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Abstract In TU–cooperative game with restricted cooperation the values
of characteristic function v(S) > 0 are defined only for S ∈ A, where A is a
collection of some nonempty coalitions of players.
We examine generalizations of both the proportional solutions of claim prob-
lem (Proportional and Weakly Proportional solutions, the Proportional Nu-
cleolus, and the Weighted Entropy solution) and the uniform losses solution
of claim problem (Uniform Losses and Weakly Uniform Losses solutions,
the Nucleolus, and the Least Square solution). These generalizations are U–
equal sacrifice solution, the U–nucleolus and qU–solutions, where U and q
are strictly increasing continuous functions.
We introduce Solidary (Weakly Solidary) solutions, where if a total share of
some coalition inA is less than its claim, then the total shares of all coalitions
in A (that don’t intersect this coalition) are less than their claims. The
existence conditions on A for two versions of solidary solution are described.
In spite of the fact that the versions of the solidary solution are larger than
the corresponding versions of the proportional solution, the necessary and
sufficient conditions on A for inclusion of the U–nucleolus in two versions
of the solidary solution coincide with conditions on A for inclusion of the
proportional nucleolus in the corresponding versions of the proportional solu-
tion. The necessary and sufficient conditions on A for inclusion qU–solutions
in two versions of the solidary solution coincide with conditions on A for in-
clusion of the Weighted Entropy solution in the corresponding versions of
the proportional solution.
Moreover, necessary and sufficient conditions on A for coincidence the U–
nucleolus with the U–equal sacrifice solution and conditions on A for coin-
cidence qU–solutions with the U–equal sacrifice solution are obtained.
Keywords: claim problem; cooperative games; proportional solution; weighted
entropy; nucleolus.

1. Introduction

A TU–cooperative game with restricted cooperation is a quadruple (N,A, c, v), where
N is a finite set of agents, A is a collection of nonempty coalitions of agents, c is
a positive real number (the amount of resourses to be divided by agents), v =
{v(T )}T∈A, where v(T ) > 0 is a claim of coalition T . We assume that A covers N
and N �∈ A.

A set of imputations of (N,A, c, v) is the set

{{yi}i∈N : yi ≥ 0,
∑
i∈N

yi = c}.

A solution F is a map that associates to any game (N,A, c, v) a subset of its set
of imputations. Then F (N,A, c, v) is a solution of (N,A, c, v). We denote y(S) =∑
i∈S yi.
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If A = {{i} : i ∈ N} then a claim problem arises, therefore, a cooperative game
with restricted cooperation can be considered as a claim problem with coalition
demands.

Solutions of claim problem and their axiomatic justifications are described in
surveys (Moulin, 2002) and (Thomson, 2003). For claim problems, the Proportional
solution, the Uniform Losses solution and their generalization Equal Sacrifice so-
lution are well known. The papers (Naumova, 2011, 2012) and this paper consider
generalizations of these solutions to games with restricted cooperation.

For claim problems, the Proportional solution, the Proportional Nucleolus, and
the Weighted Entropy solution give the same results. In the case of generalized claim
problems, the Proportional solution is the most natural generalization, but this set
can be empty for some games. The larger set is the Weakly Proportional solution,
where the ratios of total shares of coalitions to their claims are equal for disjoint
coalitions in A. This set can also be empty. The Proportional Nucleolus and the
Weighted Entropy solution are always nonempty and define uniquely total shares
of coalitions in A. These solutions can give different results.

For claim problems, the Uniform Losses solution, the nucleolus, and the Least
Square solution give the same results. For generalized claim problems, the Uniform
Losses solution and the Weak Uniform Losses solution are the most natural gen-
eralizations but they can be empty. The Nucleolus and the Least Square solution
can give different results, but each of them is always nonempty and define uniquely
total shares of coalitions in A.

Necessary and sufficient conditions on A that provide the existence of the Pro-
portional solution (Weakly Proportional solution) are obtained in (Naumova, 2011)
and these conditions coincide with conditions that provide the existence of the Uni-
form Losses solution (Weakly Uniform Losses solution).

Necessary and sufficient conditions on A that provide inclusion of the Weighted
Entropy solution in the Proportional solution are the same as conditions on A for
inclusion of the Least Square solution in the Uniform Losses solution. The same are
conditions for inclusion of the Proportional Nucleolus in the Proportional solution
and conditions for inclusion of the Nucleolus in the Uniform Losses solution. These
conditions were obtained in (Naumova, 2011). That paper also contains necessary
and sufficient conditions on A for coincidence the Weighted Entropy solution and
the Weakly Proportional solution.

The paper (Naumova, 2012) considers only generalizations of the Proportional
solution of claim problems. Generalizations of the Weighted Entropy solution that
are called g–solutions are introduced. Necessary and sufficient conditions on A for
inclusion of the g–solution in the Weakly Proportional solution are the same for all g.
These conditions permit to obtain for each g the necessary and sufficient conditions
on A for coincidence the g–solution and the Weakly Proportional solution. The
obtained conditions are the same as conditions for coincidence the Weighted Entropy
solution and the Weakly Proportional solution. The paper (Naumova, 2012) also
contains necessary and sufficient conditions on A for inclusion of the Proportional
Nucleolus in the Weakly Proportional solution. The proofs of that paper are not
suitable for obtaining conditions on A for inclusion of the Nucleolus and the Least
Square solution in the Weakly Uniform Losses solution.

In this paper we consider two topics. First, for strictly increasing continuous
functions U , we introduce U -equal sacrifice solutions that generalize both the Pro-
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portional solution and the Uniform Losses solution, U–nucleolus that generalize
both the Proportional Nucleolus and the Nucleolus, and qU–solutions that gen-
eralize both q–solutions and the Least Square solution. All results of the paper
(Naumova, 2012) concerning the proportional case are generalized. In particular,
we obtain conditions on A that provide inclusion of the Nucleolus in the Weakly
Uniform Losses solution and conditions on A that provide inclusion of the Least
Square solution in the Weakly Uniform Losses solution.

Moreover, we obtain the necessary and sufficient conditions on A that provide
coincidence of the U–nucleolus and the Weakly U–equal sacrifice solution.

Second, we introduce new solution concepts of Solidary solution ( Weakly Sol-
idary solution) that contain U–equal sacrifice solutions (Weakly U–equal sacrifice
solutions).

For almost all solutions of claim problems, if one agent gets less than its claim
then each agent gets less than its claim, i.e., the solidarity property takes place.
Two versions of Solidary solutions are obtained by generalizations of the solidarity
property to games with restricted cooperation.

In spite of the fact that the versions of the Solidary solution are larger than
the corresponding versions of the Proportional solution, the conditions on A that
ensure existence results for the versions of the Solidary solutions are the same as
for the corresponding versions in the proportional case. Moreover, the conditions
on A that provide inclusions of the U–nucleolus in the Solidary solution (Weakly
Solidary solution) are the same as conditions on A that provide inclusions of the
Proportional Nucleolus in the Proportional (Weakly Proportional) solution. The
conditions on A that provide inclusion of the qU–solution in the Solidary (Weakly
Solidary) solution are the same as conditions on A for inclusion of the Weighted
Entropy solution in the Proportional (Weakly Proportional) solution.

The paper is organized as follows. The definitions of U–equal sacrifice solu-
tions, U–nucleolus, qU–solutions, the Solidary solutions and the relations between
U–equal sacrifice solutions and the Solidary solutions are given in Section 2. Some
properties of qU–solutions that will be used in next sections are obtained in Sec-
tion 3. Conditions on A for existence the U–equal sacrifice and the Weakly U–equal
sacrifice solutions are described in Section 4. Necessary and sufficient conditions on
A for inclusion of the qU–solution in the U–equal sacrifice solution and in the Sol-
idary solution and for inclusion of the U–nucleolus in the U–equal sacrifice solution
and in the Solidary solution are obtained in Section 5. In Section 6 we describe
necessary and sufficient condition on A for inclusion the U–nucleolus in the Weakly
U—equal sacrifice solution and in the Weakly Solidary solution and necessary and
sufficient condition on A for inclusion of qU–solution in the Weakly U–equal sacri-
fice solution and in the Weakly Solidary solution. In Section 7 we describe necessary
and sufficient conditions on A for coincidence the qU–solution with the Weakly U–
equal sacrifice solution and conditions on A for coincidence the U–nucleolus with
the Weakly U–equal sacrifice solution.

2. Definitions

Definition 1. A TU–cooperative game with restricted cooperation is a quadruple
(N,A, c, v), where N is a finite set of agents, A is a collection of coalitions of
agents, N �∈ A, c is a positive real number (the amount of resourses to be divided
by agents), v = {v(T )}T∈A, where v(T ) > 0 is a claim of coalition T .
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We assume that A covers N .

Definition 2. A solution F is a map that associates to any game (N,A, c, v) a
subset of its set of imputations {{yi}i∈N : yi ≥ 0,

∑
i∈N yi = c}. We denote

y(S) =
∑
i∈S yi.

Let U be a strictly increasing continuous function defined on (0,+∞). Denote
U(0) = limt→0 U(t).

Definition 3. An imputation y = {yi}i∈N belongs to the U–equal sacrifice solution
of (N,A, c, v) iff for all S, T ∈ A, y(T ) > 0 implies U(y(T ))−U(v(T )) ≤ U(y(S))−
U(v(S)).

Definition 4. An imputation y = {yi}i∈N belongs to the Proportional solution of
(N,A, c, v) iff y(T )/v(T ) = y(S)/v(S) for all S, T ∈ A.

Definition 5. An imputation y = {yi}i∈N belongs to the Uniform Losses solution
of (N,A, c, v) iff for all S, T ∈ A, y(T ) > 0 implies y(T )− v(T ) ≤ y(S)− v(S), i.e.,
y belongs to the U–equal sacrifice solution for U(t) = t.

Definition 6. An imputation y = {yi}i∈N belongs to the Weakly U–equal sacrifice
solution of (N,A, c, v) iff for all S, T ∈ A with S ∩ T = ∅,
y(T ) > 0 implies U(y(T ))− U(v(T )) ≤ U(y(S))− U(v(S)).

Definition 7. An imputation y = {yi}i∈N belongs to the Weakly Proportional
solution of (N,A, c, v) iff for S, T ∈ A with S ∩ T = ∅, y(T )/v(T ) = y(S)/v(S).

Definition 8. An imputation y = {yi}i∈N belongs to the Weakly Uniform Losses
solution of (N,A, c, v) iff for all S, T ∈ A with S ∩ T = ∅,
y(T ) > 0 implies y(T )− v(T ) ≤ y(S)− v(S).

Remark 1. Let U(0) = −∞. Then for each x in the U–equal sacrifice solution,
U(x(Q)) − U(v(Q)) = U(x(S)) − U(v(S)) for all S,Q ∈ A. If x belongs to the
Weakly U–equal sacrifice solution, then for each S, Q in the same for each Q,S ∈ A
with Q∩P = ∅, either x(Q) = x(S) = 0 or U(x(Q))−U(v(Q)) = U(x(S))−U(v(S)).

Proof. Let x belong to the U–equal sacrifice solution. Since A covers N and x(N) >
0, there exists T ∈ A such that x(T ) > 0. For each S ∈ A, we have and U(x(T ))−
U(v(T )) ≤ U(x(S)) − U(v(S)), hence U(x(S)) > −∞ and x(S) > 0, then we get
the equality.

The case of Weakly U–equal sacrifice solution is considered similarly. 
�

Therefore, the Proportional solution coincides with the ln–equal sacrifice solution
and the Weakly Proportional solution coincides with the Weakly ln–equal sacrifice
solution.

Definition 9. An imputation y = {yi}i∈N belongs to the Solidary solution of
(N,A, c, v) iff x(Q) < v(Q) for some Q ∈ A implies x(T ) < v(T ) for all T ∈ A.

Definition 10. An imputation y = {yi}i∈N belongs to the Weakly Solidary solu-
tion of (N,A, c, v) iff x(Q) < v(Q) for some Q ∈ A implies x(T ) < v(T ) for all
T ∈ A with Q ∩ T = ∅.



320 Natalia Naumova

Proposition 1. Each U–equal sacrifice solution is contained in the Solidary solu-
tion. Each Weakly U–equal sacrifice solution is contained in the Weakly Solidary
solution.

Proof. Let y belong to the U–equal sacrifice solution of (N,A, c, v) and y(Q) < v(Q).
Then U(y(Q)) − U(v(Q)) < 0. Let T ∈ A. If y(T ) = 0, then y(T ) < v(T ), and if
y(T ) > 0, then U(y(T ))− U(v(T )) ≤ U(y(Q))− U(v(Q)) < 0, hence y(T ) < v(T ).

The case of the Weakly Solidary solution is considered similarly. 
�

Let U be a strictly increasing continuous function defined on (0,+∞).

Definition 11. Let X ⊂ Rn, f1, . . . , fk be functions defined on X . For z ∈ X , let π
be a permutation of {1, . . . , k} such that fπ(i)(z) ≤ fπ(i+1)(z), θ(z) = {fπ(i)(z)}ki=1.
Then y ∈ X belongs to the nucleolus with respect to f1, . . . , fk on X iff θ(y) ≥lex
θ(z) for all z ∈ X.

Definition 12. A vector y = {yi}i∈N belongs to the U– nucleolus of (N,A, c, v) iff
y belongs to the nucleolus w.r.t. {fT }T∈A on X , where fT (z) = U(z(T ))−U(v(T ))
and X is defined as follows. If U(0) > −∞ then X is the set of imputations of
(N,A, c, v) and if U(0) = −∞ then X is the set of imputations z of (N,A, c, v) such
that z(T ) > 0.

For each A, c > 0, v with v(T ) > 0, the U–nucleolus of (N,A, c, v) is nonempty
and defines uniquely total amounts y(T ) for each T ∈ A.

Definition 13. An imputation y = {yi}i∈N belongs to the Proportional nucleolus
of (N,A, c, v) iff y belongs to the nucleolus w.r.t. {fT }T∈A with fT (z) = z(T )/v(T )
on the set of imputations of (N,A, c, v).

The Proportional nucleolus coincides with the ln–nucleolus.

Definition 14. An imputation y = {yi}i∈N belongs to the Nucleolus of (N,A, c, v)
iff y belongs to the nucleolus w.r.t. {fT}T∈A with fT (z) = z(T )− v(T ) on the set
of imputations of (N,A, c, v).

Note that even in the case when A = 2N \ {N, ∅}, the Nucleolus of (N,A, c, v)
does not coincide with the nucleolus of the corresponding TU game because the set
of imputations in our definition does not depend on the values of singletons.

q − U–solutions
Let U be a strictly increasing continuous function defined on (0,+∞), Q(U) be a
class of strictly increasing continuous functions q defined on (−∞,+∞) such that

q(0) = 0 and lim
x→0

x∫
a

q(U(t))dt < +∞ for each a > 0.

Definition 15. A vector y = {yi}i∈N belongs to the qU–solution of (N,A, c, v) iff
y minimizes∑
S∈A

z(S)∫
v(S)

q(U(t) − U(v(S)))dt on the set of imputations of (N,A, c, v).
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Examples of qU-solutions

1. U(t) = ln t, q(t) = t, then

z(S)∫
v(S)

q(U(t)− U(v(S)))dt = z(S)[ln(z(S)/v(S))− 1] + v(S)

and the qU–solution is the Weighted Entropy solution (Naumova, 2000, 2008, 2010).
2. U(t) = ln t, q(t) = (exp(t))p−1, where p > 0, then we obtain the minimization

problem for
∑
S∈A

z(S)[ z(S)p

(p+1)v(S)p − 1] that was considered in (Yanovskaya, 2002).

3. U(t) = t = q(t), then we obtain the Least Square solution that solves the
minimization problem for

∑
T∈A

(z(T )− v(T ))2 on the set of imputations.

3. Existence rezults

The U–nucleolus and the qU–solution are always nonempty sets. Now we describe
conditions on A which ensure that U–equal sacrifice solutions, Weakly U–equal
sacrifice solutions, Solidary solutions, Weakly Solidary solutions are nonempty sets.
We found that these conditions are the same for all U and coincide with the corre-
sponding versions for Solidarity solutions.

Theorem 1. Let U be a strictly increasing continuous function defined on (0,+∞).
Then the following 3 statements are equivalent.
1. The U–equal sacrifice solution of (N,A, c, v) is nonempty for all c > 0, all v with
v(T ) > 0.
2. The Solidary solution of (N,A, c, v) is nonempty for all c > 0, all v with v(T ) > 0.
3. A is a minimal covering of N .

Proof. Let A be a minimal covering of N . Then for each S ∈ A there exists j(S) ∈
S \ ∪Q∈A\{S}Q. Denote J = {j(S) : S ∈ A}. For (N,A, c, v), take y = {yi}i∈N
such that yi = 0 for all i ∈ N \ J ,

∑
i∈N yi = c, and {yj(S)}S∈A is the U–equal

sacrifice solution of the claim problem (J, c, {v(S)}S∈A). Then y belongs to the U–
equal sacrifice solution of (N,A, c, v) and by Proposition 1, y belongs to the Solidary
solution of (N,A, c, v).

Let the Solidary solution of (N,A, c, v) be nonempty for all c > 0, all v with
v(T ) > 0. Suppose that A is not a minimal covering of N , then there exists S ∈ A
such that A \ {S} covers N . Take c > 0, v(S) > c, v(Q) = ε, where 0 < ε < c/|A|
for all Q ∈ A \ {S}. Let y belong to the Solidary solution of (N,A, c, v). Then
y(S) ≤ c < v(S) and for each Q ∈ A \ {S}, y(Q) < ε, hence

∑
i∈N yi ≤ |A|ε < c,

but this contradicts to
∑
i∈N yi = c. 
�

Now we describe conditions on A that ensure existence of Weakly U–equal sac-
rifice solutions and Weakly Solidary solutions. The following result of the author
will be used.
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Theorem 2 (Naumova, 1978, Theorem 2 or 2008 Corollary 1). Let c > 0,
I(c) = {x ∈ R|N | : xi ≥ 0, x(N) = c}, Gr be an undirected graph with the set of
nodes A, {�x}x∈I(c) be a family of relations on A, and for each K ∈ A

FK = {x ∈ I(c) : L ��x K for all L ∈ A}.

Let {�x}x∈I(c) satisfy the following 5 conditions.
1. �x is acyclic on A.
2. If K ∈ A and xi = 0 for all i ∈ K, then x ∈ FK .
3. The set FK is closed for each K ∈ A.
4. If K �x L, then K and L are adjacent in the graph Gr.
5. If a single node is taken out from each component of Gr, then the remaining
elements of A do not cover N .

Then there exists x0 ∈ I(c) such that K ��x0 L for all K,L ∈ A.

Theorem 3. Let G(A) be the undirected graph, where A is the set of nodes and
K,L ∈ A are adjacent iff K ∩ L = ∅. Let U be a strictly increasing continuous
function defined on (0,+∞). Then the following 3 statements are equivalent.
1. The Weakly solidary solution of (N,A, c, v) is a nonempty set for all c > 0, all v
with v(T ) > 0.
2. The Weakly U–equal sacrifice solution of (N,A, c, v) is a nonempty set for all
c > 0, all v with v(T ) > 0.
3. A satisfies the following condition.
C0. If a single node is taken out from each component of G(A), then the remaining
elements of A do not cover N .

Proof. Suppose that A satisfies C0. Fix (N,A, c, v). For each imputation x, consider
the following relation on A: P �x Q iff P ∩ Q = ∅, x(Q) > 0, and U(x(P )) −
U(v(P )) < U(x(Q)) − U(v(Q)). Then x0 belongs to the Weakly U–equal sacrifice
solution of (N,A, c, v) iff K ��x0 L for all K,L ∈ A. This family of relations and the
graph G(A) satisfy all conditions of Theorem 2, hence the Weakly U–equal sacrifice
solution of (N,A, c, v) is a nonempty set. In view of Proposition 1, this implies that
the Weakly Solidary solution of (N,A, c, v) is a nonempty set.

Now suppose that the Weakly Solidary solution of (N,A, c, v) is a nonempty set
for all c > 0, all v with v(T ) > 0 and let us prove that C0 is satisfied. Suppose
that A does not satisfy the condition C0. Let m be the number of components of
G(A), S1, . . . , Sm be the nodes taken out from each component of G(A) such that
A \ {S1, . . . , Sm} cover N .

Let us take c > 0, v(Si) = c for all i = 1, . . . ,m, v(Q) = ε for remaining Q ∈ A,
where ε|A| < c. Let y belong to the Weakly Solidary solution of (N,A, c, v). If
Q ∩ Si = ∅, then y(Si) > 0 implies y(Si) < v(Si), therefore y(Q) < ε for Q �= Si,
and as such Q cover N , we get y(N) ≤ |A|ε < c = y(N). This contradiction
completes the proof. 
�

4. Properties of qU–solutions

Property 1. Let U be a strictly increasing continuous function defined on (0,+∞),
U(t)→ −∞ as t → 0, q ∈ Q(U), q →∞ as t →∞, and x belong to the qU–solution
of (N,A, c, v). Then x(S) > 0 for all S ∈ A.
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Proof. Suppose that there exist (N,A, c, v), S ∈ A, and x in qU–solution of (N,A, c, v)
such that x(S) = 0. Let 0 < ε < min{xk : xk > 0}. Let

M = max
T :T∈A,x(T )>0

max
t∈[x(T )−ε,x(T )+ε]

|q(U(t)− U(v(T )))|.

Fix δ > 0 such that δ < min{ε,minT∈A v(T )} and |q(U(δ) − U(v(S)))| > 2|N |M .
Let i ∈ S, j ∈ N , xj > 0.

Take z ∈ R|N | such that zi = xi + δ, zj = xj − δ, zk = xk for k �= i, j. Then∑
T∈A

z(T )∫
v(T )

q(U(t)− U(v(T )))dt−
∑
T∈A

x(T )∫
v(T )

q(U(t)− U(v(T )))dt =

∑
T∈A:i∈T,j 	∈T

x(T )+δ∫
x(T )

q(U(t)− U(v(T )))dt−
∑

T∈A:i	∈T,j∈T

x(T )∫
x(T )−δ

q(U(t)− U(v(T )))dt.

If i �∈ T , j ∈ T then |
x(T )∫

x(T )−δ
q(U(t)− U(v(T )))dt| ≤ δM .

If T = S then
x(S)+δ∫
x(S)

q(U(t)− U(v(S)))dt =
δ∫
0

q(U(t)− U(v(S)))dt < −2|N |Mδ.

If i ∈ T , j �∈ T , x(T ) = 0, then
x(T )+δ∫
x(T )

q(U(t)− U(v(T )))dt < 0 since δ < v(T ).

If i ∈ T , j �∈ T , x(T ) > 0, then |q(U(t) − U(v(T )))| ≤ M as t ∈ [x(T ), x(T ) + δ],

hence |
x(T )+δ∫
x(T )

q(U(t)− U(v(T )))dt| ≤ δM .

Thus,∑
T∈A

z(T )∫
v(T )

q(U(t)− U(v(T )))dt−
∑
T∈A

x(T )∫
v(T )

q(U(t)− U(v(T )))dt <

(|A| − 1)δM − 2|N |Mδ < 0 and x is not in the qU–solution of (N,A, c, v). 
�

Property 2. Let U be a strictly increasing continuous function defined on (0,+∞),

q ∈ Q(U), then f(z) =
∑
Q∈A

z(Q)∫
v(Q)

q(U(t)−U(v(Q)))dt is a continuous convex function

of z defined on the set of imputations of (N,A, c, v) and for all A, c > 0, v with
v(T ) > 0, the qU–solution of (N,A, c, v) defines uniquely total amounts y(T ) for
each T ∈ A.

Proof. Let a > 0, ψ(r) =
r∫
a

q(U(t))dt for r ≥ 0. If lim
t→0

q(U(t)) > −∞, then ψ(r) is

a strictly convex function on [0,+∞). If lim
t→0

q(U(t)) = −∞, then ψ(r) is a convex

function on [0,+∞) and a strictly convex function on (0,+∞). Therefore f(z) is a
convex function of z and in view of Property 1, if y and z belong to qU–solution of
(N,A, c, v), then y(T ) = z(T ) for all T ∈ A. 
�

Property 3. Let U be a strictly increasing continuous function defined on (0,+∞),
q ∈ Q(U). Then for each x in the qU–solution of (N,A, c, v), xi > 0 implies∑

T∈A:i∈T
q(U(x(T ))− q(U(v(T ))) ≤

∑
T∈A:j∈T

q(U(x(T ))− U(v(T )))

for all j ∈ N .
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Proof. Let x belong to the qU–solution of (N,A, c, v). Note that in view of Prop-
erty 1, q(U(x(Q)) − U(v(Q))) are well defined for all Q ∈ A. Let xi > 0. Suppose
that there exists j ∈ N such that∑

T∈A:j∈T
q(U(x(T ))− U(v(T ))) <

∑
T∈A:i∈T

q(U(x(T ))− U(v(T ))).

Consider ε ≥ 0 and y(ε) ∈ R|N | such that ε < xi, y(ε)i = xi − ε, y(ε)j = xj + ε,
y(ε)k = xk for k �= i, j. Let

F (ε) =
∑
Q∈A

y(ε)(Q)∫
v(Q)

q(U(t)− U(v(Q)))dt −
∑
Q∈A

x(Q)∫
v(Q)

q(U(t) − U(v(Q)))dt,

then

F (ε) =
∑

Q∈A:i∈Q,j 	∈Q

x(Q)−ε∫
x(Q)

q(U(t)− U(v(Q)))dt+

∑
Q∈A:i	∈Q,j∈Q

x(Q)+ε∫
x(Q)

q(U(t)− U(v(Q)))dt,

F ′(0) = −
∑

Q∈A:i∈Q,j 	∈Q
q(U(x(Q)) − U(v(Q)))+∑

Q∈A:i	∈Q,j∈Q
q(U(x(Q))− U(v(Q))) < 0.

Hence, F (ε) < 0 for some ε > 0 and x does not belong to the qU–solution of
(N,A, c, v). 
�

Property 4. Let U be a strictly increasing continuous function defined on (0,+∞),
q ∈ Q(U), and x be an imputation of (N,A, c, v) such that xi > 0 implies∑

T∈A:i∈T
q(U(x(T ))− q(U(v(T ))) ≤

∑
T∈A:j∈T

q(U(x(T ))− U(v(T )))

for all j ∈ N .
Then x belongs to the qU–solution of (N,A, c, v).

Proof. For each imputation z of (N,A, c, v), let f(z) =
∑
Q∈A

z(Q)∫
v(Q)

q(U(t)−U(v(Q)))dt.

If zj > 0 for all j ∈ N then f is differentiable at z and

∂

∂zj
f(z) =

∑
T∈A:T�j

q(U(z(T ))− U(v(T ))). (1)

If z and w are imputations of (N,A, c, v) such that zj , wj > 0 for all j ∈ N , then,
in view of Property 2,

f(w) − f(z) ≥
∑
j∈N

∂f(z)

∂zj
(wj − zj). (2)

Note that if xi > 0 then for all Q  i, x(Q) > 0 and q(U(x(Q)) − U(v(Q))) are
well defined. Hence for all j ∈ N ,

∑
T∈A:T�j

q(U(x(T )) − U(v(T ))) are well defined.
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Let y be an imputation of (N,A, c, v). There exist imputations zk and wk with
positive coordinates such that lim

k→+∞
zk = x, lim

k→+∞
wk = y, then it follows from (2)

and (1) that

f(y)− f(x) ≥
∑
j∈N

(yj − xj)
∑

T∈A: T�j
q(U(x(T ))− U(v(T ))). (3)

Let xi > 0, then (1) implies∑
j∈N

xj
∑

T∈A:T�j
q(U(x(T ))− U(v(T ))) = c

∑
T∈A:T�i

q(U(x(T ))− U(v(T ))), (4)

∑
j∈N

yj
∑

T∈A: T�j
q(U(x(T ))− U(v(T ))) ≥ c

∑
T∈A: T�i

q(U(x(T ))− U(v(T ))). (5)

It follows from (3),(4), (5) that f(y)− f(x) ≥ 0, i.e., x belongs to the qU–solution
of (N,A, c, v). 
�

5. When generalized solutions satisfy solidarity properties?

We describe conditions on the collection of coalitions A that ensure the inclusion of
the U–nucleolus (qU–solution) in the U–equal sacrifice solution and in the Solidary
solution. We prove that these conditions depend neither on U nor on q and are the
same.

Theorem 4. Let U be a strictly increasing continuous function defined on (0,+∞).
Then the following 3 statements are equivalent.
1. A is a partition of N .
2. The U–nucleolus of (N,A, c, v) is contained in the U–equal sacrifice solution of
(N,A, c, v) for all c > 0, all v with v(T ) > 0.
3. The U–nucleolus of (N,A, c, v) is contained in the Solidary solution of (N,A, c, v)
for all c > 0, all v with v(T ) > 0.

Proof. Let A be a partition of N , then the U–nucleolus always coincides with the
U -equal sacrifice solution, and by Proposition 1, it is contained in the Solidary
solution.

Let the U–nucleolus be always contained in the Solidary solution. Suppose that
there exist P,Q ∈ A such that P ∩ Q �= ∅. We take the following v: v(P ) > 1,
v(T ) = ε otherwise, where ε < 1/(4|N |).

Let x belong to the U–nucleolus of (N,A, 1, v), then x(P ) < v(P ) and due to
the solidarity property this implies x(T ) < ε for all T ∈ A\{P}, hence xi < ε for all
i ∈ N \ P . As long as A covers N , x(P ) > 3/4. Since x belongs to the U–nucleolus
and AP = {T ∈ A \ {P} : T ∩ P �= ∅} �= ∅, we have xi = 0 for all i ∈ P \ ∪T∈AP T .
Then x(S) ≥ x(P )/|P | for some S ∈ AP . Therefore,

x(S) ≥ 3/(4|N |) > ε,

but this contradicts to x(S) < ε. 
�
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Theorem 5. Let U be a strictly increasing continuous function defined on (0,+∞),
q ∈ Q(U). Then the following 3 statements are equivalent.
1. A is a partition of N .
2. The qU–solution of (N,A, c, v) is contained in the U–equal sacrifice solution of
(N,A, c, v) for all c > 0, all v with v(T ) > 0.
3. The qU–solution of (N,A, c, v) is contained in the Solidary solution of (N,A, c, v)
for all c > 0, all v with v(T ) > 0.

Proof. Let A be a partition of N . Then for each imputation x of (N,A, c, v),∑
T∈A: T�i

q(U(x(T ))− U(v(T ))) = q(U(x(S)) − U(v(S))) for all S ∈ A, i ∈ S.

Let x belong to the qU–solution of (N,A, c, v), then by Property 3, x(S) > 0
for some S ∈ A implies q(U(x(S)) − U(v(S))) ≤ q(U(x(T )) − U(v(T ))) for all
T ∈ A. As q is a strictly increasing function, this implies U(x(S)) − U(v(S)) ≤
U(x(T ))−U(v(T )). Thus, x belongs to the U–equal sacrifice solution of (N,A, c, v).
Then, by Proposition 1, x belongs to the Solidary solution of (N,A, c, v).

Let the qU–solution be always contained in the Solidary solution. Suppose that
A is not a partition of N , then there exist P,Q ∈ A such that P ∩Q �= ∅. We take
the following v: v(P ) = 2, v(T ) = ε otherwise, where ε < 1/|N |.

Let x belong to the qU–solution of (N,A, 1, v). Then x(P ) < v(P ) and it follows
from the solidarity property that x(T ) < ε for all T ∈ A \ {P}, hence xi < ε for
all i ∈ N \ P . If xi ≤ ε for all i ∈ P , then x(N) ≤ ε|N | < 1, hence there exists
j0 ∈ P \ ∪T∈A\{P}T such that xj0 > ε. Let i0 ∈ P ∩Q. By Property 3,
q(U(x(P )) − U(v(P ))) =

∑
T∈A:T�j0

q(U(x(T )) − U(v(T ))) ≤∑
T∈A:T�i0

q(U(x(T ))− U(v(T ))).

Since x(T ) < v(T ) for all T ∈ A and q(0) = 0, this implies

0 ≤
∑

T∈A: T�i0 T 	=P
q(U(x(T ))− U(v(T ))) ≤ q(U(x(Q)) − U(v(Q)) < 0.

In view of this contradiction, A is a partition of N . 
�

6. When generalized solutions satisfy weak solidarity properties?

In this section we obtain conditions on the collection of coalitions A that ensure
the inclusion of the U–nucleolus in the Weakly U–equal sacrifice solution and in the
Weakly Solidary solution. We prove that these conditions coincide. We also obtain
necessary and sufficient conditions on A that ensure the inclusion of qU–solutions
in the Weakly U–equal sacrifice solution. These conditions depend neither on U nor
on q and coincide with the conditions that ensure the inclusion of the qU–solutions
in the Weakly Solidary solution.

For i ∈ N , denote Ai = {T ∈ A : i ∈ T }.

Definition 16. A collection of coalitions A is weakly mixed at N if A = ∪ki=1Bi,
where
C1) each Bi is contained in a partition of N ;
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C2) Q ∈ Bi, S ∈ Bj, and i �= j imply Q ∩ S �= ∅;
C3) for each i ∈ N , Q ∈ Ai, S ∈ A with Q ∩ S = ∅, there exists j ∈ N such that
Aj ⊃ Ai ∪ {S} \ {Q}.

Remark 2. If k ≤ 2 then C3 follows from C1 and C2.

Remark 3. If A is a weakly mixed collection of coalitions, then it satisfies the
condition C0 of Theorem 3.

Proof. Let A be weakly mixed at N . Take j0 ∈ N such that |Aj0 | ≥ |Ai| for all
i ∈ N . Let Aj0 = {Qt}t∈M , where Qt ∈ Bt, M ⊂ {1, . . . , k}.

Let St ∈ Bt for all t ≤ k. Since A is weakly mixed, there exists io ∈
⋂
t∈M St. In

view of definition of j0, Ai0 = {St : t ∈ M}. Therefore, if for each t ∈ {1, . . . , k},
St is taken out from A, then the remaining elements of A do not cover i0. 
�

Example 1. Let N = {1, 2, . . . , 5}, C = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5}},
B2 = {{1, 4}, {2, 5}},
then C is weakly mixed at N .

Example 2. N = {1, 2, . . . , 12}, A = B1 ∪ B2 ∪ B3, where
B1 = {{1, 2, 3, 4}, {5, 6, 7, 8}},
B2 = {{3, 5, 9, 10}, {4, 6, , 11, 12}},
B3 = {{1, 7, 9, 11}, {2, 8, 10, 12, 13}}.
Then A is weakly mixed at N .

Example 3. Let N = {1, 2, . . . , 6}, C = B1 ∪ B2 ∪ B3, where
B1 = {{1, 2}, {3, 4}},
B2 = {{1, 3}, {2, 4}},
B3 = {{1, 4, 5}, {2, 3, 6}},
then C satisfies C0, C1, and C2, but does not satisfy C3 (for i = 1 and Q = {1, 2}),
hence C is not weaky mixed at N .

Proposition 2. Let U be a strictly increasing continuous function defined on (0,+∞)
and the U–nucleolus of (N,A, t, v) be contained in the Weakly Solidary solution of
(N,A, t, v) for all t > 0, all v with v(T ) > 0.

Then the case P,Q, S ∈ A, P �= Q, P ∩S = Q∩S = ∅, P ∩Q �= ∅ is impossible.

Proof. Suppose that there exist P,Q, S ∈ A such that P �= Q, P ∩ S = Q ∩ S = ∅,
P ∩ Q �= ∅. Let us take the following v: v(S) = v(P ) = 1, v(T ) = ε for all T ∈
A \ {S, P}, where 0 < ε < 1/2|N |. Let j ∈ P ∩Q.

Let x belong to the U–nucleolus of (N,A, 1, v). First, we prove that x(Q) ≥
x(P )/|P |. Assume the contrary, then x(P ∩ Q) < x(P )/|P |, hence there exists
i0 ∈ P \Q such that xi0 > x(P )/|P |.

Let i0 �∈ T for all T ∈ A \ {P} then we take y ∈ R|N |: yi0 = 0, yj = xj + xi0 ,
yi = xi otherwise. Then y(P ) = x(P ), y(Q) > x(Q), y(T ) ≥ x(T ) for all T ∈ A,
hence x does not belong to the U–nucleolus.
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Let i0 ∈ T for some T ∈ A \ {P}, then T �= S and x(T ) > x(P )/|P | > x(Q).
This implies

U(x(T ))− U(v(T )) = U(x(T ))− U(ε) > U(x(Q)) − U(v(Q)).

Let z = z(δ) ∈ R|N |, zi0 = xi0 − δ, zj = xj + δ, zi = xi otherwise. If δ > 0 and δ is
sufficiently small, then for T ∈ Ai0 \ {P},

U(z(T ))− U(v(T )) > U(z(Q))− U(v(Q)) > U(x(Q))− U(v(Q)),

otherwise z(T ) ≥ x(T ), hence θ(z(δ)) >lex θ(x). Thus

x(Q) ≥ x(P )/|P |.

Weak solidarity condition for Q and S implies x(Q) < ε, hence x(P ) < ε|P |. We
consider 4 cases.

Case 1. There exists j0 �∈ P ∪ Q ∪ S such that xj0 > ε. Then for all T  j0,
x(T ) > v(T ). Let w = w(δ) ∈ R|N |, wj0 = xj0 − δ, wj = xj + δ, wi = xi otherwise.
Then for δ > 0, w(Q) > x(Q) and for sufficiently small δ, w(Q) < v(Q), and
w(T ) > v(T ) for all T  j0, hence we get θ(w(δ)) >lex θ(x), and the Case 1 is
impossible.

Case 2. xi ≤ ε for all i �∈ P ∪Q ∪ S and x(S) ≤ x(P ). Then

x(N) ≤ x(Q) + 2ε|P |+ ε|N \ (P ∪ S ∪Q)| ≤ 2ε|N | < 1

and this contradicts x(N) = 1.
Case 3. xi ≤ ε for all i �∈ P ∪ Q ∪ S and xi ≤ ε for all i ∈ S. This implies

1 = x(N) ≤ ε|N | < 1, hence this case is impossible.
Case 4. xi ≤ ε for all i �∈ P ∪Q ∪ S, x(S) > x(P ) and xi0 > ε for some i0 ∈ S.

Then x(T ) > v(T ) for T �= S, T  i0. Let y = y(δ) ∈ R|N |, yi0 = xi0−δ, yj = xj+δ,
yi = xi otherwise. Then for δ > 0, y(Q) > x(Q), y(P ) > x(P ) and for sufficiently
small δ > 0, we get θ(y(δ)) >lex θ(x). This contradiction completes the proof. 
�

Theorem 6. Let U be a strictly increasing continuous function defined on (0,+∞).
If A is a weakly mixed collection of coalitions at N then for all c > 0, all v

with v(T ) > 0, the U–nucleolus of (N,A, c, v) is contained in the Weakly U–equal
sacrifice solution of (N,A, c, v) and in the Weakly Solidary solution of (N,A, c, v).

Let, moreover, either U be a convex function or U(t) → +∞ as t → +∞.
Let the U–nucleolus of (N,A, c, v) be contained in the Weakly Solidary solution of
(N,A, c, v) for all c > 0, all v with v(T ) > 0. Then A is a weakly mixed collection
of coalitions at N .

Proof. Let A be weakly mixed at N and x belong to the U–nucleolus of (N,A, c, v).
We prove that x belongs to the Weakly U–equal sacrifice solution of (N,A, c, v).
Suppose the contrary, i.e., there exist S,Q ∈ A such that S ∩Q = ∅ and U(x(Q))−
U(v(Q)) < U(x(S)) − U(v(S)) and x(S) > 0. Take i0 ∈ S such that xi0 > 0. Since
A is weakly mixed, there exists j ∈ N such that Aj ⊃ Ai0 ∪ {S} \ {Q}. Take δ > 0
such that

U(x(Q) + δ)U(v(Q)) < U(x(S)− δ)− U(v(S))
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and δ < xi0 . Let y = {yi}i∈N , yi0 = xi0 − δ, yj = xj + δ, yt = xt otherwise.
Then y(P ) < x(P ) only for P = S and y(Q) > x(Q). Since U(y(Q)) − U(v(Q)) <
U(y(S))− U(v(S)), this contradicts the definition of the U -nucleolus. Therefore, x
belongs to the Weakly U–equal sacrifice solution of (N,A, c, v) and by Proposition 1,
x belongs to the Weakly Solidary solution of (N,A, c, v).

Let either U be is a convex function or U(t) → +∞ as t → +∞ and the
U–nucleolus be always contained in the Weakly Solidary solution. Let Bi be com-
ponents of the graph G(A) used in Theorem 3. Then A satisfies C2 by the definition
of G(A) and satisfies C1 in view of Proposition 2. Suppose that A is not weakly
mixed. Then there exist i0 ∈ N , Q ∈ Ai0 , and S ∈ A such that S ∩ Q = ∅ and
Aj �⊃ Ai0 ∪ {S} \ {Q} for all j ∈ N . Let 0 < ε < 1/|N |. We can take v with the
following properties:
v(S) = 1,
U(v(P )) > 2U(1)− U(1/|N |) for P ∈ Ai0 \ {Q},
v(T ) = ε otherwise.
Let x belong to the U–nucleolus and to the Weakly Solidary solution of (N,A, 1, v).
Since S ∩Q = ∅, x(N) = 1, and v(S) + v(Q) > 1, we have x(Q) < v(Q) = ε. There
exists j0 ∈ N such that xj0 ≥ 1/|N |. Then j0 �∈ Q and j0 �= i0.

Take δ > 0 such that δ < 1/|N | and for each T, P ∈ A,

U(x(T ))− U(v(T )) < U(x(P ))− U(v(P ))

implies
U(x(T ) + δ)− U(v(T )) < U(x(P )− δ)− U(v(P )).

Let y = {yi}i∈N , yi0 = xi0 + δ, yj0 = xj0 − δ, yi = xi otherwise.
We prove that there exists P ∈ A such that y(P ) > x(P ) and U(x(P )) −

U(v(P )) < U(x(T )) − U(v(T )) for all T ∈ A with y(T ) < x(T ) and this would
imply that x does not belong to the U–nucleolus of (N,A, 1, v). Consider 2 cases.

Case 1. j0 �∈ S. Let y(T ) < x(T ), then T  j0 and v(T ) = ε, hence

U(x(T ))− U(v(T )) ≥ U(xj0 )− Uε > 0.

Since U(x(Q))− U(v(Q)) < 0 and y(Q) > x(Q), we can take P = Q, hence x does
not belong to the U–nucleolus of (N,A, 1, v) in this case.

Case 2. j0 ∈ S. Then there exists P ∈ Ai0 \ Aj0 \ {Q}, where y(P ) > x(P ). Let
us check that

y(T ) < x(T ) implies U(x(P )) − U(v(P )) < U(x(T ))− U(v(T )).

If T = S then

U(x(S))− U(v(S)) ≥ U(1/|N |)− U(1) > U(1)− U(v(P )) ≥ U(x(P ))− U(v(P )).

If T �= S then v(T ) = ε and U(x(T )) − U(v(T )) ≥ U(xj0 ) − Uε > 0. Since U is
strictly increasing, U(v(P )) > U(1), hence U(x(P ))− U(v(P )) < 0 and U(x(P ))−
U(v(P )) < U(x(T )) − U(v(T )). Thus, x does not belong to the U–nucleolus of
(N,A, 1, v) in this case. 
�
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Corollary 1. The Proportional Nucleolus of (N,A, c, v) is contained in the Weakly
Proportional solution and in the Weakly Solidary solution of (N,A, c, v) for all c > 0,
v with v(T ) > 0 if and only if A is a weakly mixed collection of coalitions at N .

Corollary 2. The Nucleolus of (N,A, c, v) is contained in the Weakly Uniform
Losses solution and in the the Weakly Solidary solution of (N,A, c, v) for all c > 0,
v with v(T ) > 0 if and only if A is a weakly mixed collection of coalitions at N .

Definition 17. A collection of coalitions A is mixed at N if A = ∪ki=1Bi, where
C1) each Bi is contained in a partition of N ;
C2) Q ∈ Bi, S ∈ Bj, and i �= j imply Q ∩ S �= ∅;
C4) for each i ∈ N , Q ∈ Ai, S ∈ A with Q ∩ S = ∅, there exists j ∈ N such that
Aj = Ai ∪ {S} \ {Q}.

Note that if A is mixed at N then A is weakly mixed at N .

Example 4. If A is weakly mixed at N and all i ∈ N belong to the same number of
coalitions, then A is mixed at N .

Example 5. Let N = {1, 2, . . . , 6}, A = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5, 6}},
B2 = {{1, 4}, {2, 5}},
then A is mixed at N .

Example 6. Let N = {1, 2, . . . , 5}, C = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5}},
B2 = {{1, 4}, {2, 5}},
then C is weakly mixed at N but not mixed at N . (For i = 3, the condition C4 is
not realized.)

Proposition 3. Let the qU–solution of (N,A, c, v) be contained in the Weakly Sol-
idary solution of (N,A, c, v) for all c > 0, all v with v(T ) > 0. Then the case
P,Q, S ∈ A, P �= Q, P ∩ S = Q ∩ S = ∅, P ∩Q �= ∅ is impossible.

Proof. Suppose that there exist P,Q, S ∈ A such that P �= Q, P ∩ S = Q ∩ S = ∅,
P ∩Q �= ∅. Let i0 ∈ P ∩Q, A0 = {T ∈ A : i0 ∈ T, T ∩ S �= ∅}.

Let 0 < ε < 1/|N |. We take the following v:
v(T ) = 1 for T ∈ A0 ∪ {P},
v(T ) = ε otherwise.

Let x belong to the qU–solution of (N,A, 1, v). Since x satisfies the weakly
solidarity property, v(P ) + v(S) > 1, and S ∩ P = ∅, we have x(S) < v(S). Since
Q ∩ S = ∅, we have x(Q) < v(Q) = ε. There exists j0 ∈ N such that xj0 ≥ 1/|N |.
Then j0 �∈ Q and j0 �= i0.



Solidary Solutions to Games with Restricted Cooperation 331

Let j0 ∈ T , i0 �∈ T . Then T �∈ A0 ∪ {P}, hence v(T ) = ε and x(T )/v(T ) > 1.
Thus, ∑

T∈A: T�j0,T 	�i0
q(U(x(T ))− U(v(T ))) ≥ 0. (6)

Let j0 �∈ T , i0 ∈ T . If v(T ) = ε then T ∩ S = ∅ and it follows from the weak
solidarity property that x(T ) < v(T ). If v(T ) = 1, then v(T ) ≥ x(T ). Therefore∑

T∈A:T 	�j0,T�i0
q(U(x(T ))− U(v(T ))) ≤ q(U(x(Q)) − U(v(Q))) < 0. (7)

It follows from (6) and (7) that∑
T∈A:T�j0

q(U(x(T )) − U(v(T ))) >
∑

T∈A:T�i0
q(U(x(T ))− U(v(T ))),

but this contradicts Property 3. 
�

Theorem 7. Let U be a strictly increasing continuous function defined on (0,+∞),
q ∈ Q(U).

The qU–solution of (N,A, c, v) is contained in the Weakly U–equal sacrifice so-
lution and in the Weakly Solidary solution of (N,A, c, v) for all c > 0, all v with
v(T ) > 0 if and only if A is a mixed collection of coalitions at N .

Proof. Let A be a mixed collection of coalitions. Let x belong to the qU–solution
of (N,A, c, v). We prove that x belongs to the Weakly U–equal sacrifice solution of
(N,A, c, v). Suppose that there exist Q,S ∈ A such that Q ∩ S = ∅, x(Q) > 0, and
U(x(Q)) − U(v(Q)) > U(x(S)) − U(v(S)). There exists i0 ∈ Q with xi0 > 0. Since
A is mixed, there exists j0 ∈ N such that Aj0 = Ai0 ∪ {S} \ {Q}. Then∑

T∈A: T 	�j0,T�i0
q(U(x(T ))− U(v(T ))) = q(U(x(Q)) − U(v(Q))),

∑
T∈A:T�j0,T 	�i0

q(U(x(T ))− U(v(T ))) = q(U(x(S)) − U(v(S))),

hence ∑
T∈A:T�i0

q(U(x(T ))− U(v(T ))) >
∑

T∈A:T�j0
q(U(x(T ))− U(v(T ))),

but this contradicts Property 3. Thus, x belongs to the Weakly U–equal sacrifice
solution of (N,A, c, v), and due to Proposition 1, x belongs to the Weakly Solidary
solution of (N,A, c, v).

Let the qU–solution be always contained in the Weakly Solidary solution. Let Bi
be components of the graph G(A) used in Theorem 3. By the definition of G(A), A
satisfies C2. In view of Proposition 3, A satisfies C1. Suppose that A is not mixed
at N . Then there exist i0 ∈ N , Q ∈ Ai0 , and S ∈ A with S ∩ Q = ∅ such that for
each j ∈ N , Aj �= Ai0 ∪ {S} \ {Q}.



332 Natalia Naumova

Let L > 1. Since q and U are strictly increasing continuous functions, there
exists ε > 0 such that
ε < 1/|N |,
U(1)− U(1− ε|N |) ≤ U(L)− U(1),
q(U(1− ε|N |)− U(1)) + q(U(1/|N |)− U(ε)) ≥ 0.

We take the following v:
v(S) = 1,
U(v(P )) = L for P ∈ Ai0 \ {Q},
v(T ) = ε otherwise.

Let x belong to the qU–solution and to the Weakly Solidary solution of (N,A, 1, v).
Since v(S)+v(Q) > 1 and x(N) = 1, we have x(Q) < v(Q) = ε. There exists j0 ∈ N
such that xj0 ≥ 1/|N |. Then j0 �∈ Q. We shall prove that there exists j1 ∈ N such
that xj1 > 0 and∑

T∈A:T�i0
q(U(x(T ))− U(v(T ))) <

∑
T∈A:T�j1

q(U(x(T ))− U(v(T ))), (8)

and this would contradict Property 3 of qU–solutions.
The following 3 cases are possible.

1. There exists j1 �∈ S such that xj1 ≥ ε.
2. xj < ε for all j �∈ S and Ai0 \ Aj0 �= {Q}.
3. xj < ε for all j �∈ S and Ai0 \ Aj0 = {Q}.

Case 1. Since v(P ) > 1 for all P ∈ Ai0 \ {Q},∑
T∈Ai0\Aj1

q(U(x(T ))− U(v(T ))) ≤ q(U(x(Q)) − U(v(Q))) < 0.

Since j1 �∈ S, x(T ) ≥ v(T ) = ε for all T ∈ Aj1 \ Ai0 , therefore,∑
T∈Aj1\Ai0

q(U(x(T ))− U(v(T ))) ≥ 0,

this implies (8).
Case 2. We have x(S) ≥ 1− ε|N | and j0 ∈ S. There exists P 0 ∈ Ai0 \Aj0 \ {Q},

then
∑

T∈Ai0\Aj0

q(U(x(T ))− U(v(T ))) ≤ q(U(x(Q)) − U(v(Q)))+

q(U(x(P 0))− (v(P 0))) < q(U(x(P 0))− U(v(P 0))).
If T ∈ Aj0 \ Ai0 then either T = S or x(T ) > v(T ) = ε, therefore∑

T∈Aj0\Ai0

q(U(x(T ))− U(v(T ))) ≥ q(U(x(S)) − U(v(S))).

Since U(1− ε|N |)− U(1) ≥ U(1)− U(L), we get

q(U(x(S))−U(S)) ≥ q(U(1−ε|N |)−U(1)) ≥ q(U(1)−U(L)) ≥ q(U(x(P 0))−U(v(P 0)))

and this implies (8) for j1 = j0.
Case 3. Since Ai0\Aj0 = {Q} andAj0 �= Ai0∪{S}\{Q}, there exists T0 ∈ A\Ai0

such that j0 ∈ T0 and T0 �= S. Then∑
T∈Ai0\Aj0

q(U(x(T ))− U(v(T ))) = q(U(x(Q)) − U(v(Q))) < 0,
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In view of x(S) ≥ 1− ε|N |, x(T0) ≥ 1/|N |, v(T0) = ε, and restrictions on ε, we have∑
T∈Aj0\Ai0

q(U(x(T ))− U(v(T ))) ≥ q(U(x(S)) − U(v(S)))+

q(U(x(T0))− U(v(T0))) ≥ q(U(1− ε|N |)− U(1)) + q(U(1/|N |)− U(ε)) ≥ 0.
Thus, we obtain (8) for j1 = j0. 
�

Corollary 3. The Weighted Entropy solution of (N,A, c, v) is contained in the
Weakly Proportional solution and in the Weakly Solidary solution of (N,A, c, v)
for all c > 0, all v with v(T ) > 0 if and only if A is a mixed collection of coalitions
at N .

Corollary 4. The Least Square solution of (N,A, c, v) is contained in the Weakly
Uniform Losses solution and in the Weakly Solidary solution of (N,A, c, v) for all
c > 0, all v with v(T ) > 0 if and only if A is a mixed collection of coalitions at N .

7. When different U–generalizations give the same result?

In this section necessary and sufficient conditions on A that provide the coincidence
of the U–nucleolus with the Weakly U–equal sacrifice solution and conditions on
A that provide the coincidence of the qU–solution with the Weakly U–equal sac-
rifice solution. These conditions are the same for all U and q ∈ Q(U). The result
concerning qU–solutions is a generalization of the corresponding results concern-
ing the Weighted Entropy solution (Naumova, 2011, Theorem 4) and g–solutions
(Naumova, 2012, Theorem 4), but the proof of this paper also permits to solve the
problem of coincidence the Least Square solution with the Uniform Losses solution.
The result concerning the U–nucleolus is completely new.

Definition 18. A collection of coalitions A is totally mixed at N if A = ∪ki=1P i,
where P i are partitions of N and for each collection {Si}ki=1 (Si ∈ P i), we have
∩ki=1Si �= ∅.

Example 7. Let N = {1, 2, 3, 4}, C = B1 ∪ B2, where
B1 = {{1, 2}, {3, 4}},
B2 = {{1, 3}, {2, 4}},
then C is a totally mixed collection of coalitions at N .

Theorem 8. Let U be a continuous strictly increasing function defined on (0,+∞)
and either U is a convex function or U(t)→ +∞ as t → +∞. Then the U–nucleolus
of (N,A, c, v) coincides with the Weakly U–equal sacrifice solution of (N,A, c, v) for
all c > 0, all v with v(T ) > 0 if and only if A is a totally mixed collection of coalitions
at N .

Proof. Let A be totally mixed at N . Then A is weakly mixed at N and it follows
from Theorem 4 that the U–nucleolus of (N,A, c, v) is always contained in the
Weakly U–equal sacrifice solution of (N,A, c, v). Since in this case for all x in the
Weakly U–equal sacrifice solution of (N,A, c, v), x(S) are uniquely defined, this
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implies coincidence of the U–nucleolus and the Weakly U–equal sacrifice solution
of (N,A, c, v).

Now suppose that the Weakly U–equal sacrifice solution of (N,A, c, v) coincides
with the U–nucleolus of (N,A, c, v) for all c > 0, all v with v(T ) > 0. Note that for
each x in the U–nucleolus of (N,A, c, v),

xi > 0 and Aj ⊃ Ai imply Aj = Ai. (9)

By Proposition 2, A =
⋃k
i=1 Bi, where Bi are subsets of partitions of N . If

each Bi is a partition P i of N then by Theorem 2, for each collection {Si}ki=1 with
Si ∈ P i, we have ∩ki=1Si �= ∅, so A is totally mixed at N .

Let some Bi be not a partition of N . Then without loss of generality, there exists
q < k such that ∪qi=1Bi does not cover N and ∪qi=1Bi ∪Bj covers N for each j > q.
Denote N0 =

⋃
S∈∪q

i=1Bi S. We consider 2 cases.
Case 1. For each j = q + 1, . . . , k, there exists Sj ∈ Bj, such that if Sj is taken

out from Bj for each j = q + 1, . . . , k, then the remaining elements of ∪kj=q+1Bj
cover (N \N0).

We prove that for each y in the U–nucleolus of (N,A, t, v), y(N \ N0) = 0.
Suppose that there exist x in the U–nucleolus of (N,A, t, v) and j0 ∈ N \N0 such
that xj0 > 0. Let Aj0 = {Qi}i∈M , then Qi ∈ Bi, i ∈ {q + 1, . . . , k}. Since A is
weakly mixed by Theorem 4, there exists j1 ∈ N such that Aj1 ⊃ {Si}i∈M .

If Aj1 = {Si}i∈M , then j1 ∈ N \N0 by the definition of N0, hence the Case 1
is impossible.

Let Aj1 �= {Si}i∈M . Since A is weakly mixed, there exists j2 ∈ N such that
Aj2 ⊃ Aj1 ∪ {Qi}i∈M \ {Si}i∈M . Then Aj2 ⊃�= Aj0 , but this contradicts (9).

Take ṽ(S) = |S|/|N | for all S ∈ A, x̃i = 1/|N | for all i ∈ N , then x̃ belongs
to the Weakly U–equal sacrifice solution of (N,A, 1, ṽ) Proportional solution of
(N,A, 1, ṽ) and x̃(N \ N0) > 0. By the proved above, x̃ does not belong to the
U–nucleolus of (N,A, 1, ṽ), hence Case 1 is impossible.

Case 2. If Sj ∈ Bj is taken out from Bj, for all j = q + 1, . . . , k, then the
remaining elements of ∪kj=q+1Bj do not cover N \N0.

For each j = q + 1, . . . , k, Sj ∈ Bj, we have Sj ∩ (N \N0) �= ∅. Indeed, suppose
that Sj0 ⊂ N0 for some j0 > q. Then if we take Sj0 and arbitrary Sj ∈ Bj for j > q,
j �= j0 out from ∪kj=q+1Bj, the remaining elements of ∪kj=q+1Bj cover N \N0 as if
{N0} ∪ Bj0 covers N .

Let
C = {(N \N0) ∩ S : S ∈ Bj, |Bj| > 1, j > q}.

Note that P, S ∈ ∪kj=q+1Bj, P �= S, P ∩ (N \ N0) ∈ C imply P ∩ (N \ N0) �=
S ∩ (N \N0).

Indeed, suppose that P ∩(N \N0) = S∩(N \N0). There exists P 1 ∈ A such that
P ∩P 1 = ∅. If we take S, P 1 and arbitrary Sj ∈ Bj for j > q with P �∈ Bj out from
∪kj=q+1Bj, the remaining elements of ∪kj=q+1Bj cover N \ N0 because {N0} ∪ Bj0
covers N , where Bj0  S, but this is impossible in the considered case.

For arbitrary problem (N,A, c, v), where A is under the Case 2, consider the
problem (N \ N0, C, c, w), where w(T ) = v(S) for T = S ∩ (N \ N0) ∈ C. As was
proved above, w is well defined. Under the Case 2, due to Theorem 2, there exists
y in the Weakly U–equal sacrifice solution of (N \N0, C, c, w). Let x ∈ R|N |, xi = 0
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for i ∈ N0, xi = yi for i ∈ N \N0, then x belongs to the U–equal sacrifice solution
of (N,A, c, v) and x(T ) = 0 for all T ∈

⋃q
i=1 Bi.

Take c = 1 and ṽ(S) = |S|/|N | for all S ∈ A, x̃i = 1/|N | for all i ∈ N . As
was proved above, there exists z in the Weakly U–equal sacrifice solution of of
(N,A, 1, ṽ) with x(T ) = 0 for some T ∈ A. If U(0) = −∞, z does not belong to
the U–nucleolus by the definition of the U–nucleolus. Let U(0) > −∞. We have
U(z(T ))−U(ṽ(T )) < 0 and U(x̃(S))−U(ṽ(S)) = 0 for all S ∈ A, hence z does not
belong to the U–nucleolus of (N,A, 1, ṽ). Thus, Case 2 is impossible. 
�

Corollary 5. The Proportional Nucleolus of (N,A, c, v) coincides with the Weakly
Proportional solution of (N,A, c, v) for all c > 0, v with v(T ) > 0 if and only if A
is a totally mixed collection of coalitions at N .

Corollary 6. The Nucleolus of (N,A, c, v) coincides with the Weakly Uniform Losses
solution of (N,A, c, v) for all c > 0, v with v(T ) > 0 if and only if A is a totally
mixed collection of coalitions at N .

Theorem 9. Let U be a strictly increasing continuous function defined on (0,+∞),
q ∈ Q(U).

The qU–solution of (N,A, c, v) coincides with the Weakly U–equal sacrifice so-
lution of (N,A, c, v) for all c > 0, v if and only if A is a totally mixed collection of
coalitions at N .

Proof. Let A be totally mixed at N . Then A is mixed at N and it follows from
Theorem 7 that the qU–solution of (N,A, c, v) is always contained in the Weakly
U–equal sacrifice solution of (N,A, c, v). Since x(S) are uniquely defined for all x
in the Weakly U–equal sacrifice solution of (N,A, c, v), this implies coincidence of
the qU–solution and the Weakly U–equal sacrifice solution of (N,A, c, v).

Now suppose that the Wealky U–equal sacrifice solution of (N,A, c, v) coincides
with the qU–solution of (N,A, c, v) for all c > 0, all v with v(T ) > 0. By Propo-
sition 3, A =

⋃k
i=1 Bi, where Bi are subsets of partitions of N . If each Bi is a

partition P i of N then by Theorem 3, for each collection {Si}ki=1 with Si ∈ P i, we
have ∩ki=1Si �= ∅, so A is totally mixed at N .

Let some Bi be not a partition of N . Then without loss of generality, there exists
p < k such that ∪pi=1Bi does not cover N and ∪pi=1Bi ∪Bj covers N for each j > p.
Denote N0 =

⋃
S∈∪p

i=1Bi S. We consider 2 cases.
Case 1. For each j = p + 1, . . . , k, there exists Sj ∈ Bj, such that if Sj is taken

out from Bj for all j > p, then the remaining elements of ∪kj=p+1Bj cover (N \N0).
Let j0 ∈ N \ N0, Aj0 = {Qi}i∈M , then Qi ∈ Bi, i ∈ {p + 1, . . . , k}. Since

A is mixed by Theorem 7, there exists j1 ∈ N such that Aj1 = {Si}i∈M , then
j1 ∈ N \N0, hence Case 1 is impossible.

Case 2. If Sj ∈ Bj is taken out from Bj, j = p + 1, . . . , k, then the remaining
elements of ∪kj=q+1Bj do not cover N \N0.

For each j = p+ 1, . . . , k, Sj ∈ Bj, we have Sj ∩ (N \N0) �= ∅. Indeed, suppose
that Sj0 ⊂ N0 for some j0 > p. Then if we take Sj0 and arbitrary Sj ∈ Bj for j > p,
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j �= j0 out from ∪kj=p+1Bj, the remaining elements of ∪kj=p+1Bj cover N \N0 as if
{N0} ∪ Bj0 covers N .

Let
C = {(N \N0) ∩ S : S ∈ Bj, |Bj| > 1, j > p}.

Note that P, S ∈ ∪kj=p+1Bj, P �= S, P ∩ (N \ N0) ∈ C imply P ∩ (N \ N0) �=
S ∩ (N \N0).

Indeed, suppose that P ∩(N \N0) = S∩(N \N0). There exists P 1 ∈ A such that
P ∩P 1 = ∅. If we take S, P 1 and arbitrary Sj ∈ Bj for j > p with P �∈ Bj out from
∪kj=p+1Bj, the remaining elements of ∪kj=p+1Bj cover N \ N0 because {N0} ∪ Bj0
covers N , where Bj0  S, but this is impossible in the considered case.

For arbitrary problem (N,A, c, v), where A is under the Case 2, consider the
problem (N \ N0, C, c, w), where w(T ) = v(S) for T = S ∩ (N \ N0) ∈ C. As was
proved above, w is well defined. Under the Case 2, due to Theorem 3, there exists
y in the Weakly U–equal sacrifice solution of (N \N0, C, c, w). Let x ∈ R|N |, xi = 0
for i ∈ N0, xi = yi for i ∈ N \N0, then x belongs to the Weakly U–equal sacrifice
solution of (N,A, c, v), x(N0) = 0.

Let ṽ(S) = |S|/|N | for all S ∈ A, x̃i = 1/|N | for all i ∈ N , then x̃ belongs to the
U–equal sacrifice solution of (N,A, 1, ṽ) as if U(x̃(S)) − U(ṽ(S)) = 0 for all S ∈ A
and x̃(N0) > 0. By Property 2 of qU–solutions, for z in the qU–solution, z(S) are
uniquely defined at each S ∈ A, but 0 = x(T ) �= x̃(T ) > 0 for T ∈ Bp. Thus, in
Case 2, qU–solution does not coincide with the Weakly U–equal sacrifice solution
for some problem. 
�
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