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Abstract A game-theoretic model of territorial environmental production
under Cournot competition is studied. The process is modeled as cooperative
differential game with coalitional structure. The Nash equilibrium in the
game played by coalitions is computed and then the value of each coalition
is allocated according to some given mechanism between its members. The
numerical example is given.
Keywords: optimal control, nonlinear system, dynamic programming.

1. Introduction

A game-theoretic model of territorial environmental production is considered. The
model is based on the research of Petrosyan and Zaccour (2003). In the paper of
Petrosyan and Zaccour (2003) the international environmental agreement is mod-
eled, which provides a time-consistent allocation of total costs for all players under
which the pollution is reduced.

The model of territorial environmental production is an extension of above
mentioned model (Petrosyan and Zaccour, 2003). The region market is considered,
where all firms produce homogeneous product under Cournot competition. The pro-
duction process damages to the environment. Emission of each player is proportional
to its output. Any firm has three types of costs: production costs, abatement costs
and damage costs.

We consider the voluntary approach to environmental regulation, which became
popular in a series of countries. The cooperation of firms leads to increase their
profits and decrease of pollution, but the price of product is increased.

The approach of this paper is different. The more general coalitional setting
is considered, when not only the grand coalition, but also a coalitional partition
of players can be formed. This kind of approach was considered before in . Coali-
tional values for static games have been studied in a series of papers (Bloch, 1966;
Owen, 1997). In a recent contribution, Owen (1997) proposed a characterization of
the Owen value for static games under transferable utility. Owen (1997) defined the
coalitional value for static simultaneous games with transferable payoffs by gener-
alizing the Shapley value to a coalitional framework. In particular, the coalitional
value was defined by applying the Shapley value first to the coalition partition and
then to cooperative games played inside the resulting coalitions. This approach as-
sumed that coalitions in the first level can cooperate (as players) and form the
grand coalition. The game played with coalition partitioning becomes cooperative
one with specially defined characteristic function: The Shapley value computed for
this characteristic function is then the Shapley-Owen value for the game.
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The present paper emerges from idea that it is more natural not to assume
that coalitions on the first level can form a grand coalition. At first step the Nash
equilibrium in the game played by coalitions is computed. Secondly, the value of
each coalition is allocated according to the Shapley value in the form of PMS-vector,
that was derived in the paper of Petrosyan and Mamkina (2006) . The approach
was considered earlier in (Kozlovskaya et al., 2010). The main result of this paper
is the calculation of this solution (PMS-vector). The main result of the paper is
construction the dynamic PMS-value in the model of territorial environmental
production.

2. Problem Statement

Consider a region market with n firms which produce for simplicity the same prod-
uct. Let I be the set of firms involved in the game: I = {1, 2, . . . , n}.

Denote by qi = qi(t) the output of firm i at the instant of time t. The price of
the product p = p(t) is defined as follows

p(t) = a− bQ(t) , (1)

where a > 0, b > 0, Q(t) =
n∑
i=1

qi(t) – the total output. The price function p(t) is

inverse demand function:

Q = Q(t) =
a− p(t)

b
.

The production cost of any firm equals

Ci(qi(t)) = cqi(t), c > 0, i ∈ I.

The game Γ (s0, t0) starts at the instant of time t0 from the initial state s0, where
s0 = s(t0) is the stock of pollution at time t0. Let us denote by ei(t) the emission
of firm i at time t. The emission of firms are linear subject to output:

ei(qi(t)) = αqi(t), α > 0. (2)

Denote by ēi maximum permissible emission for firm i:

0 ≤ ei(qi(t)) ≤ ēi. (3)

We get from (3) that maximal permissible output of firm i is equal to

qmaxi =
ēi
α

,

then maximal permissible total output equals

Qmax =
ē

α
,

where ē =
n∑
i=1

ēi. Suppose the parameters of model are such that the following

inequality is true

a− c− b

α
ē ≥ 0,
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which guarantees the nonnegativity of price (1).
Denote by s = s(t) the total stock of accumulated pollution by time t. The

dynamics of pollution accumulation is defined by the following differential equation:

ṡ(t) = α
n∑
k=1

qi(t)− δs(t),

s(t0) = s0, (4)

where δ is the rate of pollution absorption, α > 0 is a known parameter. Any firm
has two types of costs, which are not directly connected with the production process:
abatement costs and damage costs. The abatement costs at moment of time t equals

Ei(qi(t)) =
γ

2
ei(t)(2ēi − ei(t)) =

γ

2
αqi(2ēi − αqi),

γ > 0, 0 ≤ ei(t) ≤ ēi.

The cost function Ei(qi) increases and reaches the maximum at qi = qmaxi . The
function Ei(qi) is concave. Damage costs depends on the stock of pollution:

Di(s(t)) = πis(t), πi > 0, i ∈ I.

The firm i tries to maximize the profit

Πi(s0, t0; q) =
∞∫
t0

e−ρ(t−t0){pqi − Ci(qi)−Di(s)− Ei(qi)}dt, (5)

where q = q(t) = (q1(t), q2(t), . . . , qn(t)), t ≥ t0 is trajectory of production output,
0 < ρ < 1 is a discount rate, p is defined by (1).

3. Coalitional Solution

Let Δ = (S1, S2, . . . , Sm) be the partition of the set I, such that Si∩Sj = ∅,
m⋃
i=1

Si =

I, |Si| = ni,
m∑
i=1

ni = n.

Denote by M the set M = {1, 2, . . . , ,m}.
Suppose that each firm i from I is playing in interests of coalition Sk, to which

it belongs, trying to maximize the sum of payoffs of its members, i.e.

max
qj∈Sk

∑
j∈Sk

Πj(s0; q) =

= max
qj∈Sk

∞∫
t0

e−ρ(t−t0)
∑
j∈Sk

{pqj − Cj(qj)−Dj(s)− Ej(qj)}dt,
(6)

where q = q(t) = (q1(t), q2(t), . . . , qn(t)), t ≥ t0 – trajectory of production output,
0 < ρ < 1 – discount rate.

Without loss of generality it can be assumed that coalitions Sk are acting as
players. Then at first stage the Nash equilibrium is computed. The total cost of
coalition Sk is allocated among the players according to Shapley value of corre-
sponding subgame Γ (Sk). The game Γ (Sk) is defined as follows: let Sk be the set
of players involved in the game Γ (Sk) , Γ (Sk) is a cooperative game.
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Definition 1. The vector

PMS(x, t) = [PMS1(x, t), PMS2(x, t), . . . , PMSn(x, t)],

is a PMS-vector, where PMSi(x, t) = Shi(Sk, x, t), if i ∈ Sk, where

Shi(Sk, x, t) =
∑

M⊃i,M⊂Sk

(nk −m)!(m− 1)!

nk!
[V (M,x, t)− V (M\{i}, x, t)]

and (S1, S2, . . . , Sm) is the partition of the set I.

3.1. The Construction of Coalitional Solution
Step 1. Computation of the Nash equilibrium in the game of coalitions Sk, k ∈ M .

Each firm i from I is playing in interests of coalition Sk, to which it belongs,
trying to maximize the sum of payoffs of its members (6).
The Nash equilibrium in the game of coalitions is computed by the solution of
the following system:

max
qj∈Sk

∑
j∈Sk

Πj(s0; q) = max
qj∈Sk

∞∫
t0

e−ρ(t−t0)
∑
j∈Sk

{pqj−

−Cj(qj)−Dj(s)− Ej(qj)}dt k ∈ M,

(7)

subject to equation dynamics (4).
Step 2. Computation of the characteristic function and the Shapley value in the game

ΓSk

V (s0), k = 1, 2, . . . ,m. Computation of the characteristic function isn’t stan-
dard ( Petrosyan and Zaccour, 2003): when the characteristic function is calcu-
lated for K, the left-out players stick to their Nash strategies

Step 3. Construction of the PMS-vector.
Payoffs of all players i ∈ I forms a PMS-vector (Petrosyan and Mamkina, 2006).
PMS(s0) = (PMS1(s0), PMS2(s0), . . . , PMSn(s0)), PMSi(s0) = ShSk

i (s0),
where ShSk(s0) is the Shapley value in the game ΓSk

V (s0)

The Nash equilibrium is calculated with the help of Hamilton-Jacobi-Bellman
equation (Dockner et al., 2000). The total cost of coalition Sk is allocated among
the players according to Shapley value of corresponding subgame Γ (Sk). The game
Γ (Sk) is defined as follows: let Sk be the set of players involved in the game Γ (Sk)
, Γ (Sk) is a cooperative game.

Computation of the characteristic function of this game isn’t standard. When the
characteristic function is computed for the coalition K ∈ Sk, the left-out players
stick to their Nash strategies. Payoffs of all players i ∈ I forms a PMS-vector
(Petrosyan and Mamkina, 2006).

3.2. The Nash Equilibrium in the Game of Coalitions
The solution of the system (7) is equivalent to the solution if the system of Hamilton-
Jacobi-Belman equations

ρWSk
= max
qj ,j∈Sk

{
∑
j∈Sk

(qj(a− bQ)− cqj − πjs +
γα

2
qj(αqj − 2ēj))+

+
∂WSk

∂s
(αQ − δs)}, k ∈ M,

(8)
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where Q =
∑
j∈I

qj , Wsk is the Bellman function subject to equation od dynamics

(4). By the first Step to find the Nash equilibrium, consider the system (8).
Differentiating with respect to qi, i ∈ Sk the right hand side of the equation (8)

leads to

a− bQ− b
∑
j∈Sk

qj − c + γα2qi − γαēi + α
∂WSk

∂s
= 0, i ∈ I, k ∈ M. (9)

Let us denote QSk
=
∑
j∈Sk

qj .Then Q =
m∑
j=1

QSj , the system (9) is obtained in the

following form

a− b
m∑
j=1

QSj − bQSk
− c+ γα2qi − γαēi + α

∂WSk

∂s
= 0, i ∈ I, k ∈ M. (10)

Summing equations (10) with respect to Sk gives

nk(a− c− b

m∑
j=1

QSj )−nkbQSk
+γα2QSk

−γαēSk +αnk
∂WSk

∂s
= 0, k ∈ M, (11)

where ēSk =
∑
j∈Sk

ēj . Solving (11) subject to QSk
, find

QSk
=

nk(a− c− bQ)− γαēSk + αnk
∂WSk

∂s

bnk − α2γ
, k ∈ M. (12)

Summing (12) with respect to the set M leads to

Q =

m∑
j=1

nj(a− c− bQ)− γαēSj + αnj
∂WSj

∂s

bnj − α2γ
=

=

m∑
j=1

nj(a− c+ α
∂WSj

∂s )− γαēSj

bnj − α2γ
−Q

m∑
j=1

bnj
bnj − α2γ

,

then one can find:

Q =

m∑
j=1

nj(a− c+ α
∂WSj

∂s )− γαēSj

bnj − α2γ

1 +
m∑
j=1

bnj
bnj − α2γ

. (13)

Substituting (13) in (12) gives the formula for QSk
. Then solving (9) leads to:

qi =
ēi
α
− 1

α2γ
(a− c− bQ− bQSk

+ α
∂WSk

∂s
), i ∈ Sk (14)
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It can be shown by the usual way that the Bellman function

WSk
= ASk

x+BSk
, k = 1, 2, . . . ,m, (15)

satisfies the Hamilton-Jacobi-Bellman equation (8) [13]. One can notice that

∂WSk

∂x
= ASk

. (16)

Substituting (15) and (16) in formula (14) gives:

q̂i =
ēi
α
− 1

α2γ
(a− c− bQ̂− bQ̂Sk

+ αASk
), i ∈ Sk,

where

Q̂Sk
=

nk(a− c− bQ)− γαēSk + αnkASk

bnk − α2γ
, k ∈ M,

and

Q̂ =

m∑
j=1

nj(a− c+ αASj )− γαēSj

bnj − α2γ

1 +
m∑
j=1

bnj
bnj − α2γ

,

it means that

qni =

⎧⎪⎨⎪⎩
q̂i, q̂i ∈ [0, ēiα ]
ēi
α , q̂i >

ēi
α

0, q̂i < 0

i ∈ I. (17)

Substituting (15) and (16) into the formula (8) leads to:

ρASk
s+ ρBSk

= Qn
Sk
(a− c−Qn)−

∑
j∈Sk

πjs+

+
γα

2

∑
j∈Sk

qnj (αqnj − 2ēj) +ASk
(αQn − δs), k ∈ M.

(18)

From (18), we get the coefficients ASk
and BSk

:

ASk
= −

∑
j∈Sk

πj

ρ+ δ

BSk
=

1

ρ

(
Qn
Sk
(a− c− bQn) +ASk

Qn +
γα

2

∑
j∈Sk

qnj (αqnj − 2ēj)
)
,

(19)

where qni is defined by the formula (17), and

Qn
Sk

=
∑
j∈Sk

qnj , k ∈ M, (20)

Qn =
∑
j∈M

Qn
Sj

, (21)
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3.3. Computation of the Characteristic function
Computation of the characteristic function of this game is not standard. When the
characteristic function is computed for the coalition K ⊂ I, we suppose that the
left-out players have used their Nash equilibrium strategies. The advantage of this
approach is the following: such characteristic function is easier to compute. This
approach requires to solve only one equilibrium problem, all others being standard
dynamic optimization problems, while standard approach requires to solve 2n − 2
equilibrium problems, which are harder then a dynamic optimization one. But this
approach has a limitation, because in general the characteristic function is not
superadditive. The superadditivity of the characteristic function was considered in
(Kozlovskaya et al., 2010; Zenkevich and Kozlovskaya, 2010).

Suppose that for parameters of the model the following conditions hold:

1

b(n+ 1)− α2γ

(
a− c− bα(A− γē)

b− α2γ

)
≤ 1

b− α2γ

( b

α
ēi − αAi

)
,

ēi
α

+
1

2bn− α2γ
(a− c+ αA− 2b

α
ē) ≥ 0, i ∈ I,

(22)

where

ē =
∑
j∈I

ēj ,

A = −

∑
j∈I

πj

ρ+ δ
.

Conditions (22) are the sufficient conditions of superadditivity of the characteristic
function.

Computation of th Nash equilibrium in the game ΓSk

V (s0) To find the Nash
equilibrium the system of Hamilton-Jacobi-Bellman equations must be solved:

max
ei

Πi(s; q) = max
ei

∞∫
t

e−ρ(τ−t){pqi − Ci(qi)−Di(s)− Ei(qi)}dτ , i ∈ Sk. (23)

The solution of the system (23) is equivalent to the solution of the system of
Hamilton-Jacobi-Bellman equations.

ρWi = max
qi
{qi(a− bQ)− cqi−πis+

γα2

2
q2i − γαēiqi+

+
∂Wi

∂s
(αQ − δs)}, i ∈ Sk.

(24)

Differentiaiting the right hand side (24) with respect to qi and equating to 0 leads
to

a− bQ− bqi − c+ γα2qi − γαēi + α
∂Wi

∂s
= 0, i ∈ Sk

Recall that players from I\Sk stick to the strategies (17), where Qn
Sj

is defined
by the formula (20)
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a− b
∑

j∈M\{k}
Qn
Sj
− bQsk − bqi − c + γα2qi − γαēi + α

∂Wi

∂s
= 0, i ∈ Sk (25)

Summing (25) by Sk gets

nk(a− c− b
∑

j∈M\{k}
Qn
Sj
)− nkbQsk − bQSk

+ γα2QSk
− γαēSk + α

∑
j∈Sk

∂Wj

∂s
= 0,

We obtain

QN
Sk

=

nk(a− c− b
∑

j∈M\{k}
Qn
Sj
)− γαēSk + α

∑
j∈Sk

∂Wj

∂s

b(nk + 1)− α2γ
. (26)

One can find from (25), that

qNi =
ēi
α

+
1

b− α2γ
(a− c− b

∑
j∈M\{k}

Qn
Sj
− bQSk

+ α
∂Wi

∂s
− b

α
ēi). (27)

On account of (22), 0 ≤ qNi ≤ ēi
α . The Bellman functions have the linear form:

Wi = Ais+Bi, i ∈ Sk. (28)

Substituting (28) into (24), we obtain

ρAis + ρBi = qNi (a− c− b
∑

j∈M\{k}
Qn
Sj
− bQN

Sk
)− πis+

+
γα

2
qNi (αNi − 2ēi) +Ai(α(

∑
j∈M\{k}

Qn
Sj

+QN
Sk
)− δs)

(29)

from (29) one can find

Ai = − πi
ρ+ δ

Bi =
1

ρ
(qNi (a− c− b

∑
j∈M\{k}

Qn
Sj
− bQN

Sk
) +

γα

2
qNi (αNi − 2ēi)+

+αAi(
∑

j∈M\{k}
Qn
Sj

+QN
Sk
)),

(30)

where Qn
Sj

is defined by (3.2.), qNi is defined by (3.3.) and

QN
Sk

=

nk(a− c− b
∑

j∈M\{k}
Qn
Sj
)− γαēSk + αASk

b(nk + 1)− α2γ
,

qNi =
ēi
α

+
1

b− α2γ
(a− c− b

∑
j∈M\{k}

Qn
Sj
− bQN

Sk
+ αAi −

b

α
ēi).
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Computation of the characteristic function for the intermidiate coalition
L in the game ΓSk

V (s0) Let L ∈ Sk, |L| = l, |Sk| = nk. Players from L maximize

max
qi,qi∈L

Πi(s; q) = max
qi,qi∈L

∞∫
t

e−ρ(t−τ){pqi − Ci(qi)−Di(s)− Ei(qi)}dτ, (31)

on the assumption of the left-out players stick to their Nash equilibrium strategies
qNi . The solution of (31) is equivalent to the solution of the following Hamilton-
Jacobi-Bellman equation.

ρWL = max
qj∈L

{
∑
j∈L

qj(a− bQ)− c
∑
j∈L

qj −
∑
j∈L

πjs+

+
γα2

2

∑
j∈L

q2j − γα
∑
j∈L

ējqj +
∂WL

∂s
(αQ − δs)}.

(32)

Differentitating the right hand side of (32) with respect to qi and equating to 0
gives:

a− c− bQ− b
∑
j∈L

qj + γα2qi − γαēi + α
∂WL

∂s
= 0. (33)

Suppose the players from I\Sk stick to qni (17) and t he players from Sk\L stick to
qNi (3.3.), so from (33) it can be obtained

a− c− b
∑

j∈M\{k}
Qn
Sj
− b

∑
j∈Sk\{L}

qNj − 2b
∑
j∈L

qj + γα2qi− γαēi+α
∂WL

∂s
= 0. (34)

By the same way it can be found:

qL =
∑
j∈L

qLj =

l(a− c− b(
∑

j∈M\{k}
Qn
Sj

+
∑

j∈Sk\{L}
qNj ))− γαēL + αAL

2bl− α2γ
, (35)

and then

qLi =
ēi
α

+
1

b− α2γ
(a− c− b(

∑
j∈M\{k}

Qn
Sj

+
∑

j∈Sk\{L}
qNj + qL) +αAL−

b

α
ēL). (36)

Because of the condition (22), 0 ≤ qLi ≤ ēi
α . The characteristic function is defined

by the following formula:
WL = ALs +BL, (37)

where

AL =−

∑
j∈L

πj

ρ + δ

BL =
1

ρ
(qL(a− c− b(

∑
j∈M\{k}

Qn
Sj

+
∑

j∈Sk\{L}
qNj + qL)))+

+
γα

2

∑
j∈L

qLj (αqLj − 2ēj)+αAL(
∑

j∈M\{k}
Qn
Sj

+
∑

j∈Sk\{L}
qNj + qL).
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3.4. Characteristic function
We have proved that characteristic function of the game ΓSk

V (s0) is given by the
following formula:

V (K, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, K = ∅,
Wi(s), K = {i},
WSk

(s), K = Sk,

WL(s), K = L,

where Wi(s), WL(s), WSk
(s) is defined by (15), (37), (28).

3.5. The PMS-vector in the game ΓSk

V (s0)

Let sn(t), t ≥ t0 be the coaltiotnal trajectory, and players from coalition Sk players
are agreed to divide the total payoff V (Sk, s0) according to Shapley value:

Sh(s) = (Sh1(s), Sh2(s), . . . , Shn(s)),

where SHi(s) is defined by (38). The structure of the Shapley value is the following

Shi(s
n(t)) = Ais

n(t) +Bshi, (38)

4. The Numerical Example of the Coalitional Solution

All computations were executed in MAPLE 10.

4.1. Parameters of the Model
Consider the game of territorial environmental production of 7 players:
I = {1, 2, 3, 4, 5, 6, 7}. Let the parameters of the model be the following:
t0 = 0 – the initial instant of time ,
s0 = 0 – the initial stock of pollution,

p(t) = 8000− 10
7∑
i=1

qi(t) - the price function,

c = 3 – specific production costs,
ρ = 0.07 – discount rate,
α = 4 – coefficient that characterizes the specific emission volume,
δ = 0.2 – natural rate of pollution absorption,
γ = 0.055 – abatement costs coefficient
ē = (600, 450, 510, 480, 550, 410, 430) - maximum permissible emissions,
π = (4.7, 5.3, 5, 5.1, 4.8, 5.2, 5.05) - damage costs coefficients.
It follows from (2) and (3) that maximum permissible outputs of players are equal
to

qmax = (150, 112.5, 127.5, 120, 137.5, 102.5, 107.5)

4.2. Results
Consider the following cases:

1. the Nash equilibrium
2. full cooperation
3. coalitional partition Δ1 = ({1, 2, 3}, {4, 5}, {6, 7})
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4. coalitional partition Δ2 = ({1, 2}, {3, 4}, {5, 6, 7})

5. coalitional partition Δ3 = ({1, 2, 3, 4}, {5, 6, 7})

6. coalitional partition Δ4 = ({1, 2}, {3, 4}, {5}, {6}, {7})

7. coalitional partition Δ5 = ({1, 2, 3, 4}, {5}, {6}, {7})

Table 1: Results

max NE COO Δ1 Δ2 Δ3 Δ4 Δ5

p -575 1085.99 4292.47 2155.02 2156.65 2869.6 2098.54 3173.57
q1 150 96.64 80.46 82.34 117.6 85.3 79.7 56.29
q2 112.5 99.28 42.96 44.84 80.1 47.8 42.2 18.79
q3 127.5 98.32 57.96 59.84 102.9 62.8 65 33.79
q4 120 98.89 50.46 90.21 95.4 55.3 57.5 26.29
q5 137.5 97.68 67.96 107.7 84.5 109 135.7 137.5*
q6 102.5 100.41 32.96 97.28 49.5 74 102.5* 102.5*
q7 107.5 100.17 37.96 102.3 54.5 79 107.5* 107.5*

The first string of the table contains the prices of product in all 7 cases. The price
of product is the highest in the case off full cooperation, the price is the lowest, when
the players compete. The dynamics of pollution in any of 7 cases are the following:

sN (t) = 13828.02− 13828.02e−02t,

sI(t) = 7415.07− 7415.07e−02t,

sΔ1(t) = 11689.95− 11689.95e−02t,

sΔ2(t) = 11686.7− 11686.7e−02t,

sΔ3(t) = 10260.8− 10260.8e−02t,

sΔ4(t) = 11802.9− 11802.9e−02t,

sΔ5(t) = 9652.9− 9652.9e−02t.

Functions sΔ1(t), sΔ2(t) sΔ4(t) are almost coincides, so let us denote it by sΔ1(t)
(Pic. 1). The emissions are maximin in the case of competition at any t and minimum
in the case of cooperation. On Fig. 2-8 profits of any player are represented. The
profit is lowest in the Nash equilibrium (competitive case) for any player. On Fig.
9 and 10 the profit functions of players in the case of cooperation and competition
are represented. On Fig. 11-15 the the profit functions of players in the case of
coalitional partitions are represented.
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Appendix

V ({1}, sN(t)) = 443161.9+ 240710e−0.2t

V ({2}, sN(t)) = 410614.1+ 271439e−0.2t

V ({3}, sN(t)) = 436648.3+ 256074.5e−0.2t

V ({4}, sN(t)) = 434696.7+ 261196e−0.2t

V ({5}, sN(t)) = 454212 + 245831.5e−0.2t

V ({6}, sN(t)) = 460253.9+ 266317.5e−0.2t

V ({7}, sN(t)) = 479901 + 258635.2e−0.2t

Sh1(s
I(t)) = 2596830.2+ 129041.3e−0.2t

Sh2(s
I(t)) = 2534222.5+ 145514.7e−0.2t

Sh3(s
I(t)) = 2633017.4+ 137278e−0.2t

Sh4(s
I(t)) = 2643934.6+ 140023.6e−0.2t

Sh5(s
I(t)) = 2630935.5+ 131786.9e−0.2t

Sh6(s
I(t)) = 2693927.9+ 142769.1e−0.2t

Sh7(s
I(t)) = 2704317.1+ 138650.8e−0.2t

PMS1
1(s

1(t)) = 1004458.7+ 203491.8e−0.2t

PMS1
2(s

1(t)) = 9836653.3+ 229469.5e−0.2t

PMS1
3(s

1(t)) = 1019834.5+ 216480.6e−0.2t

PMS1
4(s

1(t)) = 2116292.1+ 220810.2e−0.2t

PMS1
5(s

1(t)) = 2116722+ 207821.4e−0.2t

PMS1
6(s

1(t)) = 2135539.1+ 225139.9e−0.2t

PMS1
7(s

1(t)) = 2149420.1+ 218645.4e−0.2t

PMS2
1(s

2(t)) = 2098449.6+ 203435.1e−0.2t

PMS2
2(s

2(t)) = 2106725.7+ 229405.6e−0.2t

PMS2
3(s

2(t)) = 2110817.6+ 216420.4e−0.2t

PMS2
4(s

2(t)) = 2116851.4+ 220748.8e−0.2t

PMS2
5(s

2(t)) = 1004927.8+ 207763.6e−0.2t

PMS2
6(s

2(t)) = 1021950.9+ 225077.2e−0.2t

PMS2
7(s

2(t)) = 1052447.7+ 218584.6e−0.2t

PMS3
1(s

3(t)) = 1618274.1+ 1786139e−0.2t

PMS3
2(s

3(t)) = 1620465.4+ 2014156.7e−0.2t

PMS3
3(s

3(t)) = 1634972.8+ 1900147.8e−0.2t

PMS3
4(s

3(t)) = 1638652.2+ 1938150.8e−0.2t

PMS2
5(s

3(t)) = 2698271.6+ 1824141.9e−0.2t

PMS3
6(s

3(t)) = 2740960.6+ 1976153.7e−0.2t

PMS3
7(s

3(t)) = 2289477+ 1919149.3e−0.2t
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PMS4
1(s

4(t)) = 912508.3+ 205458.4e−0.2t

PMS4
2(s

4(t)) = 893504 + 231687e−0.2t

PMS4
3(s

4(t)) = 941322.5+ 218572.7e−0.2t

PMS4
4(s

4(t)) = 879177.1+ 222944.2e−0.2t

PMS4
5(s

4(t)) = 3133855.8+ 209829.8e−0.2t

PMS4
6(s

4(t)) = 2125635.4+ 2273156.4e−0.2t

PMS4
7(s

4(t)) = 2294008.6+ 2207584.7e−0.2t

PMS5
1(s

5(t)) = 718845.5+ 168031.3e−0.2t

PMS5
2(s

5(t)) = 702952+ 189482.1e−0.2t

PMS5
3(s

5(t)) = 724518+ 178756.7e−0.2t

PMS5
4(s

5(t)) = 724522.1+ 182331.8e−0.2t

PMS5
5(s

5(t)) = 5447153.4+ 171606.4e−0.2t

PMS5
6(s

5(t)) = 3859509.6+ 185907e−0.2t

PMS5
7(s

5(t)) = 4100063.7+ 180544.2e−0.2t

Fig. 1: Dynamics of pollution
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Fig. 2: Profit functions of 1st player Fig. 3: Profit functions of 2nd player

Fig. 4: Profit functions of 3st player Fig. 5: Profit functions of 4nd player

Fig. 6: Profit functions of 5st player Fig. 7: Profit functions of 6nd player
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Fig. 8: Profit functions of 7st player

Fig. 9: Profit functions of player in the
Nash equilibrium

Fig. 10: Profit functions of player in the
cooperation

Fig. 11: Profit functions of player in the
case Δ1

Fig. 12: Profit functions of player in the
case Δ2
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Fig. 13: Profit functions of player in the
case Δ3

Fig. 14: Profit functions of player in the
case Δ4

Fig. 15: Profit functions of player in the case Δ5
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