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Abstract A non-cooperative four-person game which is related to the queue-
ing system M/M/2 is considered. There are two competing stores and two
competing transport companies which serve the stream of customers with
exponential distribution with parameters μ1 and μ2 respectively. The stream
forms the Poisson process with intensity λ. The problem of pricing and de-
termining the optimal intensity for each player in the competition is solved.
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1. Introduction

A non-cooperative four-person game which is related to the queueing system M/M/2
is considered. There are two competing stores P1 and P2 and two competing trans-
port companies C1 and C2 which serve the stream of customers with exponential
distribution with parameters μ1 and μ2 respectively. The stream forms the Pois-
son process with intensity λ.. Suppose that λ < μ1 + μ2. Let shops declare the
price for the produced product. After that transport companies declare the price
of the service and carry passengers to the store, and the company C1 carries pas-
sengers to P1, when the company C2 carries passengers to P2. Customers choose
the service with minimal costs. This approach was used in the Hotelling’s duopoly
(Hotelling, 1929; D’Aspremont et al., 1979; Mazalova, 2012) to determine the equi-
librium price in the market. But the costs of each customer are calculated as the
price of the product and transport charges. In this model, costs are calculated as
the sum of prices for services and product plus losses of staying in the queue. Thus,
the incoming stream is divided into two Poisson flows with intensities λ1 and λ2,
where λ1+λ2 = λ. So the problem is following, what price for the service, the price
for the product and the intensity of services is better to announce for the companies
and shops. Such articles as (Altman and Shimkin, 1998; Levhari and Luski, 1978;
Hassin and Haviv, 2003; Mazalova, 2013; Koryagin, 2008; Luski, 1976) are devoted
to the similar game-theoretic problems of queuing processes.

Game-theoretic model of pricing. Consider the following game. Players P1 and P2

declare the price for the produced product p1 and p2 respectively. The customers
have to use a transport to get to the shop. There are two competing transport com-
panies C1 and C2 which serve the stream of customers with exponential distribution
with parameters μ1 and μ2 respectively. The transport companies declare the price
of the service c1 and c2 respectively and carry passengers to the store, and the com-
pany C1 carries passengers to P1, when the company C2 carries passengers to P2.
So the customers choose the service with minimal costs, and the incoming stream
is divided into two Poisson flows with intensities λ1 and λ2, where λ1 + λ2 = λ. In
this case the costs of each customer will be
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ci + pi +
1

μi − λi
, i = 1, 2,

where 1/(μi−λi) is the expected time of staying in a queueing system (Saati, 1961).
Then the intensities of the flows λ1 and λ2 = λ− λ1 for the corresponding services
can be found from

c1 + p1 +
1

μ1 − λ1
= c2 + p2 +

1

μ2 − λ2
. (1)

So, the payoff functions for each player are

H1(c1, c2, p1, p2) = λ1c1, H2(c1, c2, p1, p2) = λ2c2,

K1(c1, c2, p1, p2) = λ1p1, K2(c1, c2, p1, p2) = λ2p2.

We are interested in the equilibrium in this game.

Symmetric model. Let start from the symmetric case, when the services are the
same, i. e. μ1 = μ2 = μ. Assuming that the stores fixed their prices p1 and p2, let
us find the the equilibrium behavior for the transport companies. The equation (1)
for the intensity λ1 is

c1 + p1 +
1

μ− λ1
= c2 + p2 +

1

μ− λ+ λ1
. (2)

Differentiating (2) by c1 we can find

1 +
1

(μ− λ1)2
dλ1

dc1
= − 1

(μ− λ+ λ1)2
dλ1

dc1
,

from which

dλ1

dc1
= −

(
1

(μ− λ1)2
+

1

(μ− λ+ λ1)2

)−1

. (3)

Now we can find Nash equilibrium strategies c∗1 and c∗2 for fixed p1, p2 and c2,
i. e. we can find the maximum of H1(c1, c2, p1, p2) by c1. The first order condition
for the maximum of payoff function is

dH1(c1, c2, p1, p2)

dc1
= λ1 + c1

dλ1

dc1
= 0,

wherefrom

c∗1 =
λ1

dλ1

dc1

. (4)

substituting (3) to (4), we will get

c∗1 = λ1

(
1

(μ− λ1)2
+

1

(μ− λ+ λ1)2

)
. (5)

For another transport company it is
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c∗2 = λ2

(
1

(μ− λ1)2
+

1

(μ− λ+ λ1)2

)
. (6)

Now we can find the Nash equilibrium for players P1 and P2. Let us find the
maximum of K1(c1, c2, p1, p2) by p1 when p2 is fixed, assuming that transport com-
panies use the equilibrium strategies. The first order condition for the maximum of
payoff function is

dK1(c1, c2, p1, p2)

dp1
= λ1 + p1

dλ1

dp1
= 0,

from where

p∗1 =
λ1

dλ1

dp1

.

substituting the equilibrium prices of the transport companies (5)-(6) to (2) and
differentiating it by p1, we will get

dλ1

dp1
= −

(
3

(μ− λ1)2
+

3

(μ− λ+ λ1)2
+ (2λ1 − λ)

( 2

(μ− λ1)3
− 2

(μ− λ+ λ1)3
))−1

.

(7)
So,

p∗1 = λ1

(
3

(μ− λ1)2
+

3

(μ− λ2)2
+ (2λ1 − λ)

( 2

(μ− λ1)3
− 2

(μ− λ2)3
))

.

For another store it is

p∗2 = λ2

(
3

(μ− λ1)2
+

3

(μ− λ2)2
+ (2λ2 − λ)

( 2

(μ− λ2)3
− 2

(μ− λ1)3
))

.

Thus we get the system of equations that defines the equilibrium prices as transport
companies and stores.

c1 + p1 +
1

μ− λ1
= c2 + p2 +

1

μ− λ2

c∗1 = λ1

(
1

(μ− λ1)2
+

1

(μ− λ2)2

)
c∗2 = λ2

(
1

(μ− λ1)2
+

1

(μ− λ2)2

)
p∗1 = λ1

(
3

(μ− λ1)2
+

3

(μ− λ2)2
+ (2λ1 − λ)

( 2

(μ− λ1)3
− 2

(μ− λ2)3
))

p∗2 = λ2

(
3

(μ− λ1)2
+

3

(μ− λ2)2
+ (2λ2 − λ)

( 2

(μ− λ2)3
− 2

(μ− λ1)3
))

λ1 + λ2 = λ.

Using the symmetry of the problem, the solution of this system is
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λ1 = λ2 =
λ

2

c∗1 = c∗2 =
λ

(μ− λ
2 )

2
(8)

p∗1 = p∗2 =
3λ

(μ− λ
2 )

2

It is easy to check, that the second order condition for the maximum of payoff
function is also satisfied.

d2H1

dc21
= 2

dλ1

dc1
+ c1

d2λ1

dc21
.

d2K1

dp21
= 2

dλ1

dp1
+ p1

d2λ1

dp21
.

Differentiating (3) by c1 and (7) by p1 we find

d2λ1

dc21
=

(
dλ1

dc1

)[
2

(μ− λ1)3
− 2

(μ− λ+ λ1)3

]
.

d2λ1

dp21
=

(
dλ1

dp1

)[
10

(μ− λ1)3
− 10

(μ− λ+ λ1)3
+ (2λ1 − λ)

( 6

(μ− λ1)4
+

6

(μ− λ+ λ1)4

]
.

In the equilibrium λ1 = λ/2, from which d2λ1

dc21
= 0 è d2λ1

dp21
= 0. So,

d2H1(c
∗
1, c

∗
2, p

∗
1, p

∗
2)

dc21
= 2

dλ1

dc1
= −

(
μ− λ

2

)2

< 0.

d2K1(c
∗
1, c

∗
2, p

∗
1, p

∗
2)

dp21
= 2

dλ1

dp1
= −

(
μ− λ

2

)2
3

< 0.

So, if one of the players uses the strategy (8), the maximum of payoff of another
player is reached at the same strategy. That means that this set of strategies is
equilibrium.

Asymmetric model. Let us assume now, that transport services are not equal, i. e.
μ1 �= μ2, suppose that μ1 > μ2. Let us find the equilibrium in the pricing problem
in this case. Let us fix p1, p2 and c2 and find the best reply of the player C1. As
well as in the symmetric case we get

dH1(c1, c2, p1, p2)

dc1
= λ1 + c1

dλ1

dc1
= 0,

wherefrom
c∗1 =

λ1

dλ1/dc1
.

Differentiating (1),we find

c∗1 = λ1

(
1

(μ1 − λ1)2
+

1

(μ2 − λ2)2

)
.
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For another transport company it is

c∗2 = λ2

(
1

(μ1 − λ1)2
+

1

(μ2 − λ2)2

)
.

Table 1: The value of (c∗1, c∗2), (p∗1, p∗2) and (λ1, λ2) at λ = 10

μ2

μ1 6 7 8 9 10

(c∗1;c∗2) (10;10)
6 (p∗1;p∗2) (30;30)
(λ1; λ2) (5;5)
(c∗1;c∗2) (5,918;5,804) (2,5;2,5)

7 (p∗1;p∗2) (17,035;16,707) (7,5;7,5)
(λ1; λ2) (5,049;4,951) (5;5)
(c∗1;c∗2) (4,953;4,797) (1,781;1,743) (1,11;1,11)

8 (p∗1;p∗2) (13,636;13,208) (5,26;5,15) (3,33;3,33)
(λ1; λ2) (5,08;4,92) (5,053;4,947) (5;5)
(c∗1;c∗2) (4,553;4,375) (1,494;1,437) (0,866;0,848) (0,625;0,625)

9 (p∗1;p∗2) (12,165;11,689) (4,3;4,136) (2,597;2,533) (1,875;1,875)
(λ1; λ2) (5,1;4,9) (5,097;4,903) (5,054;4,946) (5,5)
(c∗1;c∗2) (4,342;4,15) (1,346;1,276) (0,743;0,713) (0,514;0,503) (0,4;0,4)

10 (p∗1;p∗2) (11,371;10,869) (3,781;3,586) (2,176;2,088) (1,535;1,502) (1,2;1,2)
(λ1; λ2) (5,113;4,887) (5,132;4,868) (5,103;4,897) (5,055;4,945) (5;5)

Now we can find the best replies for the P1 and P2.
dKi(c1, c2, p1, p2)

dpi
= λi + pi

dλi
dpi

= 0, i = 1, 2,

from which
p∗i =

λi
dλi/dpi

i = 1, 2.

Using the same arguments as in the symmetric model, we obtain the system of
equations that determine the equilibrium prices as transport companies and stores.

c1 + p1 +
1

μ1 − λ1
= c2 + p2 +

1

μ2 − λ2

c∗1 = λ1

(
1

(μ1 − λ1)2
+

1

(μ2 − λ2)2

)
c∗2 = λ2

(
1

(μ1 − λ1)2
+

1

(μ2 − λ2)2

)
p∗1 = λ1

(
3

(μ1 − λ1)2
+

3

(μ2 − λ2)2
+ (2λ1 − λ)

( 2

(μ1 − λ1)3
− 2

(μ2 − λ2)3
))

p∗2 = λ2

(
3

(μ1 − λ1)2
+

3

(μ2 − λ2)2
+ (2λ2 − λ)

( 2

(μ2 − λ2)3
− 2

(μ1 − λ1)3
))

λ1 + λ2 = λ.
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In Table 1 the values of the equilibrium prices with different μ1, μ2 at λ = 10 and
are given.

2. Conclusion

It is seen from the table, that the higher the intensity of service of one transport
company is, the higher payoff this transport company and the store, which is con-
nected to this company, get. So, they can increase the price of the service and the
price for the product.
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