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Abstract In this paper we study a game of group pursuit in which players
move on a plane with bounded velocities. The game is supposed to be a
nonzero-sum simple pursuit game between a pursuer and m evaders acting
independently of each other. The case of complete information is considered.
Here we assume that the evaders are discriminated. Two different approaches
to formalize this pursuit problem are considered: noncooperative and coop-
erative. In a noncooperative case we construct a Nash equilibrium, and in
a cooperative case we construct the core. We proved that the core is not
empty for any initial positions of the players.

Keywords: group pursuit game, Nash equilibrium, realizability area, TU-
game, core.

1. Introduction

The process of pursuit represents a typical conflict situation. When only two players
are involved in the process of pursuit we deal with a classical zero-sum differential
pursuit game. These games grew out of the military problems and were developed
by Isaaks (1965).

When more than two players participate in a game and the players’ objec-
tives are not strictly opposite it is rather reasonable to consider such a game as a
nonzero-sum one. This approach for solving a group pursuit problem was introduced
in (Petrosjan and Shirjaev, 1981) and further applied in works (Tarashnina, 1998),
(Pankratova and Tarashnina, 2004).

It is obvious that players’ goals are not always strictly opposed. We want to
illustrate how differential games can be used for solving different kind of problems. In
this case under "capture" we can understand just meeting of players and delivering
some goods or information. In terms, players are not aimed to destruct each other.
Moreover, players in a nonzero-sum game may cooperate with each other to get a
maximal profit.

We investigate a nonzero-sum group pursuit game using two different approaches.
We construct a game in normal form and its TU-cooperative version and find their
solutions.
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2. Nonzero-sum group pursuit game

In the work we study a game of pursuit in which n players − the pursuer
P and evaders E1, . . . , Em − move on a plane with constant velocities with the
possibility of changing the direction of their motion at each time instant (simple
motion). We consider the case of complete information. This means that each player
at each time instant t ≥ 0 knows the moment t and his own as well as all other
player’s positions. Additionally, we assume that the pursuer uses strategies with
discrimination against the evaders. This means that at each instant t the pursuer
P knows the vector-speeds chosen by the evaders at that time moment.

The players start their motion at moment t = 0 at the initial positions

z0P = (x0
P , y0P ), z0i = (x0

i , y
0
i ), i = 1,m.

Let α and βi are velocities of P and Ei (i = 1,m), respectively. Suppose that
α > max

i=1,...,m
βi. Denote by Et

i = zti = (xti, y
t
i) and P t = ztP = (xtP , ytP ) the current

positions of evader Ei and pursuer P at the moment t > 0, respectively.
The motion of players is described by the following system of differential equa-

tions ·
zP = uP , uP ∈ UP ,
·
zi = uEi , uEi ∈ UEi , i = 1,m,

(1)

with initial conditions

zP (0) = z0P , zi(0) = z0i , i = 1,m, (2)

where zP , z1, . . . , zm ∈ R2. The vectors uP ∈ UP and uEi ∈ UEi are control vari-
ables of P and Ei (i = 1,m), respectively. The set of control variables UP , UEi have
the following forms

UP = {uP = (u1
P , u2

P ) : (u
1
P )

2 + (u2
P )

2 = α2},
UEi = {uEi = (u1

Ei
, u2
Ei
) : (u1

Ei
)2 + (u2

Ei
)2 = β2

i }, i = 1,m.

We need to explain how the players choose their control variables throughout
the game according to the incoming information. Define a strategy of the evader
as a function of time and current positions of the players. A strategy of player Ei
is a function uEi(t, z

t
P , zt1, . . . , z

t
m) with values in UEi . The evaders use piecewise

open-loop strategies. Denote by UEi the set of admissible strategies of player Ei,
i = 1,m.

A strategy of player P is a function of time, players’ positions and velocity-
vectors of the evaders, i.e.

uP (t, z
t
P , zt1, . . . , z

t
m,utE1

, . . . ,utEm
).

That means, that the class of admissible strategies of the pursuer consists of strate-
gies with discrimination (counterstrategies).

The game is played as follows: at the initial time instant the pursuer dictates
to the evaders E1, . . . , Em a certain behaviour and chooses some pursuit order. In
other words, the pursuer fixes some pursuit order and calculates the total pursuit
time taking into account that the evaders use the prescribed behaviour. After that,
P consequently pursues the evaders according to the chosen order and changes it
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as soon as any of the evader chooses a direction of motion different from the one
dictated by the pursuer. So, the pursuer punishes deviated evader, changing pursuit
order by starting the pursuit of defected evader. If group of evaders is deviated then
the pursuer punishes anyone of this group.

Let Π be the set of all possible orders. Now we define a notion of a punishment
strategy of the pursuer.

Definition 1. We say that the triple uπP = 〈π, uP , p〉 is a punishment strategy of
pursuer P with

– π(z0P , z01 , . . . , z
0
m, uE1 , . . . , uEm) is a pursuit order chosen by the pursuer at the

initial instant t = 0 for some fixed strategy profile of the evaders uE1 , . . . , uEm ;
– uP (t, z

t
P , zt1, . . . , z

t
m,utE1

, . . . ,utEm
), t ≥ 0, is a pursuit strategy of P that consists

in consequent pursuit of the evaders according to the chosen order;
– p = p(t,utE1

, . . . ,utEm
) is an element of punishment that consists in changing the

pursuit order at the moment t by starting the pursuit of defected evader in case
any of the evaders chooses a direction of motion different from (utE1

, . . . ,utEm
)

dictated by the pursuer.

Denote by UP = {uπP }π∈Π the set of punishment strategies of the pursuer.
Evader Ei is considered caught if the positions of P and Ei coincide at some

time instant. We say that the game is over if the pursuer captures all the evaders.
Let π = {1, . . . , i, . . . ,m} be a pursuit order chosen by pursuer P .
Denoting by KP the payoff function of P , and by KEi the payoff function of

evader Ei, i = 1,m, we have

KEi(u
π
P , uE1, . . . , uEi , . . . , uEm) =

∑
k≤i, k=1,m

T πk , (3)

where T πk is the time spent by the pursuer for capture of the evader Ek (k = 1,m)
minus time according to the pursuit order π ∈ Π. Here i is a number of the evader
Ei in the pursuit order π = {1, . . . , i, . . . ,m} and k (k ≤ i) is a number of the evader
which is pursued before Ei inclusively.

The payoff of P is defined as the negative value of the payoff of evader Ei that
is caught last. Thus,

KP (u
π
P , uE1 , . . . , uEm) = −T π, (4)

where T π =

m∑
k=1

T πk is the total pursuit time, and π is the chosen pursuit order.

So, we define the nonzero-sum pursuit game as a normal form game as follows

Γ (z0P , z
0
1 . . . , z0m) = 〈N, {Ui}i∈N , {Ki}i∈N〉, (5)

where N = {P,E1, . . . , Em} is the set of players, Ui is the set of admissible strategies
of player i and Ki is a payoff function of player i (i ∈ N), defined by (3) and (4).
Each game depends on a choice of the initial positions of the players. Let us fix the
players’ initial positions and consider the game Γ (z0P , z01 , . . . , z

0
m).
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3. Nash equilibrium in the game Γ (z0
P , z0

1, . . . , z
0
m)

In nonzero-sum games there is a number of solution concepts that are based on some
additional assumptions for players’ behaviour and structure of the game. One of
them is the well-known concept of Nash equilibrium. In considered game there exists
a whole family of Nash equilibria that includes some which are extremely adverse to
the evaders’ interests, and some which are favorable for them, as well as all interme-
diate equilibria. Different kind of Nash equilibria in the game Γ (z0P , z01 , . . . , z

0
m) were

constructed in (Petrosjan and Shirjaev, 1981), (Tarashnina, 1998),
(Pankratova and Tarashnina, 2004). In this game we consider the extremely odd
Nash equilibrium that is the most disadvantageous for the evaders among all the
equilibria.

The strategy set of pursuer P consists of uπP corresponding to the pursuit order
π ∈ Π. The pursuer aims to minimize the total pursuit time and each evader wants
to avoid his own capture as long as possible and does not care about the other
evaders. Denote by π∗ the pursuit order which minimizes the total pursuit time and
by uπ

∗
P the corresponding strategy of the pursuer.
Let Ej′

i be the evader who is currently pursued, j′ ∈ {1, . . . ,m}. Ej
i is the j-th

in the line of pursuit evader among the ones not yet caught, j ∈ {1, . . . ,m}, j > j′.
Now let us describe two types of behaviours of evader Ei (i = 1,m):

– Ej′
i , j′ ∈ {1, . . . ,m}, uses behaviour [uj

′
Ei
] that prescribes to move along the

straight line connecting his own and the pursuer’s current positions in the di-
rection from P (to the current capture point N j′).

– Ej
i , j ∈ {1, . . .m}, uses behaviour [ujEi

] that prescribes to move along the
straight line to the capture point of the currently pursued evader Ej′

i , j > j′,
namely, to the current capture point N j′ , where N j′ = PTπ

j′ .

It is obvious that throughout the game at some moment tEi > 0 each evader Ei

changes its type from Ej
i into Ej′

i . So, the strategy u∗
Ei
(t, ·) of evader Ei (i = 2,m)

can be describe as

u∗
Ei
(t, ·) =

{
[ujEi

], 0 ≤ t < tEi ,

[uj
′
Ei
], t ≥ tEi .

During the game each evaders, accept E1, consequently applies both types of be-
haviours. The player E1 uses just type [uj

′
Ei
], i.e. his strategy is u∗

E1
(t, ·) = [uj

′
E1

],
t ≥ 0.

Suppose that T 0 = 0, N0 = P 0 = (0, 0).
The following theorem (Tarashnina, 1998) defines the conditions that support

the described Nash equilibrium (uπ
∗
P , u∗

E1
, . . . , u∗

Em
) in the game Γ (z0P , z01 , . . . , z

0
m).

Theorem 1. In the game Γ (z0P , z01 , . . . , z
0
m) in case the conditons

T π
∗
= min
π∈Π

T π, (6)

and
α− βi

α− βi−1

∣∣∣N i−2E
Ti−2

i−1

∣∣∣+ ∣∣∣N i−1E
Ti−1

i

∣∣∣ > ∣∣∣N i−2E
Ti−2

i

∣∣∣ , i = 2,m. (7)

hold for all i = 1,m there exists a Nash equilibrium that is constructed as follows:
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1. Ei (i = 1,m) chooses the strategy u∗
Ei

that dictates to him
– according to the behaviour [uj

′
Ei
] to move along the straight line connecting

current positions Ej′
i and P at the moment Ti−1 in the direction from P if

i = j′, where j′ ∈ {1, ...,m};
– according to the behaviour [ujEi

] to move along the straight line to the capture
point of the currently pursued evader Ej′

i , j′ ∈ {1, ...,m}, j > j′, i.e. to point
N j′ , where N j′ = PTj′ , if i = j, where j > j′.

2. P chooses the strategy uπ
∗
P that minimizes the total pursuit time if each Ei

(i = 1,m) adheres to the strategy u∗
Ei

, and P changes the pursuit order as soon
as any of the evaders Ej

i (i > j′) that are not yet caught deviates from the
strategy u∗

Ei
and pursuits the deviated evader the first.

Now we introduce the notion of a realizability area. For this purpose we associate
with each evader Ei an area Ωi of initial positions of evaders that support the Nash
equilibrium and refer to it as the realizability area of the punishment strategy of
the pursuer with respect to evader Ei, (i = 1,m).

In words, area Ωi is the set of all Ei’s initial positions such that, when there,
evader Ei has to adhere the strategy u∗

Ei
dictated to him by the pursuer.

Definition 2. The punishment strategy of pursuer P is called realizable with re-
spect to evader Ei, if the life time of evader Ei, i ∈ {2, . . . ,m}, in case Ei adheres
to the strategy u∗

Ei
is larger then if Ei deviates, i. e. inequality (7) holds for fixed i.

Definition 3. The punishment strategy of pursuer P is called realizable in the
game Γ (z0P , z01 , . . . , z

0
m) if inequality (7) holds for all i = 2,m.

In (Pankratova and Tarashnina, 2004) some illustrative examples for construct-
ing of realizability areas of the punishment strategy are have been presented.

4. Cooperative pursuit game Γv(z
0
P , z0

1 , . . . , z
0
m)

Let us suppose that the players in the game can form a coalitions. Construct a
cooperative game between pursuer P and evaders E1, . . ., Em in assumption the
players use the strategies described in the previous paragraph without the threat of
punishment.

Assume that utility of any player is transferable.
Let 2N be the set of all subsets of N. The function v : 2N → R1 with the

following two properties

1. v(∅)=0, where ∅ is an empty set,
2. v(S ∪R) ≥ v(S) + v(R) for all R,S ⊂ N with S

⋂
R = ∅,

is called the characteristic function of the game . Condition 2 is a superadditivity
property.

For any coalition S ⊂ N we define the characteristic function as follows

v(S) = max
uS

min
uN\S

∑
i∈S

Ki

(
uS, uN\S

)
,

where uS and uN\S are vectors of admissible strategies of the coalitions S and N\S,
respectively. Using this approach, we construct the characteristic function v for the
game Γ (z0P , z01 , . . . , z

0
m).
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Consider an arbitrary permutation π of the ordered set of indexes M = {1, 2, . . . ,m}.
With this permutation we associate a substitution kπ , i.e. kπ : M → M . This means
that k ∈ M goes to kπ ∈ M in permutation π.

The characteristic function of the game has the form

v({Ei1}; z0P , z01 , . . . , z
0
m) = min

π∈Π

{ ∑
kπ≤i1

T πkπ

}
, i1 = 1,m.

v({Ei1 , Ei2}; z0P , z01 , . . . , z0m) = min
π∈Π

{ ∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ

}
, where i1, i2 = 1,m,

i1 �= i2.

v({Ei1 , Ei2 , Ei3}; z0P , z01 , . . . , z0m) = min
π∈Π

{ ∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ +

∑
kπ≤i3

T πkπ

}
, where

i1, i2, i3 = 1,m, i1 �= i2 �= i3.

. . .

v({E1, . . . , Em}; z0P , z01 , . . . , z
0
m) = min

π∈Π

{
T πi1 +

i2∑
kπ=i1

T πkπ + . . .+
im−1∑
kπ=i1

T πkπ +
im∑

kπ=i1

T πkπ

}
.

v({P}; z0P , z01 , . . . , z0m) = max
π∈Π

{−T π}.

v({P,Ei1}; z0P , z01 , . . . , z0m) = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ

}
= 0, where i1 = 1,m.

v({P,Ei1 , Ei2}; z0P , z01 , . . . , z0m) = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ

}
, where i1, i2 =

1,m, i1 �= i2.

. . .

v({P,E1, . . . , Em}; z0P , z01 , . . . , z0m) =

= max
π∈Π

{
−T π + T πi1 +

i2∑
k=i1

T πk + . . .+

im−1∑
k=i1

T πk +

im∑
k=i1

T πk

}
=

= max
π∈Π

{
T πi1 +

i2∑
k=i1

T πk + . . .+

im−1∑
k=i1

T πk

}
.
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For simplicity denote by

T̂i1 = min
π∈Π

{
∑

kπ≤i1
T πkπ},

T̂i1i2 = min
π∈Π

{ ∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ

}
,

T̂i1i2i3 = min
π∈Π

{ ∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ +

∑
kπ≤i3

T πkπ

}
,

...

T̂i1i2...im = min
π∈Π

{
T πi1 +

i2∑
kπ=i1

T πkπ + . . .+
im−1∑
kπ=i1

T πkπ +
im∑

kπ=i1

T πkπ

}
,

T̃ = max
π∈Π

{−T π},

T̃i1 = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ

}
,

T̃i1i2 = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ

}
,

T̃i1i2i3 = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ +
∑

kπ≤i2
Tkπ +

∑
kπ≤i3

T πkπ

}
,

...

T ∗ = max
π∈Π

{
T πi1 +

i2∑
kπ=i1

T πkπ + . . .+
im−1∑
kπ=i1

Tkπ

}
.

(8)

The characteristic function v can be described in the following form

v({P}; z0P , z01 , . . . , z0m) = T̃ ,

v({Ei1}; z0P , z01 , . . . , z0m) = T̂i1 , i1 = 1,m,

v({P,Ei1}; z0P , z01 , . . . , z0m) = T̃i1 = 0, i1 = 1,m,

v({Ei1 , Ei2}; z0P , z01 , . . . , z
0
m) = T̂i1i2 , i1, i2 = 1,m, i1 �= i2,

v({P,Ei1 , Ei2}; z0P , z01 , . . . , z0m) = T̃i1i2 , i1, i2 = 1,m, i1 �= i2,

v({Ei1 , Ei2 , Ei3}; z0P , z01 , . . . , z0m) = T̂i1i2i3 , i1, i2, i3 = 1,m, i1 �= i2 �= i3,

v({P,Ei1 , Ei2 , Ei3}; z0P , z01 , . . . , z0m) = T̃i1i2i3 , i1, i2, i3 = 1,m, i1 �= i2 �= i3,
...
v({E1, . . . , Em}; z0P , z01 , . . . , z0m) = T̂1...m,
v({P,E1, . . . , Em}; z0P , z01 , . . . , z0m) = T ∗.

(9)

Here and then we will use following designation v({Ei1 , . . . , Eik}; z0P , z01 , . . . , z
0
m) =

v(Ei1 , . . . , Eik) and v({P,Ei1 , . . . , Eik}; z0P , z01 , . . . , z0m) = v(P,Ei1 , . . . , Eik)

Definition 4. The pair
〈
N, v(S; z0P , z01 , . . . , z

0
m), S ⊂ N

〉
, where N is the set of

players, and v is the characteristic function defined by (8)-(9) is called a cooperative
pursuit game in characteristic function form and denoted by Γv(z

0
P , z01 , . . . , z

0
m).

Example 1. let us construct the characteristic function for a pursuit game with a

pursuer and three evaders according to formulas (8) and (9). Let α = 1 and βi =
1

2
,

i = 1, 2, 3.
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Fix the initial positions of the players: P 0 = (0, 0), E0
1 = (1, 0), E0

2 = (−2, 4),
E0

3 = (5, 7). Note that for the chosen initial positions of the players the punishment
strategy of P is realizable. First of all, we compose a table with the players’ payoffs
for all pursuit orders πi ∈ {1, . . . , 6}.

Table 1: The players’ payoffs for different pursuit orders.

Payoff π1 = {1, 2, 3} π2 = {1, 3, 2}
KE1 T π1

1 = 2 T π2
1 = 2

KE2 T π1
12 = 2 + 9, 31 = 11, 31 T π2

132 = 2 + 13, 23 + 11, 34 = 26, 57

KE3 T π1
123 = 2 + 9, 31 + 9, 09 = 20, 4 T π2

13 = 2 + 13, 23 = 15, 23

KP T π1
P = 20, 4 T π2

P = 26, 57

π3 = {2, 3, 1} π4 = {2, 3, 1}
KE1 T π3

21 = 8, 94 + 9, 92 = 18, 86 T π4
231 = 8, 94 + 9, 7 + 9, 73 = 28, 37

KE2 T π3
2 = 8, 94 T π4

2 = 8, 94

KE3 T π3
213 = 8, 94 + 9, 92 + 26, 03 = 44, 89 T π4

23 = 8, 94 + 9, 7 = 18, 64

KP T π3
P = 44, 89 T π4

P = 28, 37

π5 = {3, 1, 2} π6 = {3, 2, 1}
KE1 T π5

31 = 17, 2 + 16, 08 = 33, 28 T π6
321 = 17, 2 + 14, 04 + 27, 23 = 58, 47

KE2 T π5
312 = 17, 2 + 16, 08 + 33, 52 = 66, 8 T π6

31 = 17, 2 + 14, 04 = 31, 24

KE3 T π5
3 = 17, 2 T π6

3 = 17, 2

KP T π5
P = 66, 8 T π6

P = 58, 47

The characteristic function, according to formulas (8) and (9), has the following
form

v(P ) = max{−20, 4; −26, 57; −44, 89; −28, 37; −66, 8; −58, 47} = −20, 4,
v(E1) = min{2; 2; 18, 86; 28, 37; 33, 28; 58, 47} = 2,
v(E2) = min{11, 31; 26, 57; 8, 94; 8, 94; 66, 8; 31, 24} = 8, 94,
v(E3) = min{20, 4; 15, 23; 44, 89; 18, 64; 17, 2; 17, 2} = 15, 23,
v(P,E1) = max{−20, 4 + 2; −26, 57 + 2; −44, 89 + 18, 86;

−28, 37 + 28, 37; −66, 8 + 33, 28;−58, 47+ 58, 47} = 0,
v(P,E2) = max{−20, 4 + 11, 31; −26, 57 + 26, 57; −44, 89 + 8, 94;

−28, 37 + 8, 94; −66, 8 + 66, 8; −58, 47 + 31, 24} = 0,
v(P,E3) = max{−20, 4 + 20, 4; −26, 57 + 15, 23; −44, 89 + 44, 89;

−28, 37 + 18, 64; −66, 8 + 17, 2; −58, 47 + 17, 2} = 0,
v(E1, E2) = min{2 + 11, 31; 2 + 26, 57; 18, 86 + 8, 94;

28, 37 + 8, 94; 33, 28 + 66, 8; 58, 47 + 31, 24} = 13, 31,
v(E1, E3) = min{2 + 20, 4; 2 + 15, 23; 18, 86 + 44, 89;

28, 37 + 18, 64; 33, 28 + 17, 2; 58, 47 + 17, 2} = 17, 23,
v(E2, E3) = min{11, 31 + 20, 4; 26, 57 + 15, 23; 8, 94 + 18, 64;

8, 94 + 44, 89; 66, 8 + 17, 2; 31, 24 + 17, 2} = 27, 58,
v(P,E1, E2) = max{−20, 4 + 2 + 11, 31; −26, 57 + 2 + 26, 57;

−44, 89 + 18, 86 + 8, 94;−28, 37+ 28, 37 + 8, 94;
−66, 8 + 33, 28 + 66, 8; −58, 47 + 58, 47 + 31, 24} = 33, 28,

v(P,E1, E3) = max{−20, 4 + 2 + 20, 4; −26, 57 + 2 + 15, 23;
−44, 89 + 18, 86 + 44, 89; −28, 37 + 28, 37 + 18, 64;

−66, 8 + 33, 28 + 17, 2;−58, 47+ 58, 47 + 17, 2} = 18, 86,



370 Yaroslavna B. Pankratova, Svetlana I. Tarashnina

v(P,E2, E3) = max{−20, 4 + 11, 31 + 20, 4; −26, 57 + 26, 57 + 15, 23;
−44, 89 + 8, 94 + 44, 89;−28, 37+ 8, 94 + 18, 64;

−66, 8 + 66, 8 + 17, 2;−58, 47+ 31, 24 + 17, 2} = 17, 2,
v(E1, E2, E3) = min{2 + 11, 31 + 20, 4; 2 + 26, 57 + 15, 23;

18, 86 + 8, 94 + 44, 89; 28, 37+ 8, 94 + 18, 64;
33, 28 + 66, 8 + 17, 2; 58, 47 + 31, 24 + 17, 2} = 33, 71,

v(P,E1, E2, E3) = max{−20, 4 + 2 + 11, 31 + 20, 4;
−26, 57 + 2 + 26, 57 + 15, 23; −44, 89 + 18, 86 + 8, 94 + 44, 89;
−28, 37 + 28, 37 + 8, 94 + 18, 64; −66, 8 + 33, 28 + 66, 8 + 17, 2;

−58, 47 + 58, 47 + 31, 24 + 17, 2} = 50, 48.

Finelly, we construct a cooperative pursuit game in the characteristic function form.
That is

v(P ) = −20, 4,
v(E1) = 2,
v(E2) = 8, 94,
v(E3) = 15, 23,
v(P,E1) = 0,
v(P,E2) = 0,
v(P,E3) = 0,
v(E1, E2) = 13, 31,
v(E1, E3) = 17, 23,
v(E2, E3) = 27, 58,
v(P,E1, E2) = 33, 28,
v(P,E1, E3) = 18, 86,
v(P,E2, E3) = 17, 2,
v(E1, E2, E3) = 33, 71,
v(P,E1, E2, E3) = 50, 48.

On this example we can see that the characteristic function of the game is super-
additive.

Further we proof that it is true for any number of evaders and any initial posi-
tions of the players.

Theorem 2. In the game Γv(z
0
P , z01 , . . . , z

0
m) the characteristic function v that is

constructed by formulas (8) and (9) is superadditive.

Proof. In order to prove the theorem we have to show that inequality

v(S) + v(T ) ≤ v(S ∪ T )

holds for all coalitions S, T ⊂ N , S ∩ T = ∅.
In fact, the following inequalities are fulfilled.

T̂i1 = min
π∈Π

{ ∑
kπ≤i1

T πkπ

}
≤ T̂i1i2 = min

π∈Π

{ ∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ

}
≤ T̂i1i2i3 =

= min
π∈Π

{ ∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ +

∑
kπ≤i3

T πkπ

}
≤ . . . ≤ T̂i1...im−1 =

= min
π∈Π

{ ∑
kπ≤i1

T πkπ + . . .+
∑

kπ≤im−1

T πkπ

}
≤

≤ T̂i1...im = min
π∈Π

{ ∑
kπ≤i1

T πkπ + . . .+
∑

kπ≤im
T πkπ

}
.
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It can be easily shown that

−T̃ = max
π∈Π

{−T π} ≤ T̃i1i2 = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ +
∑

kπ≤i2
T πkπ

}
≤ . . . ≤

≤ T̃i1...im−1 = max
π∈Π

{
−T π +

∑
kπ≤i1

T πkπ + . . .+
∑

kπ≤im−1

T πkπ

}
≤

≤ T ∗ = max
π∈Π

{
−T π + T πi1 +

i2∑
k=i1

T πk + . . .+
im−1∑
k=i1

T πk +
im∑
k=i1

T πk

}
.

So, we have
T̂i1 ≤ T̂i1i2 ≤ T̂i1i2i3 ≤ . . . ≤ T̂i1...im−1 ≤ T̂i1...im , (10)

−T̃ ≤ T̃i1i2 ≤ T̃i1i2i3 ≤ . . . ≤ T̃i1i2...im−1 ≤ T ∗. (11)

Let S = {P} and T = {Ei1}. Since T̃ = min
π∈Π

{T π} ≥ T̂i1 , we have v(P )+v(Ei1 ) =

−T̃ + T̂i1 ≤ 0 = v(P,Ei1 ), i1 = 1,m.
For S = {Ei1} and T = {Ei2} we have v(Ei1 ) + v(Ei2) = T̂i1 + T̂i2 ≤ T̂i1i2 =

v(Ei1 , Ei2), i1, i2 = 1,m, i1 �= i2. This follows from (10).
For S = {P} and T = {Ei1 , Ei2} we have v(P ) + v(Ei1 , Ei2) = −T̃ + T̂i1i2 =

= max
π∈Π

{−T π}+ min
π∈Π

⎧⎨⎩ ∑
kπ≤i1

T πkπ +
∑
kπ≤i2

T πkπ

⎫⎬⎭ =

= −T π
∗
+ min
π∈Π

⎧⎨⎩ ∑
kπ≤i1

T πkπ +
∑
kπ≤i2

T πkπ

⎫⎬⎭ ≤ −T π
∗
+
∑

kπ∗≤i1
T π

∗
kπ∗ +

∑
kπ∗≤i2

T π
∗

kπ∗ ≤

≤ max
π∈Π

⎧⎨⎩−T π +
∑
kπ≤i1

T πkπ +
∑
kπ≤i2

T πkπ

⎫⎬⎭ = T̃i1i2 = v(P,Ei1 , Ei2),

i1, i2 = 1,m, i1 �= i2.
Now consider S = {Ei1} and T = {P,Ei2}. Then

v(Ei1) + v(P,Ei2 ) = T̂i1 + T̃i2 = min
π∈Π

{ ∑
kπ≤i1

T πkπ

}
+max
π∈Π

{
−T π +

∑
kπ≤i2

T πkπ

}
=

= min
π∈Π

⎧⎨⎩ ∑
kπ≤i1

T πkπ

⎫⎬⎭− T π
∗
+
∑

kπ∗≤i2
T π

∗
kπ∗ ≤

∑
kπ∗≤i1

T π
∗

kπ∗ − T π
∗
+
∑

kπ∗≤i2
T π∗kπ∗ ≤

≤ max
π∈Π

⎧⎨⎩−T π +
∑
kπ≤i1

T πkπ +
∑
kπ≤i2

Tkπ

⎫⎬⎭ = T̃i1i2 , i1, i2 = 1,m, i1 �= i2.

For S = {P,Ei1} and T = {Ei2 , Ei3} we have
v(P,Ei1 ) + v(Ei2 , Ei3) = T̃i1 + T̂i2i3 = max

π∈Π

{
−T π +

∑
kπ ≤ i1T

π
kπ

}
+

+min
π∈Π

{ ∑
kπ≤i2

T πkπ +
∑

kπ≤i3
T πkπ

}
= −T π

∗
+
∑

kπ∗≤i1
T π

∗
kπ∗+min

π∈Π

{ ∑
kπ≤i2

T πkπ +
∑

kπ≤i3
T πkπ

}
≤

≤ −T π
∗
+
∑

kπ∗≤i1
T π

∗
kπ∗ +

∑
kπ∗≤i2

T π
∗

kπ∗ +
∑

kπ∗≤i3
T π

∗
kπ∗ ≤
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≤ max
π∈Π

⎧⎨⎩−T π +
∑
kπ≤i1

T πkπ +
∑
kπ≤i2

T πkπ +
∑
kπ≤i3

T πkπ

⎫⎬⎭ =

= T̃i1i2i3 = v(P,Ei1 , Ei2 , Ei3), i1, i2, i3 = 1,m, i1 �= i2 �= i3.

Now consider two coalitions each of which includes only evaders:El = {Ei1 , . . . , Eil}
and Es = {Ej1 , . . . , Ejs}, El

⋂
Es = ∅, ik, jq = 1,m, ik �= jq, i1 �= . . . �= il,

j1 �= . . . �= js, k = 1, l è q = 1, s. For this coalitions we get

v(Ei1 , . . . , Eil) + v(Ej1 , . . . , Ejs) = T̂i1...il + T̂j1...js =

= min
π∈Π

⎧⎨⎩ ∑
kπ≤i1

T πkπ + . . .+
∑
kπ≤il

T πkπ

⎫⎬⎭+ min
π∈Π

⎧⎨⎩ ∑
kπ≤j1

T πkπ + . . .+
∑
kπ≤js

T πkπ

⎫⎬⎭ ≤

≤ min
π∈Π

⎧⎨⎩ ∑
kπ≤i1

T πkπ + . . .+
∑
kπ≤il

T πkπ +
∑
kπ≤j1

T πkπ + . . .+
∑
kπ≤js

T πkπ

⎫⎬⎭ =

= T̂i1...ilj1...js = v(Ei1 , . . . , Eil , Ej1 , . . . , Ejs).

It remains to consider the coalitions S = {P,Ei1 , . . . , Eil} and T = {Ej1 , . . . , Ejs},
ik, jq = 1,m, ik �= jq, i1 �= . . . �= il, j1 �= . . . �= js, k = 1, l and q = 1, s.

Then
v(P,Ei1 , . . . , Eil) + v(Ej1 , . . . , Ejs) = T̃i1...il + T̂j1...js =

= max
π∈Π

⎧⎨⎩−T π +
∑
kπ≤i1

T πkπ + . . .+
∑
kπ≤il

T πkπ

⎫⎬⎭+min
π∈Π

⎧⎨⎩ ∑
kπ≤j1

T πkπ + . . .+
∑
kπ≤js

T πkπ

⎫⎬⎭ =

= −T π
∗
+
∑

kπ∗≤i1
T π

∗
kπ∗ + . . .+

∑
kπ∗≤il

T π
∗

kπ∗ + min
π∈Π

⎧⎨⎩ ∑
kπ≤j1

T πkπ + . . .+
∑
kπ≤js

T πkπ

⎫⎬⎭ ≤

≤ −T π
∗
+
∑

kπ∗≤i1
T π

∗
kπ∗ + . . .+

∑
kπ∗≤il

T π
∗

kπ∗ +
∑

kπ∗≤j1
T π

∗
kπ∗ + . . .+

∑
kπ∗≤js

T π
∗

kπ∗ ≤

≤ max
π∈Π

⎧⎨⎩−T π +
∑
kπ≤i1

T πkπ + . . .+
∑
kπ≤il

T πkπ +
∑
kπ≤j1

T πkπ + . . .+
∑
kπ≤js

T πkπ

⎫⎬⎭ =

= T̃i1...ilj1...js = v(P,Ei1 , . . . , Eil , Ej1 , . . . , Ejs).

Finally, we consider S = {P} and T = {Ei1 , Ei2 , . . . , Eim}. Hence,
v(P ) + v(Ei1 , Ei2 , . . . , Eim) = −T̃ + T̂i1i2...im =

≤ max
π∈Π

{−T π}+ min
π∈Π

{
T πi1 +

i2∑
k=i1

T πk + . . .+

im−1∑
k=i1

T πk +

im∑
k=i1

T πk

}
=
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≤ −T π
∗
+ min
π∈Π

{
T πi1 +

i2∑
k=i1

T πk + . . .+

im−1∑
k=i1

T πk +

im∑
k=i1

T πk

}
≤

≤ −T π
∗
+ T π

∗
i1 +

i2∑
k=i1

T π
∗

k + . . .+

im−1∑
k=i1

T π
∗

k +

im∑
k=i1

T π
∗

k ≤

≤ max
π∈Π

{
−T π + T πi1 +

i2∑
k=i1

T πk + . . .+

im−1∑
k=i1

T πk +

im∑
k=i1

T πk

}
=

= T ∗ = v(P,E1, . . . , Em).

This completes the proof.

It follows from the superadditivity of v that it is profitable for the players to
form the maximal coalition N and obtain the maximal total payoff that is possible
in the game.

There exist various methods for distribution of the total payoff between the
players in a cooperative TU-game. In our paper we consider the core as a solution
concept of the game.

5. The core in the game Γv(z
0
P , z0

1 , . . . , z
0
m)

Let us describe the imputation set in the game Γv(z
0
P , z01 , . . . , z

0
m). Denote by ξ =

(ξP , ξE1 , . . . , ξEm) an imputation in the game. The imputation set is defined as
follows

Ev(z
0
P , z01 , . . . , z

0
m) =

{
ξ : ξEi ≥ T̂i, i ∈ 1,m, ξP ≥ −T̃ ;

∑
i∈N

ξi = T ∗
}

. (12)

From (Bondareva, 1963) and (Shapley, 1967) follows the result. For an impu-
tation ξ to belong to the core of the game Γv(z

0
P , z01 , . . . , z

0
m) it is necessary and

sufficient that the following system of inequalities holds
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξP ≥ T̃,

ξEi1
≥ T̂i1 , i1 = 1,m,

ξP + ξEi1
≥ T̃i1 = 0, i1 = 1, m,

ξEi1
+ ξEi2

≥ T̂i1i2 , i1, i2 = 1, m, i1 �= i2,

ξP + ξEi1
+ ξEi2

≥ T̃i1i2 , i1, i2 = 1, m, i1 �= i2,

ξEi1
+ ξEi2

+ ξEi3
≥ T̂i1i2i3 , i1, i2, i3 = 1, m, i1 �= i2 �= i3,

ξP + ξEi1
+ ξEi2

+ ξEi3
≥ T̃i1i2i3 , i1, i2, i3 = 1, m, i1 �= i2 �= i3,

. . .

ξP + ξEi1
+ . . .+ ξEim−1

≥ T̃i1...im−1 , i1, . . . , im−1 = 1, m, i1 �= . . . �= im−1,

ξEi1
+ . . .+ ξEim

≥ T̂i1...im .

(13)

Denote by Cv(z
0
P , z01 , . . . , z

0
m) the core of the game Γv(z

0
P , z01 , . . . , z

0
m).

The following theorem holds.

Theorem 3. In the cooperative pursuit game Γv(z
0
P , z01 , . . . , z

0
m) there exists the

non-empty core for any initial positions of the players.
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Proof. First of all, we show that any imputation from the core satisfies the sys-
tem (13). Suppose that imputation ξ = (ξP , ξE1 , . . . , ξEm) belongs to the core
Cv(z

0
P , z01 , . . . , z

0
m). We have to show that system (13) is combined.

Summing the inequalities of system (13), we obtain

(1 + C1
m + C2

m + . . .+ Cm−1
m ) · (ξP + ξE1 + ...+ ξEm) ≥ T̃ +

m∑
k=1

T̂k+

+
m∑
k=1

T̃k + (T̂12 + T̂13 + . . .+ T̂m−1,m)︸ ︷︷ ︸
C2

m

+(T̃12 + T̃13 + . . .+ T̃m−1,m)︸ ︷︷ ︸
C2

m

+

+(T̂123 + T̂124 + . . .)︸ ︷︷ ︸
C3

m

+(T̃123 + T̃134 + . . .)︸ ︷︷ ︸
C3

m

+

(14)

+(T̂1234 + T̂1235 + . . .)︸ ︷︷ ︸
C4

m

+(T̃1234 + T̃1234 + . . .)︸ ︷︷ ︸
C4

m

+

+ . . .+ (T̂12...m−1 + T̂12...m−2m + . . .)︸ ︷︷ ︸
Cm−1

m

+(T̃12...m−1 + T̃12...m−2m + . . .)︸ ︷︷ ︸
Cm−1

m

+

+ T̂12...m︸ ︷︷ ︸
Cm

m

.

Let us consider of the left part of inequality (14). Taking into account v(N) = T ∗

and 1 + C1
m + . . .+ Cm−1

m = 2m − 1, we have

(2m − 1) · T ∗ ≥
m∑
k=1

T̂k +
m∑
k=1

T̃k

+(T̂12 + T̂13 + . . .+ T̂m−1,m)︸ ︷︷ ︸
C2

m

+(T̃12 + T̃13 + . . .+ T̃m−1,m)︸ ︷︷ ︸
C2

m

+(T̂123 + T̂124 + . . .)︸ ︷︷ ︸
C3

m

+(T̃123 + T̃134 + . . .)︸ ︷︷ ︸
C3

m

+

+(T̂1234 + T̂1235 + . . .)︸ ︷︷ ︸
C4

m

+(T̃1234 + T̃1234 + . . .)︸ ︷︷ ︸
C4

m

+

(15)

+ . . .+ (T̂12...m−1 + T̂12...m−2m + . . .)︸ ︷︷ ︸
Cm−1

m

+(T̃12...m−1 + T̃12...m−2m + . . .)︸ ︷︷ ︸
Cm−1

m

−

+T̃ + T̂1...m.

Let us consider the following of values

– T̂ji and T̃j1...ji−1ji+1...jm (m = C1
m pairs);

– T̃ji and T̂j1...ji−1ji+1...jm (m = Cm−1
m pairs);

– T̂jijk and T̃j1...ji−1ji+1...jk−1jk+1...jm (C2
m pairs);

– T̃jijk and T̂j1...ji−1ji+1...jk−1jk+1...jm (Cm−2
m pairs);

– . . .

– T̃ and T̂1...m (1 pair).
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By superadditivity of the game, we get

T̂ji + T̃j1...ji−1ji+1...jm ≤ T ∗

T̃ji + T̂j1...ji−1ji+1...jm ≤ T ∗

T̂jijk + T̃j1...ji−1ji+1...jk−1jk+1...jm ≤ T ∗

T̃jijk + T̂j1...ji−1ji+1...jk−1jk+1...jm ≤ T ∗

. . .

T̃ + T̂1...m ≤ T ∗.

The right side of (15) can be estimated as follows:

((T̂1 + T̃23...m) + . . .+ (T̂m + T̃12...m−1))︸ ︷︷ ︸
C1

m

+

+((T̂12 + T̃34...m) + . . .+ (T̂m−1,m + T̃12...m−2))︸ ︷︷ ︸
C2

m

+

+((T̂123 + T̃4...m) + . . .+ (T̂m−1m−2m + T̃1...m−3))︸ ︷︷ ︸
C3

m

+ . . .+

+((T̃123 + T̂4...m) + . . .+ (T̃m−2m−1m + T̂1...m−3))︸ ︷︷ ︸
Cm−3

m

+

(16)

+((T̃12 + T̂34...m) + . . .+ (T̃m−1,m + T̂12...m−2))︸ ︷︷ ︸
Cm−2

m

+

+(T̃1 + T̂23...m + . . . T̂m + T̂12...m−1)︸ ︷︷ ︸
Cm−1

m

+

+(T̃ + T̂1,2,...,m) ≤
≤ (C1

m + C2
m + C3

m + . . .+ Cm−1
m + Cm

m ) · T ∗.

It remans to show that the following inequality holds

(2m − 1) · T ∗ ≥ (C1
m + C2

m + C3
m + . . .+ Cm−1

m + Cm
m ) · T ∗.

If the last inequality is true then (16) is fulfilled. Taking into account that C1
m +

C2
m + C3

m + . . .+ Cm−1
m + Cm

m = 2m − 1, we get

(2m − 1) · T ∗ ≥ (2m − 1) · T ∗.

It is obvious that the last inequality holds for any m. So, inequality (15) is satisfied.
This means that inequality (14) is also satisfied for any initial positions of the
players. Hence, system (13) is combined.

It remains to show that any vector satisfying the system (13) is an imputation
of the game Γv(z

0
P , z01 , . . . , z

0
m). Indeed, it can be easily checked that the vector

η0 = (T ∗ −
m∑
i=1

T̂i, T̂1, T̂2, . . . , T̂m−1, T̂m) satisfies system (13) and is an imputation

of this game. This completes the proof.

6. Conclusion

The considered cooperative and noncooperative approaches to investigation of group
pursuit games with one pursuer and m-evaders give us various interesting solutions
and allow to look at the same problem from different points of view. This paper
extends an application area of group pursuit games.
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