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Abstract We consider a problem of construction of preference relations
for models of decision making with quality criteria. A quality criterion one
means as a function from a set of alternatives in some chain (i.e. linearly
ordered set). A system of axioms for rule of preferences is given. It is shown
that any rule for preferences satisfying these axioms can be presented as
a rule for preferences based on some pseudofilter of winning coalitions of
criteria. The section 4 contains main results of the article. In particular,
necessary and sufficient conditions for transitive and for linear preferences
are found. An interpretation of Arrow paradox in terms of filters is given.
Keywords: Rule for preference relations, Axiom for preferences, Pseudofil-
ters and filters of winning coalitions.

1. Introduction

We study a general model of multi-criteria decision making with quality criteria in
the form of a system

G = 〈A, (qj)j∈J 〉 , (1)

where A is an arbitrary set with |A| ≥ 2 (named a set of alternatives or outcomes)
and (qj)j∈J are criteria for valuation of these alternatives. Formally every criterion
qj , j ∈ J can be presented as a function from A in some scale, points of which are
results of measurement for criterion qj . It is well known that any scale has some
set of acceptable transformations and measurements produce up a some acceptable
transformation.

A criterion qj is called a quality one if its scale is some linearly ordered set
〈Cj ,≤j〉, i.e. a chain. In this case acceptable transformations are all isotonic func-
tions defined on Cj .

In this article, we consider some problems concerning of preference relations for
model (1).

Definition 1. A pair 〈A, ρ〉, where A is an arbitrary set with |A| ≥ 2 and ρ a
reflexive binary relation on A is called a space of preferences.

For any a, a′ ∈ A put

a � a′ ⇔ (a, a′) ∈ ρ,

a < a′ ⇔ (a, a′) ∈ ρ, (a′, a) /∈ ρ,

a ∼ a′ ⇔ (a, a′) ∈ ρ, (a′, a) ∈ ρ.

(2)

In (2), the sign � means a preference,< strict preference and ∼ indifference
between elements a and a′. A preference relation � is well defined by the pair
(<,∼), namely � is the union of relations < and ∼.
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Given a model G in the form (1), one can define a preference relation on the set
of alternatives A in different manners. Let K be the class of models of the form (1).
We say that a rule R for preferences in the class K is given if for each G ∈ K some
reflexive binary relation R(G) = ρ on the set of alternatives of model G is defined.
Indicate some known rules for preferences.

1. The most important rule for preferences is Pareto-preference �Par which is
given by the formula

a1 �Par a2 ⇔ (∀j ∈ J) qj (a1) ≤j qj (a2) . (3)

2. Strict Slater preference is defined by

a1 <Sl a2 ⇔ (∀j ∈ J) qj (a1) <j qj (a2) . (4)

In this case, indifference is the identity relation.
3. Rule of simple majority can be introduced in the following way. Assume in

model G the set of criteria is finite and |J | = n. For any alternatives a, a′ ∈ A we
denote

n (a, a′) = |j ∈ J : qj (a) ≥j qj (a
′)| ,

n∗ (a, a′) = |j ∈ J : qj (a) >j qj (a
′)| .

One can define two rules of simple majority M1 and M2 by formulas

a1 �M1 a2 ⇔ n (a1, a2) ≥ n (a2, a1) ,

a1 �M2 a2 ⇔ n (a1, a2) ≥ n/2.

It is easy to show that M1 coincides with M2 for any elements a, a′ ∈ A in the
case when all inequalities for n (a, a′) and n (a′, a) are strict. In general case these
relations are different. Particularly the condition a >M1 a′ holds if n∗ (a, a′) >
n∗ (a′, a) and the condition a >M2 a′ if n∗ (a, a′) > n/2.

4. Rule of α-majority is defined as follows. Fix a real number α > 1/2. For any
a, a′ ∈ A put a > a′ ⇔ n (a, a′) ≥ r where r = αn, if αn is integer and r = [αn] + 1
otherwise. The indifference relation can be given here by two manners: a) a ∼ a′ if
and only if neither a > a′ nor a′ > a; b) a ∼ a′ if and only if a = a′.

In this article, we study a construction of preference relation with help of some
family of criteria, indices of which form so-called pseudofilter. Remark that pseud-
ofilter is a certain generalization of well known conception of filter which is made
use in algebra, mathematical logic and topology (see Birkhoff, 1967; Kelley, 1957;
Kuratowsski and Mostowski, 1967). Using some properties of filters, we indicate an
interpretation of Arrow paradox.

2. Axioms for rules of preference relations

We now state axioms for a rule R of preferences in the class K defined above.
(A1) Axiom of independence. Consider two models G = 〈A, (qj)j∈J 〉 and G1 =〈

B, (q1j )j∈J
〉
of class K. Suppose for elements a1, a2 ∈ A and b1, b2 ∈ B the following

equivalence
qj (a1) ≤j qj (a2)⇔ q1j (b1) ≤j q1j (b2)
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holds (j ∈ J). Then the equivalence a1 �ρ a2 ⇔ b1 �ρ1 b2 is truth (we denote by
ρ = R (G) , ρ1 = R

(
G1
)
).

Axiom of independence means that the preference between two alternatives in
any model of class K is well defined by the set of criteria under which one of them
is more preferential than another and does not depend on comparison of these
alternatives with other alternatives of the model.

(A2) Axiom of monotony. Consider two models G = 〈A, (qj)j∈J 〉 and G1 =〈
A, (q1j )j∈J

〉
of class K. Fix two elements a1, a2 ∈ A and assume for any j ∈ J the

following implication

qj (a1) ≤j qj (a2)⇒ q1j (a1) ≤j q1j (a2)

holds. Then the condition a1 �ρ a2 implies the condition a1 �ρ1 a2.
Axiom of monotony states that the preference between two alternatives in models

of class K is increasing under an enlargement the set of corresponding criteria.
(A3) Axiom of strict monotony. Consider two models G = 〈A, (qj)j∈J 〉 and

G1 =
〈
A, (q1j )j∈J

〉
of class K. Fix two elements a1, a2 ∈ A and suppose for any

j ∈ J the following implication

qj (a1) ≤j qj (a2)⇒ q1j (a1) <j q1j (a2)

holds. Then the condition a1 �ρ a2 implies the condition a1 <ρ1 a2.

Remark 1. Formally, axioms (A2) and (A3) are independent one from another
since (A3) has more strong assumption but more strong consequence also.

(A4) Axiom for absence of attachment. Let A be an arbitrary set. Fix two ele-
ments a1, a2 ∈ A with a1 �= a2. Then there exist two models G = 〈A, (qj)j∈J 〉 and
G1 =

〈
A, (q1j )j∈J

〉
of class K such that conditions

a1 �ρ a2 and ¬
(
a1 �ρ1 a2

)
hold.

We now show that a rule R for preferences satisfying axioms (A1) – (A4) can
be defined for models of the form

GQ = 〈A, (σj)j∈J 〉 (5)

where σj is some linear quasi-order on A. Indeed, let G = 〈A, (qj)j∈J 〉 be a model
of class K. Put

J(a1,a2) = {j ∈ J : qj (a1) ≤j qj (a2)} .
It follows from axiom (A1) that for any fix elements a1, a2 ∈ A, truth of asser-

tions a1 �ρ a2 (where ρ = R (G)) is well defined by the subset J(a1,a2). Define a
linear quasi-ordering σj on A by the formula

a ≤σj a′ ⇔ qj (a) ≤j qj (a
′) .

It is evident that subsets J(a1,a2) can be presented in the form

J(a1,a2) = {j ∈ J : a1 ≤σj a2} . (6)
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Thus any rule R for preferences in the class K can be given as a mapping which
for each model GQ = 〈A, (σj)j∈J 〉 some reflexive preference relation R (GQ) = ρ
on the set A assigns. By this reason, sometimes we will consider the class K as a
class of models of the form (5). Axioms (A1) – (A4) in this case can be written as
follows.

(A1)* Consider two models GQ = 〈A, (σj)j∈J 〉 and G1
Q =

〈
B, (σ1

j )j∈J
〉
of class

K. Denote by R (GQ) = ρ,R
(
G1
Q

)
= ρ1. Assume for elements a1, a2 ∈ A and

b1, b2 ∈ B the following equivalence

a1 ≤σj a2 ⇔ b1 ≤σ
1
j b2

holds for each j ∈ J . Then the equivalence a1 �ρ a2 ⇔ b1 �ρ1 b2 is truth also.
(A2)* Consider two models GQ = 〈A, (σj)j∈J 〉 and G1

Q =
〈
A, (σ1

j )j∈J
〉
of class

K. Fix elements a1, a2 ∈ A and assume for any j ∈ J the following implication

a1 ≤σj a2 ⇒ a1 ≤σ
1
j a2

holds. Then the condition a1 �ρ a2 implies the condition a1 �ρ1 a2.
(A3)* Consider two models GQ = 〈A, (σj)j∈J 〉 and G1

Q =
〈
A, (σ1

j )j∈J
〉
of class

K. Assume for elements a1, a2 ∈ A and any j ∈ J the following implications

a1 ≤σj a2 ⇒ a1 <σ1
j a2

hold. Then the condition a1 �ρ a2 implies the condition a1 <ρ1 a2.
(A4)* Let A be an arbitrary set. Fix two elements a1, a2 ∈ A with a1 �= a2.

Then there exist two models GQ = 〈A, (σj)j∈J 〉 and G1
Q =

〈
A, (σ1

j )j∈J
〉
of class K

such that conditions
a1 �ρ a2 and ¬

(
a1 �ρ1 a2

)
hold.

We now indicate some consequences of axioms (A1)* – (A4)*.

Corollary 1. Consider two models GQ = 〈A, (σj)j∈J 〉 and G1
Q =

〈
B, (σ1

j )j∈J
〉

of
class K. Assume for elements a1, a2 ∈ A and b1, b2 ∈ B the following equivalences

a1 ≤σj a2 ⇔ b1 ≤σ
1
j b2

a2 ≤σj a1 ⇔ b2 ≤σ
1
j b1

hold for each j ∈ J . Then the equivalences

a1 ∼ρ a2 ⇔ b1 ∼ρ
1

b2

a1 <ρ a2 ⇔ b1 <ρ1 b2
(7)

are truth also.

For the proof put
J+
(a1,a2)

= {j ∈ J : a1 <σj a2}
J+
(a2,a1)

= {j ∈ J : a2 <σj a1}
J0
(a1,a2)

= {j ∈ J : a1 ∼σj a2} .
(8)
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Assumption of corollary 1 means J(a1,a2) = J(b1,b2) and J(a2,a1) = J(b2,b1). Hence

J0
(a1,a2)

= J(a1,a2) ∩ J(a2,a1) = J(b1,b2) ∩ J(b2,b1) = J0
(b1,b2)

.

We obtain J0
(a1,a2)

= J0
(b1,b2)

that is the first equivalence in (7). It follows from the
assumption of corollary 1 and the equality J0

(a1,a2)
= J0

(b1,b2)
that J+

(a1,a2)
= J+

(b1,b2)

that is the second equivalence in (7).

Corollary 2 (Pareto optimality). For each model GQ = 〈A, (σj)j∈J 〉 of class K
following inclusions hold: ⋂

j∈J
σj ⊆ R (GQ) ⊆

⋃
j∈J

σj . (9)

Proof (of corollary 2). Fix a pair (a1, a2) ∈
⋂
j∈J

σj . By axiom (A4)* there exists

a family of linear quasi-orders
(
σ1
j

)
j∈J on A such that (a1, a2) ∈ R

(
G1
Q

)
where

G1
Q =

〈
A, (σ1

j )j∈J
〉
. For arbitrary j ∈ J the following implication

a1 ≤σ
1
j a2 ⇒ a1 ≤σj a2

holds (since the conclusion of this implication is truth). Put ρ = R (GQ) and ρ1 =

R
(
G1
Q

)
. According to axiom (A2)* the condition a1 �ρ1 a2 implies the condition

a1 �ρ a2. Because the first condition is truth by assumption, we have that the second
condition is truth also. Thus the first inclusion in (9) is proved. To prove the second
inclusion, fix a pair (a3, a4) /∈

⋃
j∈J

σj . By axiom (A4)* there exists a family of linear

quasi-orders
(
σ2
j

)
j∈J on A such that (a3, a4) /∈ R

(
G2
Q

)
where G2

Q =
〈
A, (σ2

j )j∈J
〉
.

For arbitrary j ∈ J the following implication

a3 ≤σj a4 ⇒ a3 ≤σ
2
j a4 (10)

holds (since the condition of this implication is false). Assume (a3, a4) ∈ R (GQ).
Then using (10) we receive by axiom (A2)* (a3, a4) ∈ R

(
G2
Q

)
in contradiction with

our assumption. Hence (a3, a4) /∈ R (GQ) and the implication

(a3, a4) /∈
⋃
j∈J

σj ⇒ (a3, a4) /∈ R (GQ) (11)

is shown. It remains to note that (11) is equivalent to the second inclusion in (9).

3. Pseudofilters and filters

In this section we will study a notion of pseudofilter which can be used for construc-
tion of some rule of preferences in models of the form (1).

Definition 2. Let J be an arbitrary set. A family W of its subsets is called a
pseudofilter over J if it satisfies the following conditions:

(PF1) Nonemptiness: W �= ∅;
(PF2) Majorant stability: S ∈ W,T ⊇ S ⇒ T ∈ W ;
(PF3) Anticomplement: S ∈ W ⇒ S′ /∈ W .
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Let us note some consequences of these axioms.
(C1) J ∈ W .
(C2) ∅ /∈ W .
(C3) S, T ∈ W ⇒ S ∩ T �= ∅.
Indeed, by (PF1) there exists a subset S ⊆ J with S ∈ W . By (PF2) we have

J ∈ W , i.e. (C1). Using (C1) and (PF3) we obtain (C2). Prove (C3). Suppose
S ∩ T = ∅ then T ⊆ S′ and by (PF2) we obtain S′ ∈ W . Because S ∈ W that
contradict (PF3).

Example 1. A game in the form of characteristic function can be given as a pair
〈J, v〉 where J is an arbitrary set (named a set of players) and v is a function which
any subset S ⊆ J assigns a real number v (S). In the game theoretical terminology,
any subset S ⊆ J is called a coalition. The characteristic function v is said to be
superadditive if for any subsets S, T ⊆ J with S ∩ T = ∅ the inequality

v (S) + v (T ) ≤ v (S ∪ T ) (12)

holds. A game 〈J, v〉 is called prime one if values of the function v are 0 and 1 only.
The following assertion is noted by Herve Moulin (Moulin, 1981).

Lemma 1. Let 〈J, v〉 be a prime game and W be a family of winning coalitions
(i.e. coalitions S ⊆ J with v (S) = 1). The characteristic function v is superadditive
if and only if W satisfies conditions (PF2) and (PF3).

Proof (of lemma 1). Let v be superadditive. Check (PF2). Suppose S ∈ W and
T ⊇ S. Put T1 = T ∩ S′. Since S ∩ T1 = ∅ and S ∪ T1 = T , by using (12) we have
v (S) + v (T1) ≤ v (T ). Because S ∈ W , we obtain v (S) = 1 and v (T ) ≥ 1 i.e.
T ∈ W . Check now (PF3). Suppose S ∈ W and S′ ∈ W for some coalition S ⊆ J .
Then by using (12) we have v (J) ≥ v (S) + v (S′) = 1 + 1 = 2, i.e. v (J) ≥ 2, that
is impossible. Necessity is proved.

To prove the sufficiency consider two coalitions S, T ⊆ J with S ∩ T = ∅. The
case S, T /∈ W is trivial. In the opposite case according the condition (C3) we can
put S ∈ W,T /∈ W . Then by (PF2) we have S ∪ T ∈ W hence the left and the right
parts of (12) are equal to 1 and (12) holds. 
�

A prime game 〈J, v〉 is said to be trivial, if v (S) = 0 for all coalitions S ⊆ J .
Obviously, a prime game is non-trivial if and only if W �= ∅ i.e. when axiom (PF1)
holds. Then using Lemma 1, we obtain

Lemma 2. Let 〈J, v〉 be a prime game and W be a family of its winning coalitions.
A game G is non-trivial with superadditive characteristic function v if and only if
W is pseudofilter.

We now consider some questions concerning a construction of pseudofilters. First
of all note an important connection between the notion of pseudofilter and the notion
of filter; the last is made use in various branches of algebra, mathematical logic and
topology.

Definition 3. Let J be an arbitrary set. A nonempty family F of subsets J is
called a filter over J if the following conditions hold:

(F1) S ∈ F, T ∈ F ⇒ S ∩ T ∈ F ;
(F2) S ∈ F, T ⊇ S ⇒ T ∈ F ;
(F3) ∅ /∈ F .
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Lemma 3.

1. Any filter is a pseudofilter.
2. A pseudofilter is a filter if and only if it is stable under intersection of its subsets.

Proof (of lemma 3). 1. Let F be a filter. Then axioms (PF1), (PF2) evidently hold.
Check (PF3). Assume S, S′ ∈ F . Then by (F1) we have ∅ = S ∩ S′ ∈ F that
contradicts (F3).

2. If a pseudofilter W is a filter the required condition holds (see (F1)). Con-
versely let W be a pseudofilter for which axiom (F1) holds. Axiom (F2) is equivalent
to (PF2). Axiom (F3) is a consequence of (PF1) and (PF2) (see (C2)). 
�

We now consider some method for construction of pseudofilters. Let J be an
arbitrary set and B a family of its subsets. We denote by M (B) the family of all
oversets for sets belonging to B:

M (B) = {T ⊆ J : (∃S ∈ B)S ⊆ T } .

Definition 4. Let W be a pseudofilter over J and B a non empty family of some
sets belonging to W i.e. B ⊆ W . We say that B forms a base of the pseudofilter W
if M (B) = W .

Remark that any pseudofilter W has a base (for example B = W ) and psedofilter
is well defined by any its base. A base B0 is called the smallest base of pseudofilter
W , if B0 ⊆ B for any base B. In the case the set J is finite, each pseudofilter W
has the smallest base consisting of all minimal (under inclusion) subsets of W .

Lemma 4. Let J be an arbitrary set and B some family of its subsets. Then

1. B forms a base of some pseudofilter over J if and only if the following condition
holds

S ∈ B, T ∈ B ⇒ S ∩ T �= ∅; (13)

2. B forms the smallest base of some pseudofilter over J if and only if the condition
(13) and the following condition

S ∈ B, T ∈ B,S ⊆ T ⇒ S = T (14)

holds.

Proof (of lemma 4). 1. Let B be a base of some pseudofilter. Because (13) holds in
each pseudofilter (see (C3)) it holds for any its subset. Conversely, let B be some
family of subsets of J for which (13) holds. Put W = M (B) and show that W is
a pseudofilter. Axioms (PF1) and (PF2) are evident. Check (PF3). Fix T ∈ W ,
i.e. T ⊇ S where S ∈ B. Suppose T ′ ∈ W i.e. T ′ ⊇ S1 for some S1 ∈ B. Then
S ∩ S1 ⊆ T ∩ T ′ = ∅ hence S ∩ S1 = ∅ that is contradiction with (13). Thus W is
pseudofilter and B is its base.

2.The necessity of condition (13) have shown above. To prove (14) remark that
the smallest base of pseudofilter W consists of all minimal subsets of W hence the
condition (14) for smallest base holds. Let us prove sufficiency. Put W = M (B).
It is shown that W is pseudofilter and B is its base. We need to prove that B is
the set of all minimal subsets of W . Indeed, fix S0 ∈ B. Assume for T ∈ W the
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inclusion T ⊆ S0 holds. We need to check the equality T = S0. By definition of
mapping M (B) we have T ⊇ S for some S ∈ B. Then S ⊆ T ⊆ S0 hence S ⊆ S0

and by (14) S = S0. Thus T ⊇ S0 and because the inclusion T ⊆ S0 also holds we
obtain the equality T = S0.

It remains to prove that each minimal subset of W belongs to B. Indeed let
subset T1 ∈ W be a minimal in W . We have T1 ⊇ S1 where S1 ∈ B. The strict
inclusion T1 ⊃ S1 is impossible and we obtain T1 = S1 ∈ B. 
�

4. Rules for preferences based on pseudofilters of winning coalitions

Consider the class K of models G = 〈A, (qj)j∈J 〉 of the form (1). Associate with
each model G ∈ K a model GQ = 〈A, (σj)j∈J 〉 where σj is a linear quasi-order on
A defined by

a ≤σj a′ ⇔ qj (a) ≤j qj (a
′) . (15)

It is shown above that we can consider K as a class consisting of models of the
form GQ. The aim of this section is to introduce a fairly general rule for preferences
in class K satisfying to some natural axioms. We solve this problem in the following
manner.

Definition 5. Let W be a pseudofilter over J . Subsets belonging to W are called
winning coalitions of criteria (briefly, winning coalitions).We now define a rule RW
for preferences in the class K which any model G ∈ K assigns a binary preference
relation RW (G) = RW (GQ) = ρW on A given by the formula:

a �ρW a′ ⇔ {j ∈ J : a ≤σj a′} ∈ W. (16)

The rule given by definition 5 is called a rule defined by pseudofilter W .

Example 2. Put W = {J} (obviously, W is a pseudofilter). Then preference relation
ρW coincides with Pareto-preference.

Example 3. Fix a real number α > 1/2. Let r = αn if αn is integer and r = [αn]+1
otherwise (where n = |J |). Now put W = {S ⊆ J : |S| ≥ r} (it is easy to show that
W is a pseudofilter). Then preference relation ρW coincides with rule of α–majority,
see section 1.

Remark 2. Because J ∈ W for any pseudofilter (see (C1), section 3), a preference
relation ρW is reflexive always. But axiom of transitivity for ρW need not be holds.
For example, preference relation for rule of α–majority is not transitive in general
case.

It follows from the definition 5

Corollary 3. Fix a models GQ of class K and let for some a, a′ ∈ A the condition
{j ∈ J : a <σj a′} ∈ W holds. Then a <ρW a′ holds.

Proof (of corollary 3). We have T = {j ∈ J : a ≤σj a′} ⊇ {j ∈ J : a <σj a′} = S.
Since S ∈ W , by axiom (PF2) we obtain T ∈ W hence a �ρW a′ holds. On the
other hand {j ∈ J : a ≥σj a′} = {j ∈ J : a <σj a′}′ = S′ /∈ W hence by definition 5
the condition a′ �ρW a does not hold. Thus we obtain a <ρW a′. 
�

We now state the following important result.
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Theorem 1. Any rule for preferences in class K defined by a pseudofilter W sat-
isfies axioms (A1)*–(A4)*.

Proof (of theorem 1). We need to check these axioms for rule (16).
(A1)* Consider two models GQ = 〈A, (σj)j∈J 〉 and G1

Q =
〈
B, (σ1

j )j∈J
〉
of class

K. Denote by RW (GQ) = ρW , RW
(
G1
Q

)
= ρ1W . Suppose for elements a1, a2 ∈ A

and b1, b2 ∈ B the following equivalences

a1 ≤σj a2 ⇔ b1 ≤σ
1
j b2

hold for each j ∈ J . Then {j ∈ J : a1 ≤σj a2} =
{
j ∈ J : b1 ≤σ

1
j b2

}
hence condi-

tions
{j ∈ J : a1 ≤σj a2} ∈ W and

{
j ∈ J : b1 ≤σ

1
j b2

}
∈ W

are equivalent and by (16) conditions a1 �ρW a2 and b1 �ρ1W b2 are equivalent also.
(A2)* Consider two models GQ = 〈A, (σj)j∈J 〉 and G1

Q =
〈
A, (σ1

j )j∈J
〉
of class

K. Fix elements a1, a2 ∈ A and let for every j ∈ J the following implication

a1 ≤σj a2 ⇒ a1 ≤σ
1
j a2

holds. Then we have

S = {j ∈ J : a1 ≤σj a2} ⊆
{
j ∈ J : a1 ≤σ

1
j a2

}
= T.

By (16) the condition a1 �ρW a2 means S ∈ W ; using the inclusion S ⊆ T and
axiom (PF2) we obtain T ∈ W , that is a1 �ρ1W a2.

(A3)* Consider two models GQ = 〈A, (σj)j∈J 〉 and G1
Q =

〈
A, (σ1

j )j∈J
〉
of class

K. Assume for elements a1, a2 ∈ A and all j ∈ J following implications

a1 ≤σj a2 ⇒ a1 <σ1
j a2 (17)

hold. Then as above we obtain that a1 �ρW a2 implies a1 �ρ1W a2. On the other
hand, the condition a1 �ρW a2 means that {j ∈ J : a1 ≤σj a2} ∈ W then by axiom
(PF3) U = {j ∈ J : a1 ≤σj a2}′ /∈ W .

It follows from (17) that
{
j ∈ J : a1 <σ1

j a2

}′
⊆ {j ∈ J : a1 ≤σj a2}′ = U /∈ W .

Then we have

V =
{
j ∈ J : a2 ≤σ

1
j a1

}
=
{
j ∈ J : a1 <σ1

j a2

}′
⊆ U /∈ W

and by axiom (PF2) V /∈ W , i.e. the condition a2 �ρ1W a1 does not hold. Thus the
assumption a1 �ρW a2 implies a1 <ρ1W a2 which was to be proved.

(A4)* Let A be an arbitrary set. Fix two elements a1, a2 ∈ A with a1 �= a2.
Consider two families of linear quasi-orders (σ′

j)j∈J and (σ′′
j )j∈J on A such that for

any j ∈ J conditions a1 <σ′
j a2 and a2 <σ′′

j a1 hold. Then we have{
j ∈ J : a1 ≤σ

′
j a2

}
= J ∈ W and

{
j ∈ J : a1 ≤σ

′′
j a2

}
= ∅ /∈ W.

Put ρ′W = RW
(〈

A, (σ′
j)j∈J

〉)
and ρ′′W = RW

(〈
A, (σ′′

j )j∈J
〉)
. According with

(16) we obtain that the condition a1 �ρ′W a2 holds and the condition a1 �ρ′′j a2
does not hold which completes the proof of Theorem 1. 
�
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We now state the converse of Theorem 1.

Theorem 2. Fix a family of scales
〈
Cj , (≤j)j∈J

〉
for measurement of quality cri-

teria. Let R be a rule for preferences which every models GQ = 〈A, (σj)j∈J 〉 of class
K assigns some reflexive preference relation R (GQ) = ρ on A and for R axioms
(A1)* – (A4)* hold. Then there exists a pseudofilter W over J such that R = RW .

Proof (of theorem 2). Let us define a family W of winning coalitions of criteria in
the following manner. For any subset S ⊆ J , the condition S ∈ W means that there
exists a model GQ =

〈
A, (σj)j∈J

〉
of class K and elements a1, a2 ∈ A such that

a1 �ρ a2 and
{
j ∈ J : a1 ≤σj a2

}
= S (18)

(we denote by ρ = R
(
GQ

)
).

Further we define a rule RW for preferences in class K and write RW (G) =
RW (GQ) = ρW by setting for anyGQ = 〈A, (σj)j∈J 〉 of classK and every a1, a2 ∈ A

a1 �ρW a2 ⇔ {j ∈ J : a1 ≤σj a2} ∈ W.

As the first step, we show the equality RW = R. It suffices to prove that for
each model GQ = 〈A, (σj)j∈J 〉 of class K the equivalence

a1 �ρ a2 ⇔ {j ∈ J : a1 ≤σj a2} ∈ W. (19)

holds. In fact, the implication ⇒ in (19) is truth by definition of family W . Con-
versely, suppose the right part of (19) holds. Then there exists a model GQ =〈
A, (σj)j∈J

〉
of class K and elements a1, a2 ∈ A such that

a1 �ρ a2 and
{
j ∈ J : a1 ≤σj a2

}
= {j ∈ J : a1 ≤σj a2} .

Then conditions a1 ≤σj a2 and a1 ≤σj a2 are equivalent for any j ∈ J ; by axiom
(A1)* the propositions a1 �ρ a2 and a1 �ρ1 a2 are equivalent also and because
a1 �ρ a2 is truth we obtain that a1 �ρ a2 is truth.

It remains to be shown that W is a pseudofilter. Check axioms (PF1)–(PF3).
(PF1) Let A be an arbitrary set with |A| ≥ 2. Fix two elements a1, a2 ∈ A.

For any j ∈ J let σj be a linear quasi-order on A with a1 ≤σj a2. Then con-
dition (a1, a2) ∈

⋂
j∈J

σj holds and using Corollary 2 we obtain a1 �ρ a2; since

{j ∈ J : a1 ≤σj a2} = J then by (18) J ∈ W , i.e. W �= ∅.
(PF2) Suppose S ∈ W and T ⊇ S. We need to prove T ∈ W . In fact, by (18)

there exists a model GQ = 〈A, (σj)j∈J 〉 of class K and elements a1, a2 ∈ A such
that a1 �ρ a2 and {j ∈ J : a1 ≤σj a2} = S. Consider a family of linear quasi-orders(
σ1
j

)
j∈J on A defined as follows. For j ∈ T ∩ S′, the quasi-order σ1

j the condition

a1 ≤σ
1
j a2 satisfies and σ1

j = σj for other j ∈ J . Then{
j ∈ J : a1 ≤σ

1
j a2

}
= (T ∩ S′) ∪ S = T. (20)

Let us show the following implication

a1 ≤σj a2 ⇒ a1 ≤σ
1
j a2. (21)
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Indeed, for j ∈ T ∩ S′ the implication (21) holds since its consequence is truth;
in other cases the condition and the consequence of (21) are equivalent. Denote by
G1
Q =

〈
A, (σ1

j )j∈J
〉
, R (GQ) = ρ,R

(
G1
Q

)
= ρ1. Since a1 �ρ a2 then by axiom (A2)*

and (21) we have a1 �ρ1 a2; using (20) and (18) we obtain T ∈ W .
(PF3) Suppose S ∈ W i.e. there exists a model GQ = 〈A, (σj)j∈J 〉 of class

K and elements a1, a2 ∈ A such that a1 �ρ a2 and {j ∈ J : a1 ≤σj a2} = S. As-
sume S′ ∈ W . Consider a family

(
σ1
j

)
j∈J of linear quasi-orders on A satisfying{

j ∈ J : a1 <σ1
j a2

}
= S. Then for any j ∈ J the implication

a1 ≤σj a2 ⇒ a1 <σ1
j a2. (22)

is truth. Put G1
Q =

〈
A, (σ1

j )j∈J
〉
, R (GQ) = ρ,R

(
G1
Q

)
= ρ1. Using (22) and the

condition a1 �ρ a2 we obtain by axiom (A3)* the condition a1 <ρ1 a2. On the other
hand, since {

j ∈ J : a2 ≤σ
1
j a1

}
=
{
j ∈ J : a1 <σ1

j a2

}′
= S′ ∈ W

we have a2 �ρ1W a1; because RW = R we obtain a2 �ρ1 a1 in contradiction with
condition a1 <ρ1 a2 proved above. 
�

To conclude this section we consider a construction of rules for preferences based
on filters of winning coalition.

Theorem 3. Let RW be a rule for preferences in class K which based on pseudofil-
ter W . Then for every model GQ = 〈A, (σj)j∈J 〉 of class K the preference relation
ρW = RW (GQ) is transitive if and only if the pseudofilter W is a filter.

Proof (of theorem 3). Necessity. Suppose W is not a filter then by Lemma 3 there
exist subsets S, T ∈ W such that S ∩ T /∈ W . Put A = {a1, a2, a3} and for every
j ∈ J let us define a linear order relation σj as follows:

a3 <σj a1 <σj a2 for all j ∈ S ∩ T ′;
a1 <σj a2 <σj a3 for all j ∈ S ∩ T ;

a2 <σj a3 <σj a1 for all j ∈ T ∩ S′;

a3 <σj a1 for all j ∈ J ∩ (S ∪ T )′ .

Then we have

{j ∈ J : a1 ≤σj a2} ⊇ (S ∩ T ′) ∪ (S ∩ T ) = S ∈ W ;

{j ∈ J : a2 ≤σj a3} ⊇ (S ∩ T ) ∪ (T ∩ S′) = T ∈ W ;

{j ∈ J : a1 ≤σj a3} = S ∩ T /∈ W.

(23)

According with Definition 5 and using (23) and axiom (PF2) we obtain a1 �ρW a2,
a2 �ρW a3 but the condition a1 �ρW a3 does not hold.

Sufficiency. Let GQ = 〈A, (σj)j∈J 〉 be any model of class K. Put RW (GW ) =
ρW . Suppose a1 �ρW a2, a2 �ρW a3. Then by definition 5 we have {j ∈ J : a1 ≤σj a2} =
S ∈ W , {j ∈ J : a2 ≤σj a3} = T ∈ W hence by axiom (F2) S ∩ T ∈ W . Obviously,
S ∩ T ⊆ {j ∈ J : a1 ≤σj a3} and by axiom (F2) we obtain {j ∈ J : a1 ≤σj a3} ∈ W ,
i.e. a1 �ρW a3 which was to be proved. 
�
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We now consider the condition of linearity of preference relations. It connects
with condition of maximality for filters. Recall that a filter W over J is a maximal
one (or ultrafilter) if it satisfies the condition

either S ∈ W or S′ ∈ W for every S ⊆ J. (24)

Theorem 4. Let RW be a rule for preferences in class K which based on pseudofil-
ter W . Then for every model GQ = 〈A, (σj)j∈J 〉 of class K the preference relation
ρW = RW (GQ) is linear if and only if the pseudofilter W the condition (24) satis-
fies.

Proof (of theorem 4). Necessity. Assume (24) does not hold for pseudofilter W then
there exists a subset S ⊆ J such that S /∈ W and S′ /∈ W . Consider a model
GQ = 〈A, (σj)j∈J 〉 of class K where A = {a1, a2} and linear quasi-orders (σj)j∈J
the following conditions satisfy:

a1 <σj a2 for each j ∈ S;

a2 <σj a1 for each j ∈ S′.

Then {j ∈ J : a1 ≤σj a2} = S /∈ W and {j ∈ J : a2 ≤σj a1} = S′ /∈ W . Hence by
definition5 both conditions a1 �ρW a2 and a2 �ρW a1 are false, i.e. the preference
relation ρW is not linear.

Sufficiency. Let GQ = 〈A, (σj)j∈J 〉 be an arbitrary model of class K. Put
RW (GQ) = ρW . Fix two elements a1, a2 ∈ A and suppose the condition a1 �ρW a2
does not hold, i.e. {j ∈ J : a1 ≤σj a2} /∈ W . Then by assumption of Theorem 4
{j ∈ J : a1 ≤σj a2}′ ∈ W , i.e. {j ∈ J : a2 <σj a1} ∈ W ; since {j ∈ J : a2 <σj a1} ⊆
{j ∈ J : a2 ≤σj a1} by axiom (PF2) we obtain {j ∈ J : a2 ≤σj a1} ∈ W , that is
a2 �ρW a1. Thus the relation ρW is linear. 
�

It follows from Theorem 3 and Theorem 4

Corollary 4. Let RW be a rule for preferences in class K which based on pseudofil-
ter W . Then for every model GQ = 〈A, (σj)j∈J 〉 of class K the preference relation
ρW = RW (GQ) is a linear quasi-order if and only if the pseudofilter W is an
ultrafilter.

It follows from results of this section an interpretation of Arrow paradox in terms
of filters. In fact, any rule for preferences in class models K which leads to linear
quasi-order can be given by some ultrafilter. Since the set of criteria J is finite, every
filter W over J is a principal one and a principal ultrafilter consists of all subsets
which contain some fix element j∗ ∈ J ; namely this element j∗ is called a dictator
in terms of Arroy.
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