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Abstract The paper deals with polar representation formula for the Shap-
ley value, established in (Vasil’ev, 1998). Below, we propose a new, simplified
proof of the formula for nonatomic polynomial games. This proof relies on
the coincidence of generalized Owen extension and multiplicative Aumann-
Shapley expansion for polynomial games belonging to pNA (Vasil’ev, 2009).
The coincidence mentioned makes it possible to calculate Aumann-Shapley
expansion in a straightforward manner, and to complete new proof of the po-
lar representation formula for nonatomic case by exploiting the generalized
Owen integral formula, established in (Aumann and Shapley, 1974).
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1. Introduction

The paper deals with the polar representation formula for the Shapley value, es-
tablished under rather general assumptions in (Vasil’ev, 1998). In order to simplify
a proof of this formula for some special classes of games, we continue our investi-
gation on the generalized Owen extension for regular polynomial games started in
(Vasil’ev, 2009). Main attention is paid to the nonatomic cooperative games. Our
approach is based on the principal result from (Vasil’ev, 2009), demonstrating that
the above-mentioned generalized Owen extension coincides with the multiplicative
Aumann-Shapley expansion for some types of nonatomic games, including polyno-
mial games from pNA. This coincidence makes it possible to calculate the Aumann-
Shapley expansion in a straightforward manner by applying the corresponding gen-
eralized Owen extension. To complete new proof of the polar representation formula
for the Shapley value of nonatomic homogeneous game we exploit the famous gen-
eralized Owen integral formula from (Aumann and Shapley, 1974), given in terms
of the multiplicative Aumann-Shapley expansion.

2. Generalized Owen Extension for Regular Polynomial Games

Below, some main constructions of an explicit definition of the generalized Owen
extension, introduced in the paper, are given (for the sake of brevity, we restrict
ourselves to the case of regular polynomial games).

Let (Q, d) be an arbitrary nonempty metric compactum with distance function d.
Denote by B its Borel σ-algebra and consider a collection V = V(Q) of set functions
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v : B → R satisfying the requirement v(∅) = 0. As usual, a triplet Γ = (Q,B, v)
with v ∈ V is said to be a cooperative game (with elements of Q being players, and
elements of B treated as their coalitions). Remind, that we pay attention, mostly,
to the case of infinite cooperative games (when Q is an infinite set).

To characterize cooperative games under considerations in more details, we intro-
duce first some technical notations and definitions (most of them, including vector
lattice terms, can be found in more details in (Vasil’ev, 1998)). Fix S ∈ B and
denote by H(S) a set of finite B-measurable partitions of S. Put H = ∪S∈BH(S).
For any η = {Si}i∈Ω ∈ H with |Ω| = m, and v ∈ V denote by v(η) = v({Si}i∈Ω) a
polynomial m-difference, defined by the formula

v(η) :=
∑
ω⊆Ω

(−1)|Ω|−|ω|v(∪i∈ωSi), (1)

where, as usual, |ω| denotes the number of elements of a finite set ω.

Remark 1. Directly from (1) it follows that polynomial differences satisfy the re-
cursion formula

v({S1, . . . , Sm−1, Sm, Sm+1}) = v({S1, . . . , Sm−1, Sm ∪ Sm+1})
−v({S1, . . . , Sm−1, Sm})− v({S1, . . . , Sm−1, Sm+1}), m ≥ 2,

with v({S1}) = v(S1), and v({S1, S2}) = v(S1

⋃
S2)−v(S1)−v(S2). Note also, that

for any S ∈ B and η = {Si}mi=1 ∈ H(S), an equality

v(S) =
∑
ω⊆Ωη

v(ηω) (2)

is valid, where Ωη := {1, . . . ,m}, and ηω := {Si}i∈ω for any ω ⊆ Ωη.

Recall (Vasil’ev, 1975a), that polynomial variation ||v||0 of v ∈ V is defined by
the formula

‖v‖o := sup {
∑
ω⊆Ω

|v(ηω)|
∣∣∣ η = {Si}i∈Ω ∈ H(Q)}

with v(ηω) determined as above. We say that a function v ∈ V is of bounded
polynomial variation if ||v||0 < ∞. Put

V = V (Q) := {v ∈ V | ‖v‖o < ∞}

and define a cone V+ = V+(Q) of positive elements of V in order to equip the
collection V with the structure of a vector lattice. Recall (Vasil’ev, 1975a), that
a game v ∈ V is said to be totally positive if v(η) ≥ 0 for any η ∈ H. A cone
of positive elements, mentioned above, is taken to be a convex cone of the totally
positive games:

V+ = V+(Q) := {v ∈ V | v(η) ≥ 0 for any η ∈ H}.

It is not very hard to verify that V+ ⊆ V and partial order u ≥0 v ⇐⇒ u− v ∈ V+,
induced by V+ (along with the norm of polynomial variation ‖ · ‖0), endows V
with the structure of Banach vector lattice. To be exact (Vasil’ev, 1998), V is norm
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complete and Dedekind complete vector lattice with the norm ‖·‖0 compatible with
partial order ≥0: monotone order convergence vn ↓ 0 (vn ↑ ∞) implies monotone
norm convergence ‖vn‖0 ↓ 0 (‖vn‖0 ↑ ∞).

Following notations of the vector lattice theory (Aliprantis and Border, 1994),
for any function v ∈ V , denote by v+ = v ∨ 0, v− = −v ∨ 0, and |v| = −v ∨ v
the positive, negative, and total variations of v, respectively (as usual, u ∨ w :=
sup {u,w}, and u ∧ w := inf {u,w} with respect to the partially ordered vector
space (V,≥0). Let F be the collection of all closed subsets of Q. The basic type of
games we are going to deal with is given by the following definition.

Definition 1 (Vasil’ev, 1975a). A game v ∈ V is said to be regular, if its total
variation |v| meets the requirement:

|v|({Si}m1 ) = sup { |v|({Fi}m1 )
∣∣∣ Fi ⊆ Si, Fi ∈ F , i = 1, . . . ,m}

for any partition η = {Si}m1 ∈ H. A set of regular games is denoted by rV = rV (Q).

Definition 2 (Vasil’ev, 1975a). A game v ∈ rV is called a (regular) polynomial
game of order n, if all the polynomial n+ 1-differences of v are equal to zero:

v({Si}n+1
1 ) = 0 for any {Si}n+1

1 ∈ H.

Denote by rV n = rV n(Q) a space of all regular polynomial games of order n, and
put

rpV := ∪∞
n=1rV

n.

We say that v is a (regular) polynomial game, if v belongs to rpV .

Passing on directly to the generalization of the Owen multilinear extension, we
introduce first a concept of integration with respect to polynomial set function.
To this end fix some v ∈ rV n, and construct an extension of v to the n-th sym-
metric power B[n] of algebra B. In turn, to introduce definition of B[n], we recall
(Vasil’ev, 1975a), that the n-th symmetric power S[n] of a coalition S ∈ B is given
by the formula

S[n] = {τ ⊆ S
∣∣∣ |τ | ≤ n},

where, as before, we denote by |τ | the number of elements of τ .

Definition 3 (Vasil’ev, 1975a). The n-th symmetric power B[n] of an algebra B

is the smallest algebra that includes the collection {S[n]
∣∣∣S ∈ B}.

By applying a description of B[n], given in (Vasil’ev, 1975a), one can prove that
there exists a unique additive set function λv : B[n] → R, satisfying the requirement:
λv(S

[n]) = v(S) for any S ∈ B. Moreover, by taking into account regularity of v and
compactness of Q one can establish that there exists a unique σ-additive extension
μv of λv to the smallest σ-algebra σB[n] that includes B[n] (for more details, see
(Vasil’ev, 1975a)). Interestingly to note that σ-algebra σB[n] admits rather simple
description.
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Proposition 1 (Vasil’ev, 1975a). Algebra σB[n] coincides with the Borel σ-algebra
of the compact metric space (Q[n], d[n]), where d[n] is the Hausdorff metric

d[n](τ, τ ′) := min {ε
∣∣∣ τ ⊆ τ ′

ε, τ
′ ⊆ τε}

with τε, τ
′
ε to be ε-neighborhoods of τ, τ ′ ∈ Q[n].

Let now f be an arbitrary element of the vector space I(Q,B) of bounded B-
measurable functions, defined on Q. We introduce a polynomial extension f

[n]
ρ of

the function f to Q[n], determined by the formula

f [n]
ρ (τ) :=

∏
t∈τ

f(t), τ ∈ Q[n].

It is not very hard to verify that for any f ∈ I(Q,B) its polynomial extension
belongs to the vector space I(Q[n], σB[n]) of bounded σB[n]-measurable functions,
defined on Q[n]. Hence, for any f ∈ I(Q,B) its extension f

[n]
ρ is a μv-integrable

function. Consequently, for any v ∈ rV n, a functional Pv : I(Q,B)→ R, given by
the formula

Pv(f) :=

∫
f [n]
ρ dμv, f ∈ I(Q,B), (3)

is well defined.

Remark 2. Certainly, apart from f
[n]
ρ , some other extensions of f ∈ I(Q,B) may

be of interest. For example, extensions f
[n]
max(τ) = max{f(t) | t ∈ τ}, and f

[n]
σ (τ) =∑

t∈τ f(t)/|τ | proved to be very useful in description of the Shapley functional (see
(Vasil’ev, 1998; Vasil’ev, 2001)) and support function of the core of a convex game
((Vasil’ev, 2006) and (Vasil’ev and Zuev, 1988)), respectively.

Now we are in position to introduce one of the main concept of the paper.

Definition 4 (Vasil’ev, 1998). For any v ∈ rV n, the functional Pv, defined by
formula (3), is said to be a generalized Owen extension of a cooperative game v.

It can easily be checked that in case Q is finite we have that the generalized Owen
extension of any cooperative game v coincides with its classical Owen multilinear
extension, given in (Owen, 1972). As to the infinite set of players, we just mention
several most important properties of the functional Pv. To this end we need one
more fundamental concept.

Definition 5 (Vasil’ev, 1975a). A game v ∈ rV n is said to be a homogeneous
regular game of order n if it belongs to the disjoint complement of rV n−1 : |v|∧|u| =
0 for any u ∈ rV n−1. Denote by rV (n) = rV (n)(Q) a space of all homogeneous
regular games of order n ( rV 0 = rV (0) := {0}).

Proposition 2 (Vasil’ev, 1975a). For any n ≥ m subspace rV (m) is a band in
rV n.

From Proposition 2 it follows that by the well-known Riesz theorem (see, e.g.,
(Aliprantis and Border, 1994)), for any n ≥ m, the space rV (m) is a projection
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band in rV n. Consequently, for any n ≥ m and v ∈ rV n there exists a projection
v(m) of v on rV (m), defined by the formula

v(m) := sup {u ∈ rV (m)
∣∣∣v+ ≥0 u} − sup {u ∈ rV (m)

∣∣∣v− ≥0 u} (4)

(for more details concerning the homogeneous components v(m) of v, given by (4),
see (Vasil’ev, 1998)).

To present several useful properties of the generalized Owen extension Pv, we
introduce first some additional functional spaces, associated with cooperative games
of bounded polynomial variation. First, put I = I(Q,B), and denote by U(I) the
set of continuous functionals l : I → R such that l(0) = 0. Recall (Vasil’ev, 1998),
that I supposed to be endowed with the standard norm

‖f‖∞ = sup{ |f(t)| | t ∈ Q}, f ∈ I.

Following (Frechet, 1910) we introduce a polynomial m-difference l({f1, . . . , fm})
of the functional l ∈ U(I) with respect to f1, . . . , fm ∈ I by the formula

l
(
{f1, . . . , fm}

)
=

∑
ω⊆{1,...,m}

(−1)m−|ω| l
(∑
i∈ω

fi

)
.

Denote by U+(I) the cone of totally positive functionals (Vasil’ev, 1998) belonging
to U(I) :

U+(I) := {l ∈ U(I) | l
(
{f1, . . . , fm}

)
≥ 0 for any m ≥ 1 and f1, . . . , fm ∈ I+}

(with I+ := {f ∈ I| f(t) ≥ 0, t ∈ Q}). Further, put U(I) = U+(I) − U+(I), and
recall the definitions of polynomial and homogeneous polynomial functionals from
U(I).

Definition 6 (Frechet, 1910). An element l ∈ U(I) is said to be a polynomial
functional of order n, if l

(
{f1, . . . , fn, fn+1}

)
= 0 for any f1, . . . , fn, fn+1 ∈ I. For

any n ≥ 1, denote by Pn(I) the space of all polynomial functionals of order n,
defined on I.

Definition 7 (Hille and Phillips, 1957). An element l ∈ U(I) is said to be a
homogeneous polynomial functional of order n, if l ∈ Pn(I), and l(λf) = λnl(f) for
any λ ∈ R and f ∈ I. For any n ≥ 1, by P(n)(I) denote the space of all homogeneous
polynomial functionals of order n, defined on I.

Below, we apply notations: rV n
+ = rV n ∩ V+, and Pn+(I) = Pn(I) ∩ U+(I). Put

P(I) = ∪∞
n=1Pn(I).

An element p ∈ P(I) is said to be a polynomial functional. Finally, as usual, by χS
we denote the indicator function of coalition S ∈ B : χS(t) = 1 whenever t ∈ S,
and χS(t) = 0 otherwise.

In the notations, given above, the most important properties of the generalized
Owen extension we use in the sequal are as follows.
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Theorem 1 (Vasil’ev, 1998). Generalized Owen extension Pv is a continuous
polynomial functional on (I, ‖ · ‖∞) having the properties

(P .1) Pv(χS) = v(S) for any S ∈ B;

(P .2) Pv ∈ Pn+(I) for any v ∈ rV n
+ ;

(P .3) Pv ∈ P(n)(I) for any v ∈ rV (n);

(P .4) |Pv(f)| ≤
∑n
m=1 ‖v(m)‖o‖f‖m∞ for any f ∈ I.

Remark 3. By applying argumentation, similar to that employed for the proof of
Theorem 1 one can demonstrate the following useful properties of the generalized
Owen extension Pv :

(P .5) Pαu+βw = αPu + βPw for any α, β ∈ R and u,w ∈ rpV ;

(P .6) Pu·w = Pu · Pw for any u,w ∈ rpV

with u ·w and Pu ·Pw to be pointwise products of set functions u,w and functionals
Pu, Pw, respectively.

3. Axiomatization of Generalized Owen Extension

In this section, like in (Aumann and Shapley, 1974), we assume for simplicity that
Q = [0, 1], and, respectively, B is the Borel σ-algebra of the unit interval [0, 1].
Recall (Aumann and Shapley, 1974), that by ‖ · ‖ we denote the variation norm

‖v‖ := inf{u(Q) + w(Q) | v = u− w, u, w ∈ M}

with M to be a cone of increasing set functions from V . One of the most important
vector spaces investigated in (Aumann and Shapley, 1974) is pNA being the closure
(w.r.t. the variation norm ‖·‖) of linear span of powers μk with k ≥ 1 and μ to be any
nonnegative nonatomic measure defined on B. Below, to mitigate argumentation,
we restrict our study to the space

rpNA := rpV ∩ pvNA

with pvNA to be the closure (w.r.t. the norm of polynomial variation ‖ · ‖0, defined
in Sect. 2) of linear span of powers μk, k ≥ 1, where μ is any nonnegative nonatomic
measure defined on B. Note, that due to the inequalities ‖v‖ ≤ ‖v‖0, v ∈ V , we
have inclusion rpNA ⊆ pNA. Nevertheless, these spaces are not very far from each
other: obviously, the closure of rpNA w.r.t. the variation norm ‖ · ‖ coincides with
pNA.

Slightly modifying definitions from (Aumann and Shapley, 1974) we say that a
functional l : I → R is increasing if l(0) = 0 and l(f) ≥ l(g) whenever f ≥ g with
f, g ∈ I+. We denote a cone of all the increasing functionals by M = M(I), and
put

B =M−M.

An element l ∈ B is said to be a functional of bounded variation; its norm ‖l‖ is
defined by the formula:

‖l‖ = inf{m(χQ) + n(χQ) | l = m− n, m, n ∈ M}.
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Finally, put U = U+−U+ and for any functional p ∈ U denote by ‖p‖0 its polynomial
variation norm

‖p‖0 = inf{q(χQ) + r(χQ) | p = q − r, q, r ∈ U+}.
Due to the obvious inclusion U+ ⊆M we have that U ⊆ B and, besides, ‖l‖ ≤ ‖l‖0
for any l ∈ U. Moreover, for the Aumann-Shapley multiplicative expansion v∗ ∈ B
it holds: ‖v∗‖ = ‖v‖ for any v ∈ pNA (Aumann and Shapley, 1974). Hence, for any
v ∈ rpNA we get: ‖Pv‖ ≤ ‖Pv‖0 ≤ Pv+(χQ) + Pv−(χQ) = ‖v‖0 (the last equality
follows from (P .1) and definition of the norm ‖ · ‖0). Summarizing, we obtain

‖Pv‖ ≤ ‖v‖0 for any v ∈ rpNA. (5)

By applying the same argumentation as in (Vasil’ev, 2009), one can show that (5)
makes it possible to give an axiomatization of the generalized Owen extension Pv,
based on the well-known axiomatic characterization of multiplicative expansion of
nonatomic cooperative games, proposed in (Aumann and Shapley, 1974). Recall,
that the expansion mentioned was aimed at the generalization of the famous Owen
integral formula (Owen, 1972) to the case of nonatomic cooperative games. It was
already mentioned in Sect. 1 that this integral formula plays a crucial role in the new
proof of polar representation of the Shapley value for nonatomic homogeneous game.
Therefore, axiomatic description of the Aumann-Shapley expansion is closely related
to the main problem of our paper. Slightly modifying corresponding definitions
from (Aumann and Shapley, 1974), we recall that Aumann-Shapley multiplicative
expansion v∗ = ϕ(v) of a game v is given implicitly, via indicating the properties
of the operator ϕ, which takes v ∈ rpNA to the functional ϕ(v) : I → R. In the
notations, given above, properties mentioned are as follows (below, as before, v · w
and ϕ(v) · ϕ(w) are pointwise products of the corresponding functions):

(Qw.1) ϕ(v)(χS) = v(S) for any v ∈ rpNA and S ∈ B;

(Ow.2) ϕ(αv + βw) = αϕ(v) + βϕ(w), α, β ∈ R, v, w ∈ rpNA;

(Ow.3) ϕ(v · w) = ϕ(v) · ϕ(w), v, w ∈ rpNA;

(Ow.4) ϕ(v)(f) =
∫
fdv, f ∈ I(Q,B), v ∈ rV 1;

(Ow.5) ϕ(v) ∈ P+, v ∈ rpNA+,

with P+(I) := P(I) ∩ U+(I) and rpNA+ := rpNA ∩ V+.

To conclude this section, let us present a version of Theorem 4.1 (Vasil’ev, 2009), fol-
lowing directly from Theorem 1 (Sect. 2), Theorem G (Aumann and Shapley, 1974),
inequality (5), and continuity of the operators v �→ v∗, v ∈ pNA, and v �→ Pv, v ∈
rpNA, in variation and polynomial variation norms, respectively. Here, as before,
we denote by v∗ the Aumann-Shapley multiplicative expansion of a game v ∈ pNA.

Theorem 2. A mapping ϕ : rpNA → P(I) satisfies assumptions (Ow.1)− (Ow.5)
if and only if ϕ(v) = Pv for any v ∈ rpNA.

Note,that Remark 3, properties (Ow.3), (Ow.4), and Theorem G on the existence
and uniqueness of the multiplicative expansion from (Aumann and Shapley, 1974)
implies equalities: ϕ(μk) = Pμk for any nonnegative nonatomic measure μ and
integer k ≥ 1. Hence, we have the following consequence of Theorem 2.

Corollary 1. Aumann-Shapley multiplicative expansion coincides with the gener-
alized Owen extension on rpNA.
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4. Polar Form of Homogeneous Game

Let us call to mind first some definitions from (Aumann and Shapley, 1974) and
(Vasil’ev, 2009). Note, that a distinctive feature of the notions from (Vasil’ev, 2009)
is their orientation to the regular games defined on the Borel σ-algebra of some met-
ric compactum, while the main concepts from (Aumann and Shapley, 1974) are,
mostly, adapted to the nonatomic games of bounded variation. Hence, we need
more detailed argumentation than sometimes proposed below, in order to properly
transfer corresponding results from (Aumann and Shapley, 1974) to the case con-
sidered in the paper. Nevertheless, for the sake of brevity, we leave the additions
needed for readers.

As usual, a real-valued set function ψ : Bn → R is said to be polyadditive,
if it is additive with respect to each variable. Further, a polyadditive function
(S1, . . . , Sn) �→ ψ(S1, . . . , Sn) is called a regular polyadditive function, if it is regular
with respect to each variable:

ψ(S1, . . . , Si, . . . , Sn) = sup{ψ(S1, . . . , Fi, . . . , Sn) | Fi ∈ F , Fi ⊆ Si}

for any (S1, . . . , Sn) ∈ Bn and i = 1, . . . , n (as before, F is the family of closed
subsets of Q). In the sequel, we consider symmetric polyadditive functions only, i.e.
polyadditive functions ψ : Bn → R such that for any elements S1, . . . , Sn ∈ Bn it
holds:

ψ(S1, . . . , Sn) = ψ(Si1 , . . . , Sin)

for any permutation (i1, . . . , in) of the set {1, . . . , n}.
We denote by rΨn+ a cone of all the nonnegative regular symmetric polyadditive

functions ψ : Bn → R. Put rΨn := rΨn+ − rΨn+, and isolate a special subspace
rΨ (n) ⊆ rΨn similar to the space rV (n) of the regular homogeneous set functions.
To this end, following (Vasil’ev, 1998), consider the set Hn(Q) of all B-measurable
partitions η = {Si}i∈Ω ∈ H(Q) such that |Ω| ≥ n. For any partition η = {Si}i∈Ω ∈
Hn(Q) (by definition, consisting of not less than n elements) denote by Πη

n the set
of all its ordered n-element subsets (Si1 , . . . , Sin). Further, fix some ψ ∈ rΨn+, and
define generalized sequence {ψη}η∈Hn(Q) with ψη given by the formula

ψη :=
∑

(Si1 ,...,Sin)∈Πη
n

ψ(Si1 , . . . , Sin).

Taking into account nonnegativity and polyadditivity of ψ, it is quite easy to check
that the sequence {ψη}η∈Hn(Q) is increasing: ψη′ ≥ ψη whenever η′ ≥ η. Conse-
quently, for any function ψ ∈ rΨn+ there exists a limit

ψ(n)(Q) = lim
η∈Hn(Q)

ψη

(as in (Vasil’ev, 1998), we suppose that the sequence {ψη}η∈Hn(Q) is ordered by the
relation: η′ ≥ η whenever η′ is a refinement of η). Let Ψ

(n)
+ be the set of all functions

ψ ∈ rΨn+ satisfying the requirement

ψ(n)(Q) = ψ(Q, . . . , Q).
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Put rΨ (n) := rΨ
(n)
+ − rΨ

(n)
+ , and recall (Vasil’ev, 1998) that any function ψ ∈ rΨ (n)

is said to be a homogeneous polyadditive set function from rΨn.
Now we are ready to present one of the main definitions of the paper (cf. Defi-

nition 11 from (Vasil’ev, 1998)).

Definition 8. For any v ∈ rV (n), a polyadditive set function ψv ∈ rΨ (n) is said to
be a polar form of the game v, if ψv meets the requirement

v(S) = ψv(S, . . . , S) for any S ∈ B.

Speaking differently, for any v ∈ rV (n), a polyadditive set function ψv ∈ rΨ (n) is
a polar form of v if the diagonalization of ψv (i.e. restriction ψv to the diagonal
D = {(S1, . . . , Sn) ∈ Bn | S1 = . . . = Sn}) coincides with v.

Remark 4. Note, that in case Q is a metric compactum, regularity of polar form
ψv is equivalent to its countable additivity with respect to each variable Si (see, for
example, (Neveu, 1965)).

The well-known polar existence theorem for the homogeneous polynomial func-
tionals (Hille and Phillips, 1957), together with Theorem 1 made it possible to es-
tablish a polar existence theorem for rather general class of homogeneous polynomial
set functions (see (Vasil’ev, 1998) and (Vasil’ev, 2001)). By applying regularity and
compactness assumptions imposed on v and Q, respectively, one can quite easily
derive from (Vasil’ev, 1998) the following modified version of general polar existence
theorem (cf. Theorem 5 from (Vasil’ev, 1998)).

Theorem 3. For any n ≥ 1 and v ∈ rV (n), there exists a unique polar form ψv of
the game v.

To present one of the main results, relating to the interconnection between the
Shapley value and polar form of homogeneous polynomial game, remind first the
definition of the modified Shapley value Φ∗, introduced in (Vasil’ev, 1998) (see,
also, (Vasil’ev, 2001)), and covering both nonatomic an mixed games. Recall briefly
(Vasil’ev, 1998), that a linear operator Φ∗ : W → rV 1, defined on a symmetric
subspace W ⊆ V, is to be a modified Shapley value on W, if it is an efficient, positive,
support preserving, and commuting with any measurable automorphism θ of the
measurable space (Q,B). To be precise, denote by T the set of this automorphisms,
and for any θ ∈ T and v ∈ rV define a composition θ ◦ v by the formula

θ ◦ v(S) = v(θ(S)), S ∈ B.

Further, recall (Aumann and Shapley, 1974) that a linear subspace W ⊆ V is called
symmetric, if a set function θ ◦ v belongs to W for any v ∈ W and θ ∈ T .

Definition 9 (Vasil’ev, 1975b). A modified Shapley value on a symmetric sub-
space W ⊆ V is a linear operator Φ∗ : W → rV 1, satisfying assumptions

(Sh.1) Φ∗(v) ≥o 0, v ∈ W+;

(Sh.2) Φ∗(θ ◦ v) = θ ◦ Φ∗(v), θ ∈ T , v ∈ W ;

(Sh.3) Φ∗(v)(R) = v(R), R ∈ Supp v, v ∈ W ;
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where, as before, rV 1 is a space of all regular additive set functions on B, and W+

is a "positive part" of W : W+ := W ∩ V+. As to the collection Supp v consisting
of the supports of v, it is defined by the formula

Supp v := {R ∈ B | v(S ∩R) = v(S) for any S ∈ B}.

By applying regularity of functions from rpV and compactness of metric space
(Q, d), one can prove that rpV itself, and rV (n), rV n, n ≥ 1, are symmetric
subspaces of V . Further, in (Vasil’ev, 1998) some special construction was proposed
that ensures existence of modified value for rV (n), rV n, and rpV . Hence, combining
this fact together with Theorem 3, and making use of corresponding argumentation
yielding Theorem 6 from (Vasil’ev, 1998), one can get the following version of the
tatter theorem.

Theorem 4. Let Q be a nonempty metrisable compactum. For any n ≥ 1 and
v ∈ rV (n)(Q) it holds

Φ∗(v)(S) = ψv(S,Q, . . . , Q), S ∈ B,

where, as before, ψv is the polar form of a game v.

5. Polar Representation of the Shapley Value: Nonatomic Games

Turn now to the main part of the paper devoted to the short proof of Theorem 4
in case v ∈ rpNA = rpNA(Q) with Q = [0, 1]. Note first, that rather simple
argumentation, based on the well-known Aumann-Shapley existence and unique-
ness theorem (Theorem A from (Aumann and Shapley, 1974)), proves the coinci-
dence of the modified Shapley value Φ∗ and classic Shapley value Φ on the space
rpNA. The reason is the coincidence of the modified value Φ∗ and the Shapley
value Φ on the linear hull of degrees of nonatomic probabilistic measures. Namely,
from the results obtained in (Aumann and Shapley, 1974) and (Vasil’ev, 1998) it
follows that Φ∗(μk) = Φ(μk) = μ for any k ≥ 1 and nonatomic probabilistic mea-
sure μ on B. Further, let us stress once more that instead of complicated combi-
natorial consideration applied in general situation (see proof of Theorem 6 from
(Vasil’ev, 1998)), we plan to exploit the generalized Owen integral formula estab-
lished in (Aumann and Shapley, 1974). Due to the coincidence of generalized Owen
extension and Aumann-Shapley expansion for games from rpNA (Corollary 1 in
Sect. 3) we have that integrand in the generalized integral formula mentioned above
is quite easy to calculate. In fact, by Theorem 1 and Corollary 1 this calculation can
be reduced to elementary problem of finding directional derivatives of the continuous
symmetric multilinear form, generated by the homogeneous polynomial functional
Pv.

To justify a version of the generalized Owen integral formula applied below, let us
mention first that Theorem G from (Aumann and Shapley, 1974) implies existence
and uniqueness of the Aumann-Shapley expansion for the space rpNA. Really, the
latter follows directly from Theorems 1 and 2 of this paper. As to the generalized
integral formula itself (Theorem H from (Aumann and Shapley, 1974)), it holds for
rpNA due to the inclusion rpNA ⊆ pNA. Therefore, we get the following analog
of the Owen integral formula for the homogeneous games from rpNA.
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Theorem 5. For any game v ∈ rpNA, and for any coalition S ∈ B, directional
derivative

∂Pv(t, S) :=
d

dτ
Pv(tχQ + τχS),

calculated at τ = 0, exists at each point t ∈ [0, 1]. Moreover, this derivative is
integrable as a function of t ∈ [0, 1]. In addition, for any n ≥ 1, the Shapley value
Φ : rpNA ∩ rV (n) → rV 1, and derivatives of Pv in the direction of χS satisfy the
equalities

Φ(v)(S) =

∫ 1

0

∂Pv(t, S)dt, S ∈ B. (6)

Recall (Vasil’ev, 1998), that a symmetric multilinear functional p̂ : In → R is
said to be a polar form of homogeneous polynomial functional p ∈ P(n) if

p(f) = p̂(f, . . . , f) for any f ∈ I.

It is well-known that polar form p̂ exists whenever polynomial functional p is ho-
mogeneous and continuous (see, e.g., (Hille and Phillips, 1957)). Note, that due
to Theorem 1 polynomial functional Pv is continuous and homogeneous for any
v ∈ rV (n). In fact, taking into account that ‖v‖0 = ‖v(n)‖0 for any v ∈ rV (n), we
have by (P .4) : |Pv(f)| ≤ ‖v‖0‖f‖n∞ for any v ∈ rV (n) and f ∈ I. Therefore, Pv
is continuous for any v ∈ rV (n). As to the homogeneity of Pv in case v ∈ rV (n),
it follows directly from the property (P .3). Hence, for any v ∈ rV (n) there exists
a polar form P̂v of the generalized Owen extension Pv and, consequently, for any
v ∈ rV (n) it holds

Pv(f) = P̂v(f, . . . , f), f ∈ I. (7)

Keep in mind (7), let us mention that according to (6) to prove Theorem 4
in case Q = [0, 1] and v ∈ rpNA ∩ rV (n) it is enough to calculate corresponding
directional derivatives of Pv at each point of the diagonal {tχQ | t ∈ [0, 1]} of the
unit supercube I = {f ∈ I+ | ‖f‖∞ ≤ 1}, and then to demonstrate that Lebesgue
integral of the directional derivative coincides with the marginal value of the polar
form of generalized Owen extension Pv. In order to carry out this program we
rewrite integrand in (6) in terms of the polar form P̂v of the functional Pv :

∂ϕ(t, S) := lim
τ→0

Pv(tQ + τS)− Pv(tQ)

τ
=

lim
τ→0

[
P̂v(tQ+ τS, . . . , tQ+ τS︸ ︷︷ ︸

n

)− P̂v(tQ, . . . , tQ︸ ︷︷ ︸
n

)
]
/τ (8)

with a standard shortening S := χS when indicator function χS is replaced by the
set S itself. Since P̂v is symmetric and multilinear, under condition n ≥ 2 we get

P̂v(tQ+ τS, . . . , tQ+ τS)− P̂v(tQ, . . . , tQ) =

C1
nP̂v(τS, tQ, . . . , tQ︸ ︷︷ ︸

n−1

) +

n∑
k=2

Ck
nP̂v(τS, . . . , τS︸ ︷︷ ︸

k

, tQ, . . . , tQ︸ ︷︷ ︸
n−k

) =
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nτtn−1P̂v(S,Q, . . . , Q︸ ︷︷ ︸
n−1

) +

n∑
k=2

Ck
nτ

ktn−kP̂v(S, . . . , S︸ ︷︷ ︸
k

, Q, . . . , Q︸ ︷︷ ︸
n−k

). (9)

For n = 1 we have that P̂v is a linear form. Hence, in this case we obtain

P̂v(τS + tQ)− P̂v(tQ) = τP̂v(S).

After dividing the last term in (9) into τ, and calculating the limit under τ → 0,
we obtain by (8)

∂ϕ(t, S) = ntn−1P̂v(S,Q, . . . , Q︸ ︷︷ ︸
n−1

) + lim
τ→0

τ
[ n∑
k=2

Ck
nτ

k−2tn−kP̂v(S, . . . , S︸ ︷︷ ︸
k

, Q, . . . , Q︸ ︷︷ ︸
n−k

)
]
.

Hence, the boundedness of the polynomial

n∑
k=2

Ck
nτ

k−2tn−kP̂v(S, . . . , S︸ ︷︷ ︸
k

, Q, . . . , Q︸ ︷︷ ︸
n−k

)

(as a function depending on τ ∈ [0, 1]) implies

∂ϕ(t, S) = ntn−1P̂v(S,Q, . . . , Q︸ ︷︷ ︸
n−1

). (10)

By applying (6) and (10), we deduce the required representation for the Shapley
value of nonatomic homogeneous cooperative game v ∈ rpNA ∩ rV (n) :

Φ(v)(S) =

∫ 1

0

∂ϕ(t, S)dt = nP̂v(S,Q, . . . , Q)

∫ 1

0

tn−1dt = P̂v(S,Q, . . . , Q).

Summarizing, we have that Theorems 1 and 5 together with the straightforward
calculation of directional derivatives of the generalized Owen extension Pv yields
the polar representation of the Shapley value in case v ∈ rpNA ∩ rV (n).
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