′′

S(W γ
α (M), ω′′) = W β

γ (W
γ
α (M)).

From other side,

W β
γ (W

γ
α (M)) =

⋂
ω′′

S(
⋂
ω′

S(M,ω′)) ⊂
⋂
ω′′

⋂
ω′

S(S(M,ω′), ω′′) =

=
⋂

ω∈ Ω∗

S(M,ω) = W β
α (M).

Lemma 3 is proved.

It should be noted that the paper (Pshenichniy and Sagaydak, 1970) contains

proof of the semigroup property for the other operator T̃t that is based on rational
partitions of the time interval.

Theorem 1. Let M ∈ cl(Rd). Then the following recurrent relation is hold:

W τ (M) =
⋂
ε>0

⋂
υ(·)∈Q(τ−ε,τ)

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ(t))dt

]
. (5)

Proof. Let ε be an arbitrary number from the interval (0, τ) and Ω(ε) be the col-
lection of partitions ω of the interval [0, τ ] such that τ − ε services as a division
point. It is evident

W τ (M) ⊂
⋂

ω∈Ω(ε)

S(ω).

Further let ω be an arbitrary partition from Ω(ε), such that ω = {0 = τ0 < τ1 <
... < τl−1 < τl = τ − ε < τl+1 < ... < τn−1 < τ}. Expressing S(ω) via Sn−2 we
obtain

S(ω) =
⋂
υn(·)

⎧⎨⎩ ⋂
υn−1(·)

[
Sn−2 +

∫
n−1

F (t, υn−1(t))dt

]
+

∫
n

F (t, υn(t))dt

⎫⎬⎭ ,

where υk(·) is an arbitrary element of the collection Q[Δk]. Thus By virtue of (3)

S(ω) ⊂
⋂
υn(·)

⋂
υn−1(·)

[
Sn−2 +

∫
Δn−1∪Δn

F (t, ῡ(t))dt

]
=

=
⋂
ῡ(·)

[
Sn−2 +

∫
Δn−1∪Δn

F (t, ῡ(t))dt

]
,

where ῡ(t) = υn−1(t) for t ∈ Δn−1 and ῡ(t) = υn(t) for t ∈ Δn = (τn−1, τ ].
Continuing such kind of arguments gives the following relation

S(ω) ⊂
⋂

υ(·)∈Q[τ−ε,τ ]

[
Sl +

∫ τ

τ−ε
F (t, υ(t))dt

]
.
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(here τl = τ − ε). Therefore

⋂
ω∈Ω(ε)

S(ω) ⊂
⋂

υ(·)∈Q[τ−ε,τ ]

⋂
ω′

[
S(ω′) +

∫ τ

τ−ε
F (t, υ(t))dt

]
,

where the inner intersection is taken over all partitions ω′ of the segment [0, τ − ε].
Let ωk be a sequence of partitions of the segment [0, τ−ε] decreasing monotonically
by inclusion (i.e. ωk ⊂ ωk+1), | ωk |→ 0 for k →∞. Then

W τ (M) ⊂
⋂

υ(·)∈Q[τ−ε,τ ]

⋂
k

[
S(ωk) +

∫ τ

τ−ε
F (t, υ(t))dt

]
, (6)

Now applying Lemma 2 to the right side of the inclusion (6), we obtain

W τ (M) ⊂
⋂

υ(·)∈Q[τ−ε,τ ]

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ(t))dt

]
.

Since the number ε was arbitrary, we can conclude

W τ (M) ⊂
⋂
ε>0

⋂
υ(·)∈Q[τ−ε,τ ]

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ(t))dt

]
.

Now we are to prove the inverse inclusion. For that it is enough to show

S(M + 2λεH, ω) ⊃
⋂

υ(·)∈Q[τ−ε,τ ]

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ(t))dt

]
for any ω ∈ Ω and ε ∈ (0, τ).

Let us choose an arbitrary partition ω ∈ Ω and a point ε ∈ (0, τ). It can be
considered τ − ε ∈ [τl−1, τl) for some l.

First we note

S0(M + 2λεH) = M + 2λεH = S0(M) + 2λεH.

Further taking an arbitrary element vi(·) of the collection Q[Δi] suppose S
i(M+

2λεH) ⊃ Si(M) + 2λεH . Then

Si+1(M + 2λεH) =
⋂

υi+1(·)

[
Si(M + 2λεH) +

∫
i+1

F (t, υi+1(t))dt

]
⊃

⊃
⋂

υi+1(·)

[[
Si(M) +

∫
i+1

F (t, υi+1(t))dt

]
+ 2λεH

]
⊃ Si+1(M) + 2λεH. (7)

Let
∫ β
α
F (t, v(t))dt = F β

α for the bbrevity. By virtue of the inclusion(7) we have

Sl(M + 2λεH) =
⋂
υl(·)

[
Sl−1(M + 2λεH) + F τl

τl−1

]
⊃
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⊃
⋂
υl(·)

[
Sl−1(M) + F τl

τl−1
+ 2λεH

]
. (8)

Now we’ll estimate the last intersection. The relation (3) implies⋂
υl(·)

[Sl−1(M) + F τl
τl−1

+ 2λεH ] ⊃

⊃
⋂

υ(·)∈Q[τ−ε,τl]
[

⋂
υ(·)∈Q[τl−1,τ−ε]

[Sl−1(M) + F τ−ε
τl−1

] + F τl
τ−ε + 2λεH ].

Noticing ⋂
υ(·)∈Q[τl−1,τ−ε]

[Sl−1(M) + F τ−ε
τl−1

] ⊃W τ−ε(M)

and λεH ⊃ F τ
τ−ε we get ⋂

υl(·)
[Sl−1(M) + F τl

τl−1
+ 2λεH ] ⊃

⊃
⋂

υ(·)∈Q[τ−ε,τl]
[

⋂
υ(·)∈Q[τ−ε,τ ]

[W τ−ε(M) + F τ
τ−ε] + F τl

τ−ε + λεH ].

Let Y (ε) denotes

⋂
υ(·)∈Q[τ−ε,τ ]

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ(t))dt

]
.

Taking into account 0 ∈ F τl
τ−ε + λ(τl − τ + ε)H ( because F β

α ⊂ λ(β − α)H by
definition of λ), and inclusion (8), we have Sl(M + 2λεH) ⊃ ⊃ Y (ε) + λ(τ − τl)H .

Being repeated such considerations give Sn(M +2λεH) ⊃ Y (ε)+λ(τ − τn)H =
Y (ε). Taking the intersection on ε and applying Lemma 1, we have

S(ω) ⊃
⋂
ε>0

⋂
υ(·)∈Q(τ−ε,τ)

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ)dt

]

that follows

W τ (M) ⊃
⋂
ε>0

⋂
υ(·)∈Q(τ−ε,τ)

[
W τ−ε(M) +

∫ τ

τ−ε
F (t, υ)dt

]
.

The proof of Theorem 1 is finished.

Note that Theorem 1 allows to solve the problem of reducing system (1) from any
state z0 ∈ W τ (M) to the state z(τ) ∈M in the same way as the alternating integral
in linear differential games of pursuit ((Pontryagin, 1967)-(Pontryagin, 1980)).
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3. Simplified schemes for constructing of the Pontryagin alternating
integral

of The alternating integral for linear games usually defines using the operation
of integrating of multivalued function, that is equivalent to composition of the set
of integrals of measurable selections. In the case of quasilinear differential games
the second way is applicable only (Mishchenko and Satimov (1974)). Moreover one
has to apply the operation of intersection of the family of sets depending on func-
tions instead of more simple operation of geometrical difference as well (compare
(Azamov, 1982) with the formula (2)). So a problem of simplification appears: ’Is it
possible to use more simple operations in the definition of the alternating integral
for quasilinear differential games?’

The first simplified scheme for constructing of the alternating integral was sug-
gested ( Nikolskiy, 1985). Its main idea was developed in (Azamov, 1988). Here we
give results according to the system (1).

Let α(δ) be the modules of continuity of F (t, υ), and let ω ∈ Ω. Define L0 = M
and

Li =

∫
i

⋂
υ∈Q

[
1

δi
Li−1 + 2α(δi)H + F (t, υ)

]
dtL(ω) = Ln, Lτ (M) =

⋂
ω

L(ω). (9)

The formula (9) is a generalization of the simplified scheme of M.S.Nikolskii to the
considering case.

Theorem 2. Let M ∈ Ccl(Rd), then

W τ (M) = Lτ (M).

Proof. For a convex and closed set L easily can be chec ked the relation⋂
υ(·)∈Q(Δi)

[
L+

∫
i

F (t, υ(t))dt

]
⊂
∫
i

⋂
υ∈Q

[
1

δi
L+ 2α(δi)H + F (t, υ)

]
dt. (10)

Taking ξi ∈ Δi by the definition of the modules of continuity for F (t, υ), one obtains

⋂
υ(·)∈Q(Δi)

[
L+

∫
i

F (t, υ(t))dt

]
⊂
⋂
υ∈Q

[
L+

∫
i

F (t, υ)dt

]
⊂

⊂
⋂
υ∈Q

[L+ δiα(δi)H + F (ξi, υ)δi]. (11)

Integrating both parts of the inclusion⋂
υ∈Q

[
1

δi
L+ α(δi)H + F (ξi, υ)] ⊂

⋂
υ∈Q

[
1

δi
L+ 2α(δi)H + F (t, υ)]

gives⋂
υ∈Q

[L+ δiα(δi)H + F (ξi, υ)δi] ⊂
∫
i

⋂
υ∈Q

[
1

δi
L+ 2α(δi)H + F (t, υ)

]
dt. (12)
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Relations (11) and (12) imply the inclusion (10). If instead of L consider conse-
quantly Si, i = 0, ..., n− 1, one comes to the inclusion S(ω) ⊂ L(ω). Hence,

W τ (M) ⊂ Lτ (M). (13)

Further, it is obvious,

L1 ⊂
⋂

υ(·)∈Q(Δ1)

[
L0 + 2δ1α(δ1)H +

∫
1

F (t, υ(t))dt

]
⊂

⊂ S1(M + 2δ1α(δ1)H),

L2 ⊂
⋂

υ(·)∈Q(Δ2)

[
L1 + 2δ2α(δ2)H +

∫
2

F (t, υ(t))dt

]
⊂

⊂ S2(M + 2

2∑
i=1

δiα(δi)H).

Repeating such estimations we get

L(ω) ⊂ S(M + 2

n∑
i=1

δiα(δi)H,ω).

Since α(δi) ≤ α(|ω|), then

Lτ (M) ⊂
⋂
ω

S(M + 2τα(|ω|)H,ω).

Lemmas 1 2 imply ⋂
ω

S(M + 2τα(|ω|)H,ω) = W τ (M).

Hence,
Lτ (M) ⊂W τ (M). (14)

Theorem 2 is proved.

Let us to take note of difference between schemes (2) and (9). The partial sum
Li was being constructed from Li−1 applying on each step the additional sum-
mand 2α(δi)H called ”M.S.Nikolsky’s cap”. If one omits such ’caps’ when Li is
constructed, then the inclusion Lτ (M) ⊂ W τ (M) stays valid but inverse may be
not hold (Azamov and Yahshimov, 2000).

Further we describe more schemes for constructing of the alternating integral,
using ”Nikolskii’ caps” by some other way. By Φ(Δ,D) we denote the collection of
all measurable closed valued mappings A(·) : Δ → cl(Rd), satisfying the condition∫
Δ
A(t)dt ⊂ D. (About the definition of a measurable multivalued mapping see

(Ioffe and Tihomirov, 1974).)
Let

C0 = M,Ci =
⋃
A(·)

∫
i

⋂
υ∈Q

[A(t) + F (t, υ)]dt,

where the union is taken over all A(·) ∈ Φ(Δi, C
i−1 + 2δiα(δi)H),

C(ω) = Cn, Cτ (M) =
⋂
ω

C(ω). (15)
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Corollary 2. Let M ∈ Ccl(Rd), then

W τ (M) = Cτ (M).

The inclusion Cτ (M) ⊂ W τ (M) can be proved in the same way as (14) while
its inverse W τ (M) = Lτ (M) ⊂ Cτ (M) is obvious.

The following scheme was proposed in (Satimov and Karabaev, 1986) for lin-
ear differential games. It combines elements of first and second direct Pontryagin
methods (Pontryagin, 1967), (Pontryagin, 1980).

For ω ∈ Ω define B0 = M, and

Bi =
⋃
A(·)

∫
i

⋂
υ∈Q

[A(t) + F (t, υ)]dt,

where the union is taken over all A(·) ∈ Φ(Δi, B
i−1). Let

B(ω) = Bn, Bτ (M) =
⋃
ω

B(ω).

Lemma 4. If M ∈ cl(Rd), then Bτ (M) ⊂W τ (M).

Proof. Let X be an arbitrary subset of Rd and A(·) ∈ Φ([γ, θ], X), [γ, θ] ⊂ I. We’ll
use the notation

Bθ
γ =

∫ θ

γ

⋂
υ∈Q

[A(t) + F (t, υ)] dt.

First let use prove ⋃
A(·)∈Φ([γ,θ],X)

Bθ
γ ⊂W θ

γ (X), (16)

where W θ
γ (X) is an alternating integral ( see part 2).

As before take a partition ω = {γ = t0 < t1 < t2 < ... < tm = θ} be a partition
of segment [γ, θ]. Obviously

B
tj
tj−1

=

∫
j

⋂
υ∈Q

[A(t) + F (t, υ)] dt ⊂
⋂
vj(·)

[∫
j

A(t)dt +

∫
j

F (t, vj(t))dt

]
,

where vj(·) ∈ Q(Δj). Using the inclusion ( 3), we obtain

Bt2
γ = Bt1

γ +Bt2
t1 ⊂

⋂
v1(·)

[∫ t1

γ

A(t)dt+

∫
1

F (t, v1(t))dt

]
+

+
⋂
v2(·)

[∫ t2

t1

A(t)dt+

∫
2

F (t, v2(t))dt

]
⊂

⊂
⋂
v2(·)

⎡⎣ ⋂
v1(·)

[∫ t2

γ

A(t)dt +

∫
1

F (t, v1(t))dt

]
+

∫
2

F (t, v2(t))dt

⎤⎦ = S2

(∫ t2

γ

A(t)dt

)
.

The continuation of these objections bring us to the following inclusion

Btm
γ ⊂ Sm

(∫ tm

γ

A(t)dt

)
.
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Taking into account tm = θ and
∫ θ
γ
A(t)dt ⊂ X , we have Bθ

γ ⊂ S(X,ω). Since ω

was an arbitrary partition and A(·) ∈ Φ([α, β], X), then⋃
A(·)∈Φ([γ,θ],X)

Bθ
γ ⊂W θ

γ (X).

As a conclusion of (16) and Lemma 3

B1 ⊂W τ1
0 (M), B2 ⊂W τ2

τ1 (B
1) ⊂W τ2

τ1 (W
τ1
0 (M)) ⊂W τ2

0 (M),

.. Bn ⊂W τn
0 (M) = W τ (M) that follows Bτ (M) ⊂W τ (M). Lemma 4 is proved.

Now, we describe the schemes, where the final ”cap” puts on the terminal set
only.

Once more for ω ∈ Ω define partial sums of the next scheme as D0 = M,

Di =

∫
i

⋂
υ∈Q

[
1

δi
Di−1 + F (t, υ)

]
dt, D(ω) = Dn, Dτ (M) =

⋃
ω

D(ω).

Theorem 3. If M ∈ cl(Rd) then

W τ (M) =
⋂
ε>0

Dτ (M + εH). (17)

Proof. Let ε be chosen arbitrarily at the same time let ω ∈ Ω be a partition,
possessing the property α(|ω|) < ε/2τ . Then by virtue of (10) the following relations
hold

S1 ⊂
∫
1

⋂
υ∈Q

[
1

δ1
(M + 2δ1α(δ1)H) + F (t, υ)

]
dt = D1(M + 2δ1α(δ1)H),

S2 ⊂
∫
2

⋂
υ∈Q

[
1

δ2
(D1(M + 2δ1α(δ1)H) + 2α(δ2)H) + F (t, υ)

]
dt ⊂

⊂
∫
2

⋂
υ∈Q

[
1

δ2
(D1(M + 2

2∑
i=1

δiα(δi)H)) + F (t, υ)

]
dt =

= D2(M + 2

2∑
i=1

δiα(δi)H),

and so forth

Sn ⊂ Dn(M + 2

n∑
i=1

δiα(δi)H).

As α(δi) < α(|ω|) < ε/2τ , we have

W τ (M) ⊂ S(M,ω) ⊂ D(M + εH, ω) ⊂ Dτ (M + εH).

Since the number ε > 0 was arbitrary, then

W τ (M) ⊂
⋂
ε>0

Dτ (M + εH).
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Inversely, Lemma 4 implies

Dτ (M + εH) ⊂W τ (M + εH).

Thus ⋂
ε>0

Dτ (M + εH) ⊂
⋂
ε>0

W τ (M + εH).

Finally applying Lemma 1, we obtain⋂
ε>0

Dτ (M + εH) ⊂
⋂
ε>0

W τ (M + εH) = W τ (M).

Theorem 3 is also established.

Theorem 4. Let M ∈ Ccl(Rd). Then

W τ (M) =
⋂
ε>0

Bτ (M + εH). (18)

Proof of the Theorem and its game-theoretical interpretation are similar to the
ones for linear case (Azamov, 1982).
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