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Abstract The problem of strategically supported cooperation in 2-person
differential games with integral payoffs is considered. Based on initial dif-
ferential game the new associated differential game (CD-game) is designed.
In addition to the initial game it models the players actions connected with
transition from the strategic form of the game to cooperative with in advance
chosen principle of optimality. The model provides possibility of refusal from
cooperation at any time instant t for each player. As cooperative principle
of optimality the Shapley value is considered. In the bases of CD-game con-
struction lies the so-called imputation distribution procedure described ear-
lier in (Petrosjan and Zenkevich, 2009). The theorem established by authors
says that if at each instant of time along the conditionally optimal (cooper-
ative) trajectory the future payments to each player according to the impu-
tation distribution procedure exceed the maximal guaranteed value which
this player can achieve in CD-game, then there exist a Nash equilibrium in
the class of recursive strategies first introduced in (Chistyakov, 1981) sup-
porting the cooperative trajectory. In the present paper the results similar
to (Chistyakov and Petrosyan, 2011) are obtained without the requirement
of independent motions and for the more general type of payoff functions.
Keywords: strong Nash equilibrium, time-consistency, core, cooperative
trajectory.

1. Introduction

Similar to (Petrosjan and Zenkevich, 2009; Chistyakov and Petrosyan, 2011) in this
paper the problem of strategically support of cooperation in differential 2-person
game with prescribed duration T and dependent motions is considered.

dx

dt
= f(t, x, u(1), u(2)), i ∈ I = [1, 2], (1)

x ∈ Rn, u(i) ∈ P (i) ⊂ CompRk(i), i ∈ I

x(t0) = x0. (2)

The payoffs of players i ∈ I = [1, 2] have integral form

H
(i)
t0,x0

(u(1)(·), u(2)(·)) =
∫ T

t0

h(i)
(
t, x(t), u(1)(t), u(2)(t)

)
dt, (3)

where u(·) = (u(1)(·), u(2)(·)) is a given vector-function of open loop controls,
x(t) = x(t, t0, x0, u

(1)(·), u(2)(·)) is the solution of the Cauchy problem (1) with cor-
responding initial conditions (2) and admissible open loop controls u(1)(·), u(2)(·) of
players.
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Admissible open loop controls of players i ∈ I are Lebesgue measurable open
loop controls

u(i)(·) : t �→ u(i)(t) ∈ Rk(i), i ∈ I = {1, 2}

such that
u(i)(t) ∈ P (i) for almost all t ∈ [t0, T ], i ∈ I.

It is supposed that the function f : R × Rn × P (1) × P (2) → Rn is continuous,
locally Lipschitz with respect to x and satisfies the following condition: ∃λ > 0 such,
that

||f(t, x, u(1), u(2))|| ≤ λ(1 + ||x||) ∀x ∈ Rk(i), ∀u(1) ∈ P (1), u(2) ∈ P (2).

Each of the functions

h(i) : R×Rn × P (1) × P (2) → R, i ∈ I

are also continuous.
For all t ∈ R+, x ∈ Rn,  ∈ Rn

max
u(1)∈P (1)

min
u(2)∈P (2)

(
<  , f(t, x, u(1), u(2)) > +h(1)(t, x, u(1), u(2))

)
=

min
u(2)∈P (2)

max
u(1)∈P (1)

(
<  , f(t, x, u(1), u(2)) > +h(1)(t, x, u(1), u(2))

)
and

max
u(2)∈P (2)

min
u(1)∈P (1)

(
<  , f(t, x, u(1), u(2)) > +h(2)(t, x, u(1), u(2))

)
=

min
u(1)∈P (1)

max
u(2)∈P (2)

(
<  , f(t, x, u(1), u(2)) > +h(2)(t, x, u(1), u(2))

)
,

here < ·, · > is scalar product in Rn.
It is supposed that at each time instant t ∈ [t0, T ] the players have information

about the current position (t, x(t)) on the time interval [t0, t] and use recursive
strategies (Chistyakov, 1977; Chistyakov, 1999).

2. Recursive strategies

Recursive strategies were first introduced in (Chistyakov, 1977) for justification of
dynamic programming approach in zero sum differential games, known as method
of open loop iterations in non regular differential games with non smooth value
function. The ε-optimal strategies constructed with the use of this method are
universal in the sense that they remain ε-optimal in any subgame of the previously
defined differential game (for every ε > 0). Exploiting this property it became
possible to prove the existence of ε-equilibrium (Nash equilibrium) in non zero sum
differential games (for every ε > 0) using the so called "punishment strategies"
(Chistyakov, 1981).

The basic idea is that when one of the players deviates from the conditionally
optimal trajectory other players after some small time delay start to play against
the deviating player. As result the deviating player is not able to get much more
than he could get using the conditionally optimal trajectory. The punishment of the
deviating player at each time instant using one and the same strategy is possible
because of the universal character of ε-optimal strategies in zero sum differential
games.
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In this paper the same approach is used to testify the stability of cooperative
agreements in the game Γ (t0, x0) and as in mentioned case the principal argument
is the universal character of ε-optimal recursive strategies in specially defined zero
sum games Γi(t0, x0), i ∈ I = [1, 2] associated with the non-zero sum game Γ (t0, x0).

The recursive strategies lie somewhere in-between piecewise open loop strategies
(Petrosyan, 1993) and ε-strategies introduced by B. N. Pshenichny (Pschenichny,
1973). The difference from piecewise open loop strategies consists in the fact that like
in the case of ε-strategies of B. N. Pshenichny the moments of correction of open loop
controls are not prescribed from the beginning of the game but are defined during
the game process. In the same time they differ from ε-strategies of B. N. Pshenichny
by the fact that the formation of open loop controls happens in finite number of
steps.

Recursive strategies U
(n)
i of player i with maximal number of control corrections

n is a procedure for the admissible open loop formation by player i in the game
Γ (t0, x0), (t0, x0) ∈ D.

At the beginning of the game Γ (t0, x0) player i using the recursive strategy U
(n)
i

defines the first correction instant t
(i)
1 ∈ (t0, T ] and his admissible open loop control

u(i) = u(i)(t) on the time interval [t0, t
(i)
1 ]. Then if t

(i)
1 < T having the information

about state of the game at time instant t(i)1 he chooses the next moment of correction
t
(i)
2 and his admissible open loop control u(i) = u(i)(t) on the time interval (t(i)1 , t

(i)
2 ]

and so on. Then whether on k-th step (k ≤ n − 1) the admissible control will be
formed on the time interval [tk, T ] or on the step n player i will end up with the
process by choosing at time instant t

(i)
n−1 his admissible control on the remaining

time interval (t(i)n−1, T ].

3. Associated games and corresponding solutions

For each given state (t∗, x∗) ∈ D and i ∈ I = [1, 2] consider zero sum differential
game Γi(t∗, x∗) between player i and I\{i} with the same dynamics as in Γ (t∗, x∗)
and payoff of player i equal to:

H
(i)
t∗x∗(u

(1)(·), u(2)(·)) =
∫ T

t0

h(i)(t, x(t), u(1)(t), u(2)(t))dt.

The game Γi(t∗, x∗), i ∈ I, (t∗, x∗) ∈ D, as Γ (t∗, x∗), (t∗, x∗) ∈ D we consider in
the class of recursive strategies. Under the above formulated conditions each of the
games Γi(t∗, x∗), i ∈ I, (t∗, x∗) ∈ D has a value

valΓi(t∗, x∗),

and optimal strategies (saddle point).
Consider also the following optimization problem ΓI(t∗, x∗):

max
u(1)(·),u(2)(·)

2∑
i=1

H
(i)
t0,x0

(
u(1)(·), u(2)(·)

)
,

denoting the resulting maximal value as vI(t0, x0). We suppose that this optimiza-
tion problem has an optimal open-loop solution.
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The corresponding trajectory — solution of (1), (2) on the time interval [t0, T ]
we denote by x0(·) and call ”conditionally optimal cooperative trajectory”. This tra-
jectory may not be necessary unique. Thus on the set D the mapping

v(·) : D → R3

is defined with coordinate functions

vI(·), v1(·), v2(·) : D → R,

vi(t∗, x∗) = valΓi(t∗, x∗), i ∈ I, vI(t∗, x∗).

This mapping correspond to each state (t∗, x∗) ∈ D a characteristic function v(t∗, x∗) :
2I → R of non zero-sum game Γ (t∗, x∗) and thus 2-person classical cooperative game
(I, v(t∗, x∗)).

Let E(t∗, x∗) = {α = (α1, α2) : αi ≥ vi(t∗, x∗), α1 + α2 = vI(t∗, x∗)} be the set
of all imputations in the game (I, v(t∗, x∗)). Multivalue mapping

M : (t∗, x∗) �→ M(t∗, x∗) ⊂ E(t∗, x∗) ⊂ R2,

M(t∗, x∗) �= Λ ∀(t∗, x∗) ∈ D,

is called ”optimality principle” (defined over the family of games Γ (t∗, x∗),
(t∗, x∗) ∈ D) and the set M(t∗, x∗) ”cooperative solution of the game Γ (t∗, x∗)
corresponding to this principle”.

As it follows from (Fridman, 1971) under the above imposed conditions the
following Lemma holds.

Lemma 1. The functions vI(·), v1(·), v2(·) : D → R, are locally Lipschitz.

Since the solution of the Cauchy problem (1), (2) in the sense of Caratheodory
is absolutely continuous, from Lemma 1 it follows.

Theorem 1. For every solution of the Cauchy problem (1), (2) in the sense of
Caratheodory x(·) corresponding to the open loop controls u(·) = (u(1)(·), u(2)(·))
functions

ϕi : [t0, T ]→ R, i ∈ I, ϕi(t) = vi(t, x(t)), ϕI (t) = vI(t, x(t))

are absolutely continuous functions on the time interval [t0, T ].

As defined let E(t∗, x∗) be the set of imputations in the game Γ (t∗, x∗), and let

ξ(t∗, x∗) = {ξ1(t∗, x∗), ξ2(t∗, x∗)} ∈ E(t∗, x∗).

Then we have
ξi(t∗, x∗) ≥ vi(t∗, x∗).
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4. Realization of cooperative solutions

The realization of the solution of the game Γ (t0, x0) we shall connect with the known
”imputation distribution procedure” (IDP) (Petrosjan and Danilov, 1979; Petrosjan,
1995).

Under IDP of the imputation ξ(t0, x0) from the solution M(t0, x0) of the game
Γ (t0, x0) along conditionally optimal trajectory x0(·) we understand such function

β(t) = (β1(t), β2(t)), t ∈ [t0, T ], (4)

that

ξ(t0, x0) =

∫ T

t0

β(t)dt (5)

and ∫ T

t

β(t)dt ∈ E(t, x0(t)) ∀t ∈ [t0, T ] (6)

where E(t, x0(t)) is the set of imputations in the game (I, v(t, x0(t))).
The IDP β(t), t ∈ [t0, T ] of the imputation ξ(t0, x0) ∈ M(t0, x0) of the game

Γ (t0, x0) is called dynamically stable (time-consistent) along the conditionally op-
timal trajectory x0(·) if∫ T

t

β(t)dt ∈ M(t, x0(t)) ∀t ∈ [t0, T ] (7)

The solution M(t0, x0) of the game Γ (t0, x0) is dynamically stable (time-con-
sistent) if for all ξ(t0, x0) ∈ M(t0, x0) along at least one conditionally optimal
trajectory the dynamically stable IDP exist.

If M(t, x0(t)) = E(t, x0(t)), t ∈ [t0, T ], then M(t, x0(t)) �= ∅ (M(t, x0(t)) is the
set of imputations in the subgame Γ (t, x0(t)) with initial conditions on conditionally
optimal cooperative trajectory with duration T − t), and ξ(t, x0(t)) ∈ M(t, x0(t))
can be selected as absolutely continuous function of t. Then the following theorem
holds.

Theorem 2. For any conditionally optimal trajectory x0(·) the following IDP of
the solution ξ(t0, x0) ∈ M(t0, x0) of the game Γ (t0, x0)

β(t) = − d

dt
ξ(t, x0(t)), t ∈ [t0, T ], (8)

is the dynamically stable IDP along this trajectory. Therefore the solution M(t0, x0)
of the game Γ (t0, x0) is dynamically stable.

As ξi(t0, x0) we can take the Shapley value:

ξi(t0, x0) = Shi(t0, x0) = vi(t0, x0) +

vI(t0, x0)−
2∑
i=1

vi(t0, x0)

2

and for subgame along cooperative trajectory

ξi(t, x0(t)) = Shi(t, x0(t)) = vi(t, x0(t)) +

vI(t, x0(t))−
2∑
i=1

vi(t, x0(t))

2
.
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From Theorem 1 it follows that the function Shi(t, x0(t)) is absolutely continuous
and thus differentiable along x0(t). This shows that IDP β(t) for ξi(t, x0(t)) =
Shi(t, x0(t)) can be computed by (8) according to Theorem 2.

5. About the strategically support of the imputation ξ(t0, x0)

If in the game the cooperative agreement is reached and each player gets his payoff
according to the IDP (8), then it is natural to suppose that those who violate
this agreement are to be punished. The effectiveness of the punishment (sanctions)
comes to question of the existence of Nash Equilibrium in the following differential
game Γ ξ(t0, x0) which differs from Γ (t0, x0) only by payoffs of players.

The payoff of player i in Γ ξ(t0, x0) is equal to

H
(ξ, i)
t0,x0

(u(·)) = −
∫ t(u(·))

t0

d

dt
ξi(t, x0(t))dt +

∫ T

t(u(·))
h(i)(t, x(t, t0, x0, u(·)))dt

where t(u(·)) is the last time instant t ∈ [t0, T ] for which

x0(τ) = x(τ, t0, x, u(·)) ∀τ ∈ [t0, t].

Theorem 3. In the game Γ ξ(t0, x0) for each ε > 0 there exist ε-Nash equilibrium
with outcomes (payoffs) of players in this equilibrium equal to

ξ(t0, x0) = {ξ1(t0, x0), ξ2(t0, x0)} ∈ E(t0, x0).

The idea of the proof is following. Since ξ(t0, x0) belongs to the imputation set
of the game Γ (t0, x0) we have

ξi(t, x0(t)) ≥ vi(t, x0(t)) ∀i ∈ I ∀t ∈ [t0, T ] (9)

This means that at each time instant t ∈ [t0, T ] moving along conditionally
optimal trajectory x0(·) no player i ∈ I can guarantee himself the payoff [t, T ] more
than according to IDP (8), i.e. more than∫ T

t

β(τ)dτ = −
∫ T

t

d

dt
ξ(τ, x0(τ))dτ = ξi(t, x0(t))

since if player i deviates from cooperative trajectory at some time instant t, this
will be immediately seen by his opponent 3 − i (since both players know x(t) at
each time instant t, and deviation of one player will cause the change of x(t)) and
he will use punishment strategy in the zero-sum game Γ3−i(t, x0(t)) (his optimal
strategy in zero-sum game Γ3−i(t, x0(t))). Therefore, the player i will get no more
then vi(t + δ, x0(t+ δ)) ≤ ξi(t, x0(t) + ε.

In the same time on the time interval [t0, t] according to the IDP she already
got the payoff equal to∫ t

t0

βi(τ)dτ = −
∫ t

t0

d

dt
ξi(τ, x0(τ))dτ = ξi(t0, x0)− ξi(t, x0(t))

Consequently no player can guarantee in the game Γ ξ(t0, x0) the payoff more than
ξi(t0, x0).

According to the cooperative solution x0(·) but moving always in the game
Γ ξ(t0, x0) along conditionally optimal trajectory each player will get his payoff ac-
cording to the imputation ξ(t0, x0). Thus no player can benefit from the deviation
from the conditionally optimal trajectory which in this case is natural to call ”equi-
librium trajectory”.
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