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1. Introduction

The core (Gillies, 1953) is the most frequently applied multivalued solution of co-
operative game theory. Under the grand coalition advantageous the analysis of any
TU game usually begins with verification of core existence. For concrete game this
possible to do by means of linear programming problem with constraint set cov-
ers the core. The core of TU game is empty if and only if the optimal value of
this problem is strictly greater than a grand coalition’s weight. If we try to prove
the core non-emptiness for certain class of games we need condition, expressed
through characteristic function. Such is Bondareva-Shapley balancedness condition
(Bondareva, 1963; Shapley, 1967). That condition is equivalent to linear system with
entries corresponding to the extreme points of polytope in R2n−1. The number of
extreme points and their explicit representation known only for small n.

There exist more simple but only sufficient conditions. The most known is the
convexity of game. The minimal convexity test consists of 2nn(n−1)

8 inequalities
(Voorneveld and Grahn, 2001). In this paper the simple procedure to generate suf-
ficient nonemptiness conditions for core of TU game is described. For any basis
matrix consisting of coalitional characteristic vectors we can obtain sufficient condi-
tion defined by a system of 2n−n−1 linear inequalities. So each condition determines
a cone in linear space of all TU games.

The following table illustrates what increases the number of inequalities in con-
ditions mentioned above when n increase.

n 3 4 5 6 7

balancedness condition 5 41 1291 200213 132422035
minimal convexity test 6 24 80 240 672
sufficient condition 4 11 26 57 120

The paper has the following contents. Next section recalls the standard facts of
cooperative game theory which are useful later. The balancedness condition, mini-
mal balanced sets and some classes of balanced games are described in third section.
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The last section contains the set of sufficient nonemptiness conditions correspond-
ing to special bases and shows that some of them are the generalizations of known
results.

2. Preliminaries

A cooperative TU game is a pair (N, ν) where N = {1, 2, . . . , n} is a player set,
n ≥ 2, ν : 2N → R is a set function satisfying ν(∅) = 0. Throughout the paper
we identify (N, ν) and ν. The class of TU games with player set N will be denoted
by GN . A payoff vector for a game ν ∈ GN (ore allocation) is a vector x ∈ Rn. A
subset of N is called a coalition, ν(S) expresses the worth of coalition S and eS is
the characteristic vector of coalition S, i.e. (eS)i = 1 if i ∈ S, (eS)i = 0 otherwise.
Sometimes (for simplicity) we shall write N \ i instead of N \ {i}, ν(123) instead
of ν({1, 2, 3}) and so on. For any S ∈ 2N and x ∈ Rn let x(S) =

∑
i∈S xi and

x(∅) = 0. The cardinality of coalition S is written as |S|. The rank of matrix A is
denoted as rank(A). The dual game ν∗ of ν ∈ GN is determined by

ν∗(S) = ν(N)− ν(N \ S) for every S ⊆ N.

A game ν ∈ GN is called:
• zero-normalized if ν(i) = 0 for all i ∈ N ,
• nonnegative if ν(S) ≥ 0 for all S ⊆ N ,
• monotonic if ν(S) ≤ ν(T ) for all S ⊂ T ⊆ N ,
• N-essential if

∑
i∈N ν(i) < ν(N),

• convex (concave) if

ν(S) + ν(T ) ≤ (≥) ν(S ∪ T ) + ν(S ∩ T ) for all S, T ⊆ N.

If the grand coalition is formed then players can divide the amount ν(N). The order
on N is a bijection π : N → N . The set of all orders π = {π1, . . . , πn} is given by
Π(N). The Weber set of game ν ∈ GN , denoted by W (ν), is the convex hull in Rn

of all π-marginal vectors

W (ν) = conv{mπ(ν) | π ∈ Π(N)}

were

mπ
i (ν) = ν(Sπi )− ν(Sπi−1), Sπi = {π1, . . . , πi}, i ∈ N.

W (ν) �= ∅ for any game ν ∈ GN . For the description of other set-valued solution
concepts is used the set

X(ν) = {x ∈ RN | x(N) = ν(N)}

of efficient payoff distributions of ν(N) named the preimputation set and its sub-
sets: the imputation set

I(ν) = {x ∈ X(ν) | xi ≥ ν(i), i ∈ N},

the dual imputation set

I∗(ν) = {x ∈ X(ν) | xi ≤ ν∗(i), i ∈ N}.
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I(ν) �= ∅ iff
∑
i∈N ν(i) ≤ ν(N). If a game ν ∈ GN is N -essential then I(ν) is an

(n− 1)-dimensional simplex with extreme points f i(ν) ∈ Rn, i ∈ N , where

(f i(ν))j =

{
ν(j), i �= j,

ν(N)−
∑
k∈N\i ν(k), i = j,

for all i ∈ N.

I∗(ν) �= ∅ iff
∑

i∈N ν∗(i) ≥ ν(N). In case of strict inequality I∗(ν) is an (n− 1)-
dimensional simplex with extreme points gi(ν) ∈ Rn, i ∈ N , where

(gi(ν))j =

{
ν∗(j), i �= j,
ν(N)−

∑
k∈N\i ν

∗(k), i = j.
for all i ∈ N.

The core of a game ν ∈ GN is a subset of core cover (Branzei and Tijs, 2001)
CC(ν) = I(ν) ∩ I∗(ν) defined by

C(ν) = {x ∈ I(ν) | x(S) ≥ ν(S), S ⊆ N}.

Thus ν(i) ≤ xi ≤ ν∗(i) for all i ∈ N and x ∈ C(ν). Web(ν), I(ν), I∗(ν), CC(ν)
and C(ν) are the polytopes in Rn. The set of extreme points of polytope P will be
denoted by ext(P).

Two players i, j ∈ N are symmetric in ν ∈ GN if ν(S ∪ i) = ν(S ∪ j) for every
S ⊆ N \ {i, j}. A player i ∈ N is a veto player in ν ∈ GN if ν(S) = 0 for each
S � i. The set of veto players is denoted by V eto(ν).

3. Balancedness

Let

Ω1 = 2N \ {∅}, Ω2 = 2N \ {N, ∅}, Ω(k1, k2) = {S ∈ 2N | k1 ≤ |S| ≤ k2}

are the sets of nonempty coalitions, proper coalitions and coalitions with restricted
size. It is proved (Bondareva, 1963; Shapley, 1967) that the core of a game ν ∈ GN

is nonempty iff ∑
S∈Ω1

λSν(S) ≤ ν(N) for all λ ∈ ext(Λn) (1)

where
Λn = {λ ∈ R2n−1

+ |
∑
S∈Ω1

eSλS = eN}.

A game ν ∈ GN satisfying (1) is called balanced game. The condition (1) is called
balancedness condition. In some game theory literature a game is balanced if it have
a nonempty core.

A collection F = {F}mi=1 of coalitions Fi ∈ Ω2 is called minimal balanced set
if there exists λ ∈ ext(Λn) such that λS > 0 for S ∈ F and λS = 0 otherwise
(this definition can be given in alternative form). The vector α(F ) = (α(Fi))

m
i=1

with α(Fi) = λFi is called weight vector for F . In terms of minimal balanced sets
a necessary and sufficient condition for nonemptiness of the core of game ν ∈ GN

can be written as ∑
Fi∈F

α(Fi)ν(Fi) ≤ ν(N) for all F ∈ Fn, (2)

where Fn denotes a family of all minimal balanced sets on N .
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Definition 1. A linear inequality is called convexity-inequality, concavity-inequality,
union-inequality ore balancedness-inequality if it contains in system defining corre-
sponding property of game ν.

The number of balancedness-inequalities grows very rapidly with n. Some of
them define necessary and sufficient nonemptiness conditions for other sets. I(ν) �= ∅
(I∗(ν) �= ∅ ) iff the corresponding to {{1}, . . . , {n}} ({N \ {1}, . . . , N \ {n}})
balancedness-inequality is satisfied. CC(ν) �= ∅ iff a game ν ∈ GN satisfies inequal-
ities corresponding to {{1}, . . . , {n}}, {N \ {1}, . . . , N \ {n}} and {{i}, N \ {i}},
i ∈ N .

Let us list some types of balanced games which characterization yields a sufficient
conditions for core existence. A game is T -simplex (Branzei and Tijs, 2001) where
T ∈ Ω1 if its core is a subsimplex of imputation set, i.e. a game is N -essential and

C(ν) = conv{f i(ν)|i ∈ T }.

A game is dual-simplex (Branzei and Tijs, 2001) if its core is a subsimplex of dual
imputation set, i.e. ν(N) <

∑
i∈N ν∗(i) and there is a coalition T ∈ Ω1 such that

C(ν) = conv{gi(ν)|i ∈ T }.

A balanced game satisfies the CoMa-property (Hamers et al., 2002) iff the extreme
points of its core are marginal vectors, i.e. ext(C(ν)) ⊆ ext(Web(ν)). The convex
games satisfy the CoMa-property because for them C(ν) = Web(ν) (Shapley, 1971).
The non-convex games that satisfy the CoMa-property are: information games
(Kuipers, 1993), assignment games (Hamers et al., 2002), cost spanning tree games
(Granot and Huberman, 1981). If a game ν ∈ GN is permutationally convex with
respect to an order π ∈ Π(N) then corresponding marginal vector mπ(ν) is a core
allocation (in other words ext(C(ν))∩ext(Web(ν)) �= ∅). But the reverse is not true
in general (Velzen et al., 2005).

A game ν ∈ GN is clan game with coalition CL �= ∅ as clan (Potters et al., 1989)
if: it satisfies the union property

ν(N)− ν(S) ≥
∑
i∈N\S

ν∗(i) for all S ⊆ N with CL ⊆ S;

ν and ν∗(i), i ∈ N , are non-negative; ν(S) = 0 if CL �⊂ S (clan property).
A game ν ∈ GN (n ≥ 3) is called a big boss game with player 1 as big boss
(Muto, et al., 1988) if: ν is monotonic; ν(S) = 0 for all S ⊂ N with 1 /∈ S (boss
property); ν(N)−ν(S) ≥

∑
i∈N\S ν∗(i) for all S ⊆ N with 1 ∈ S (union property).

4. Sufficient conditions

Consider the system

x(S) ≥ ν(S), S ∈ Ω2, −x(N) ≥ −ν(N) (3)

differs from one determines the core of game ν ∈ GN that efficiency condition

x(N) = ν(N) (4)
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is replaced with inequality x(N) ≤ ν(N). If the system (3) is non-solvable than the
core of game ν ∈ GN is empty. Let x̂ is a solution to system (3). If it satisfies (4)
than x̂ ∈ C(ν). Otherwise the payoff vectors xi, i ∈ N , where

xij =

{
x̂j , i �= j,
ν(N) −

∑
k∈N\i x̂k, i = j,

are the core allocations. The system (3) can be presented in the form

Ax ≥ ν, (5)

where x ∈ Rn, ν = (ν(S))S∈Ω1 , ν(S) = ν(S), S ∈ Ω2, ν(N) = −ν(N), A is the
(2n− 1)×n matrix with row vectors AS refering to S ∈ Ω1. The first (2n− 2) rows
of matrix A are the characteristic vectors eS of coalitions S ∈ Ω2. The last row
AN = −eN of A corresponds to the grand coalition. Obviously rank(A) = n.

Let B = (bij)n be a basis of A. By transposition of rows the matrix A can be
represented in the form A = (B D)T and system (3) becomes

Bx ≥ νB, Dx ≥ νD,

where νB = (ν(S))S∈B , νD = (ν(S))S∈D is a basis, nonbasis partition of variables
in the vector ν . The system Bx = νB determines the unique basis solution xB =
B−1νB . If xB satisfies DxB ≥ νD then it is the feasible solution to system (5).
The following provides a simple sufficient condition. Let ν ∈ GN and B is a basis
of matrix A in (5). If ν satisfies

D(B−1νB) ≥ νD (6)

then C(ν) �= ∅.
The next two examples illustrate the above technique for the most simple bases.

Example 1. Take basis
B = {A{1}, . . . , A{n}}T

with characteristic vectors of single player coalitions as rows. Thus B and B−1 are
the n× n identity matrixes, xB = (ν(1), . . . .ν(n)). Condition (6) becomes

ν(S) ≤
∑
i∈S

ν(i), S ∈ Ω1.

It determines the set ofN -simplex games. For all i ∈ N the payoff vector xi coincides
with extreme point f i(ν) of imputation set.

Example 2. Basis
B = {A{1}, . . . , A{n−1}, AN}T

differs from previous one that A{n} is replaced on AN = −eN . The matrixes B,
B−1 = (b−1

ij )n and basis solution xB are determined by

bij = b−1
ij =

⎧⎨⎩ 1, (i = j) ∧ (i �= n),
−1, i = n,
0, otherwise.

xBi =

{
ν(i), i �= n,

ν(N) −
∑n−1
i=1 ν(i), i = n,
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xB is a core allocation and coincide with extreme point fn(ν) of imputation set.
Condition (6) becomes

ν(S) ≤
∑
i∈S

ν(i) if n /∈ S, ν(S) ≤ ν(N)−
∑
i∈N\S

ν(i) if n ∈ S, S ∈ Ω(2, n− 1).

We obtain the description of subcone of balanced games containing the set of such
T -simplex games that T  n.

Definition 2. Let F ∈ Fn is a minimal balanced set and β ∈ R. A linear inequality∑
Fi∈F

α(Fi)ν(Fi) ≤ β

is called strengthened-balancedness-inequality if β ≤ ν(N).

The next theorem provides an explicit representation the condition (6) for basis

B = (AN\1 AN\2 . . . AN\n)T (7)

consisting of characteristic vectors for all coalitions of size (n − 1). The corollary
1 show that this condition consists of balancedness-inequality and strengthened-
balancedness-inequalities only.

Theorem 1. Let ν ∈ GN . The following two conditions∑
i∈N

ν(N \ i)

n− 1
≤ ν(N), (8)

ν(S) ≤
(|S|+ 1− n)

∑
i∈S ν(N \ i) + |S|

∑
i∈N\S ν(N \ i)

n− 1
, S ∈ Ω(1, n− 2) (9)

imply that C(ν) �= ∅.

Proof. Consider the basis (7). The matrix B and inverse matrix B−1 have the form

bij =

{
0, i = j,
1, i �= j,

b−1
ij =

{ 2−n
n−1 , i = j,
1

n−1 , i �= j.

Therefor, xB = B−1νB is determined by

xBi =

∑
j∈N\i ν(N \ j) + (2− n)ν(N \ i)

n− 1
, i ∈ N. (10)

Obviously, xB(N) is equal to the left side of inequality (8). The equality∑
i∈S

∑
j∈N\i

ν(N \ j) = |S|
∑
i∈N\S

ν(N \ i) + (|S| − 1)
∑
i∈S

ν(N \ i)

implies that xB(S) is equal to the right side of inequality in (9). Thus condition (6)
holds. 
�
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Corollary 1. The conditions in Theorem 1 consist of one balancedness-inequality
and 2n − n− 2 strengthened-balancedness-inequalities

ν(S) +
∑

i∈S ν(N \ i)

|S| ≤ xB(N), S ∈ Ω(1, n− 2), (11)

with identical right side, where xB is determined by (10).

Proof. Known that F 1 =
⋃
i∈N{N \ i} is minimal balanced set with weight vector

α(F 1) = ( 1
n−1 , . . . ,

1
n−1 ). Corresponding to F 1 inequality in (2) coincides with (8).

Therefore, (8) is balancedness-inequality. Take S ∈ Ω(1, n−2). After transformation
the right side of inequality in (9)

(|S|+ 1− n)
∑

i∈S ν(N \ i) + |S|
∑
i∈N\S ν(N \ i)

n− 1
=

|S|
∑

i∈N ν(N \ i)− (n− 1)
∑

i∈S ν(N \ i)

n− 1
=
|S|
∑
i∈N ν(N \ i)

n− 1
−
∑
i∈S

ν(N \ i) =

|S|xB(N)−
∑
i∈S

ν(N \ i),

we obtain that the system (9) is equivalent with (11). The collection of coalitions
F 1 = {{N \S}∪(

⋃
i∈S{i})} belongs to Fn because it is the partition of N , α(F 1) =

(1, . . . , 1). The complementation gives minimal balanced set

F 2 = {S ∪ (
⋃
i∈S

{N \ i})}

with weight vector α(F 2) where

α(F 2
i ) =

α(F 1
i )∑|F 1|

i=1 α(F 1
i )− 1

=
1

|S| .

According to (8), xB(N) ≤ ν(N). In view of definition 2 any inequality in (11)
is strengthened-balanced-inequality. The number of such inequalities is equal to
|D| − 1 = 2n − n− 2. 
�

The following theorem show that it is possible to replace all (ore some) inequalities
in system (9) by union-inequalities.

Theorem 2. Let ν ∈ GN . For any fixed r ∈ {0, . . . , n − 2} the balancedness-
inequality (8) together with strengthened-balancedness-inequalities

ν(S) +
∑

i∈S ν(N \ i)

|S| ≤
∑

i∈N ν(N \ i)

n− 1
, S ∈ Ω(1, r), (12)

and union-inequalities

ν(N)− ν(S) ≥
∑
i∈N\S

ν∗(i), S ∈ Ω(r + 1, n− 2), (13)

imply than C(ν) �= ∅.
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Proof. Of course every inequality in (13) is a union-inequality (for CL = S). In
view of corollary 1 it is sufficient to prove that from (13) follows

ρS = |S|
∑
i∈N

ν(N \ i)− (n− 1)(ν(S) +
∑
i∈S

ν(N \ i)) ≥ 0, S ∈ Ω(r + 1, n− 2)

ore

|S|
∑
i∈N\S

ν(N \ i)− (n− 1)ν(S)+ (|S|−n+1)
∑
i∈S

ν(N \ i) ≥ 0, S ∈ Ω(r+1, n− 2).

From (8) it follows that

(|S| − n+ 1)
∑
i∈S

ν(N \ i) ≥ (n− |S| − 1)
∑
i∈N\S

ν(N \ i) + (|S| − n+ 1)(n− 1)ν(N).

Two last inequalities implies

ρS
n− 1

≥
∑
i∈N\S

ν(N \ i)− ν(S)− (n− |S| − 1)ν(N) =

ν(N)− ν(S)− (
∑
i∈N\S

(ν(N)− ν(N \ i)) = ν(N)− ν(S)−
∑
i∈N\S

ν∗(i).

Using (13) we have ρS ≥ 0 for all S ∈ Ω(r, n− 2). 
�

Let BALn be the cone of balanced games ν ∈ GN and BALnr ⊂ BALn be the
subcone generated by conditions in Theorem 2 . Since each inequality in (12) follows
from corresponding inequality in (13) and balancedness-inequality (8) then

BALn0 ⊂ BALn1 ⊂ . . . ⊂ BALnn−2.

The next example show that BALn0 �= ∅.

Example 3. Consider 5-person game :
ν(i) = 0 for all i ∈ N = {1, . . . , 5}, ν(N) = 10,
ν(12) = ν(13) = ν(14) = ν(15) = 2,
ν(23) = ν(24) = ν(25) = ν(34) = ν(35) = 1,
ν(123) = ν(124) = ν(125) = ν(134) = ν(135) = 5,
ν(234) = ν(235) = ν(345) = 4,
ν(1234) = ν(1235) = ν(1245) = ν(1345) = 8, ν(2345) = 7.

The core have five extreme points
ext(C(ν)) = {(2, 2, 2, 2, 2), (3, 1, 2, 2, 2), (3, 2, 1, 2, 2), (3, 2, 2, 1, 2), (3, 2, 2, 2, 1)}.
This is monotonic, superadditive, but non-convex even for the grand coalition
(ν(1234) + ν(1235) > ν(N) + ν(123)) game. Players marginal contributions to the
grand coalition are:

ν∗(1) = 3, ν∗(2) = ν∗(3) = ν∗(4) = ν∗(5) = 2.
Take r = 0. Since the players 2-5 are symmetric it is sufficient to verify:

|S| = 1 =⇒ ν(N)− ν(1) ≥ 4ν∗(2), ν(N)− ν(2) ≥ ν∗(1) + 3ν∗(2),
|S| = 2 =⇒ ν(N)− ν(12) ≥ 3ν∗(3), ν(N)− ν(23) ≥ ν∗(1) + 2ν∗(4),
|S| = 3 =⇒ ν(N)− ν(123) ≥ 2ν∗(2), ν(N)− ν(234) ≥ ν∗(1) + ν∗(2).

All inequalities hold. From (10) we obtain
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xB = (2.75, 1.75, 1.75, 1.75, 1.75).

As ν(N)− xB(N) = 0.25 then xB �∈ C(ν). But we have five core allocations associ-
ated with basis B:

x1 = (3, 1.75, 1.75, 1.75, 1.75), x2 = (2.75, 2, 1.75, 1.75, 1.75),
x3 = (2.75, 1.75, 2, 1.75, 1.75), x4 = (2.75, 1.75, 1.75, 2, 1.75),
x5 = (2.75, 1.75, 1.75, 1.75, 2).

Next theorem provides the sufficient condition corresponding to basis

B = ((A{i})i∈H , (AN\i)i∈(N\H)\i∗ , AN )T

where H ∈ (2N \ {N}) \ {i∗}.
Theorem 3. Let ν ∈ GN . Let also i∗ ∈ N , H ∈ (2N \ {N}) \ {i∗} are fixed and
Ω2
H = {S ∈ Ω2| S �= {i} for i ∈ H, S �= {N \ i} for i ∈ (N \ H) \ i∗}. The

following two conditions

ν(S) ≤
∑

i∈S∩H
ν(i) +

∑
i∈S\H

ν∗(i), S ∈ Ω2
H , i∗ /∈ S, (14)

ν(S) ≤ ν(N) −
∑
i∈H\S

ν(i)−
∑

i∈(N\H)\S
ν∗(i), S ∈ Ω2

H , i∗ ∈ S, (15)

imply that C(ν) �= ∅.

Proof. Consider the vector xBH determined by

(xBH)i =

⎧⎪⎨⎪⎩
ν(i), i ∈ H,
ν∗(i), i ∈ (N \H) \ i∗,
ν(N)−

∑
j∈H

ν(j) −
∑

j∈(N\H)\i∗
ν(N \ j), i = i∗.

If i∗ �∈ S then xBH(S) coincides with right side of inequality in (14). If i∗ ∈ S then

xBH(S) =
∑

i∈S∩H
ν(i) +

∑
i∈S\H\i∗

ν∗(i) + ν(N)−
∑
i∈H

ν(i)−
∑

i∈(N\H)\i∗
ν(N \ i)

is equals to the right side of of inequality in (15). Since xBH(S) = ν(S) for all
S ∈ Ω1 \Ω2

H we have xBH ∈ C(ν). 
�

Corollary 2. The system (14)-(15) characterizes such class of TU games that at
least one extreme point of imputation set I(ν) or dual imputation set I∗(ν) or core
cover CC(ν) belongs to core.

Proof. Let H and i∗ be the same as in Theorem 3. If H = N \ i∗ then xBH is defined
by

(xBH)i =

{
ν(i), i ∈ N \ i∗,
ν(N)−

∑
j∈N\i∗

ν(j), i = i∗.

Therefore xB(H) = f i
∗
(ν) ∈ ext(I(ν)). If H = ∅ then

(xBH)i =

{
ν∗(i), i ∈ N \ i∗,
ν(N)−

∑
j∈N\i∗

ν∗(j), i = i∗,
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and xBH = gi
∗
(ν) ∈ ext(I∗(ν)). Let mow H ∈ Ω2 \ {N \ i∗}. The core cover CC(ν)

is defined by the system

xi ≥ ν(i), xi ≤ ν∗(i), i ∈ N, x(N) = ν(N).

The vector xBH satisfies as equality n − 1 linearly independent inequalities in this
system and xBH(N) = ν(N). So xBH ∈ ext(CC(ν)). 
�

Now we give example to illustrate the conditions in Theorem 3.

Example 4. Let ν ∈ G{1,2,3} and (without loss of generality) i∗ = 3. The conditions
in Theorem 3, corresponding to all possible choices for coalition H ∈ (2N \ {N}) \
i∗ are given in the following table. For each H the inequalities listed in the last

H S ∈ Ω2
H inequalities in (14), (15) transformed inequalities

{3} ν(12) ≤ ν(1) + ν(2)
{12} {12} ν(3) ≤ ν(N)− ν(1)− ν(2) ν(1) + ν(2) + ν(3) ≤ ν(N)

{13} ν(13) ≤ ν(N)− ν(2) ν(2) + ν(13) ≤ ν(N)
{23} ν(23) ≤ ν(N)− ν(1) ν(1) + ν(23) ≤ ν(N)

{1} ν(1) ≤ ν∗(1) similar H = {12}, S = {23}
∅ {2} ν(2) ≤ ν∗(2) similar H = {12}, S = {13}

{3} ν(12) ≤ ν∗(1) + ν∗(2) ν(12) + ν(13) + ν(23) ≤ 2ν(N)
{12} ν(3) ≤ ν(N)− ν∗(1)− ν∗(2) ν(13) + ν(23) ≥ ν(N) + ν(3)

{2} ν(2) ≤ ν∗(2) similar H = {12}, S = {13}
{1} {3} ν(12) ≤ ν(1) + ν∗(2) ν(12) + ν(13) ≤ ν(N) + ν(1)

{12} ν(3) ≤ ν(N)− ν(1)− ν∗(2) ν(1) + ν(3) ≤ ν(13)
{23} similar H = {12}, S = {23}

{2} similar H = {1}

column of table are balancedness-inequalities, convexity-inequalities ore concavity-
inequalities only.
Consider the game:
ν(1) = 1, ν(2) = −1, ν(3) = 2, ν(12) = 0, ν(13) = 6. ν(23) = 4. ν(N) = 6.
It is monotonic, superadditive, but non-convex even for the grand coalition (ν(13)+
ν(23) > ν(N) + ν(3)) game. Players marginal contributions to the grand coalition
are: ν∗(1) = 2, ν∗(2) = 0, ν∗(3) = 6. We have

ext(Web(ν)) = {(2,−1, 5), (2, 2, 2), (4, 0, 2), (1,−1, 6), (1, 0, 5)},
ext(I(ν)) = {(5,−1, 2), (1, 3, 2), (1,−1, 6)},
ext(I∗(ν)) = {(0, 0, 6), (2,−2, 6), (2, 0, 4)},
ext(C(ν)) = ext(CC(ν)) = {(2,−1, 5), (1, 0, 5), (1,−1, 6), (2, 0, 4)}.

For every coalition T ∈ Ω1 the given game is not T -simplex and dual simplex
because ext(C(ν)) �⊆ ext(I(ν)), ext(C(ν)) �⊆ ext(I∗(ν)). It do not satisfy the CoMa-
property because ext(C(ν)) �⊆ ext(Web(ν)). The conditions (14), (15) are satisfied
for all H ∈ (2N \ {N}) \ {3}. We have

xB{1,2} = (1,−1, 6) ∈ ext(I(ν)), xB{∅} = (2, 0, 4) ∈ ext(I∗(ν)),
xB{1} = (1, 0, 5) ∈ ext(CC(ν)), xB{2} = (2,−1, 5) ∈ ext(CC(ν)).

Remark 1. The set of games satisfying (14)-(15) contains T -simplex games, dual
simplex games with T  i∗, zero-normalized monotonic games with V eto(ν)  i∗,
clan games with CL  i∗, big boss games with player i∗ as big boss.
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Remark 2. For basis containing the rows AN , A{π1}, A{π1,π2},...,A{π1,π2,...,πk},
where 2 ≤ k ≤ n− 1, the conditions (6) define TU games with some convexity be-
haviour. For k = n−1 we obtain condition that determines such class of games that
at least one extreme point mπ(ν) of Weber set belongs to core, i.e. permutationally
convex games (in particular, convex games and games satisfy the CoMa-property).
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