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Abstract We investigate a noncooperative differential game with two play-
ers. Each player has his own random terminal time. After the first player
leaves the game, the remaining one continues and gets the final reward for
winning. An example is introduced where two firms compete in extracting
a unique nonrenewable resource over time. The optimal feedback strategy,
i.e. the optimal extraction rate, is calculated in a closed form.
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1. Introduction

In the last decades many economic models have been investigated with the precious
help of the tools provided by differential game theory (see Dockner et al., 2000,
Jørgensen and Zaccour, 2007). Both deterministic and stochastic approaches have
been widely developed in a wide range of different frameworks.

This paper aims to analyze a class of models of differential games with 2 players.
In particular, we consider a framework where the terminal instants of the game are
random variables having different cumulative distribution functions. The first player
which stops the game is the loser, whereas the remaining player gets a terminal
reward and keeps playing. In this case the game collapses into a optimal control
problem.

We are going to fully characterize the structure of the game and to determine
its dynamic equilibrium structure. Finally, we will feature an example which is a
modification of the standard model of extraction (see Rubio, 2006), with linear
state dynamics and a logarithmic payoff structure. It will be completely discussed
and its optimal feedback solution will be exhibited.

2. Game Formulation

There are two players which participate in differential game Γ (t0, x0). The game
Γ (x0) with dynamics

ẋ = g(t, x, u1, u2), x ∈ Rn, ui ∈ U ⊆ compRl, (1)
x(t0) = x0

starts from initial state x0 at the time instant t0. But here we suppose that each
player has a distinct terminal time. The payoff of the game is composed of two com-
ponents: the integral payoff achieved while playing, and the final reward, assigned
to the player which stays alive after the retirement of its rival;
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Let T1 and T2 be the independent random variables denoting the respective
terminal instants of the players, and assume that their c.d.f. F1(·), F2(·) and their
p.d.f. f1(·) and f2(·) are known. Random variables aren’t bounded from above, i.e.
Tk ∈ [t0; +∞),
k = 1, 2.

Suppose, that for all feasible controls of players, participating the game, there
exists a continuous at least piecewise differentiable and extensible on [t0,∞) solution
of a Cauchy problem (1).

Denote the instantaneous payoff of player i at the time τ , τ ∈ [t0,∞) by
hi(τ, x(τ), u1, u2), or briefly hi(τ). Suppose, that for all feasible controls of play-
ers which participate the game, the instantaneous payoff function of each player is
bounded, piecewise continuous function of time τ (piecewise continuity is treated
as following: function hi(τ) could have only finitely many point of discontinuity on
each interval [t0, t] and bounded on this interval).

Thereby, the function hi(τ) is Riemann integrable on every interval [t0, t], in

other words for every t ∈ [t0,∞) there exists an integral
t∫
t0

hi(τ)dτ .

So, we have that the expected integral payoff of the player i can be represented
as the following mathematical expectation:

Ii(t0, x0, u1, u2) = E

[∫ min{T1,T2}

t0

hi(t)dt

]
, (2)

where E[·] is the mathematical expectation of a function of a random vector (T1, T2).
Moreover, we suppose that at the final (random) moment of the game, if player

i is the only one remaining in the game, he receives the terminal payoff Φi(x(T )),
where Φi(x(T )) are continuous functions on Rm. Then the expected terminal payoff
of the player i can be evaluated as:

Si(t0, x0, u1, u2) = E
[
Φi(x(Tj))I[Ti>Tj ]

]
, (3)

where I[·] is the indicator function and E[·] is the mathematical expectation of a
function of a random vector (T1, T2).

Then the total expected payoff of the player i is:

Ki(t0, x0, u1, u2) = E

[∫ min{T1,T2}

t0

hi(t)dt + Φi(x(T ))I[Ti>Tj ]

]
. (4)

3. Transformation of expected payoff

The total expected payoff (4) is difficult to use in order to find solutions of the
game. The standard methods of solution, such as Pontryagin’s maximum principle
or finding the solution of Hamilton-Jacobi-Bellman equatoin, can not be applied.
We need to transform the payoff (4) into the standard integral functional for infinite-
horizon differential games.

3.1. Expected integral payoff

At first consider the expected integral payoff (2). We could rewrite it in the following
form by the definition of mathematical expectation
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Ii(t0, x0, u1, u2) =

∫ ∫ min{τ1,τ2}

t0

hi(t)dt dFT1,T2(τ1, τ2), (5)

where FT1,T2(τ1, τ2) is the cumulative distribution function of the random vector
(T1, T2).

Consider the following function of the random vector:

T = min{T1, T2}.

Since the function min{} is a measurable function, then T is a random variable
(Borovkov, 1999). Denote by F (t) the cumulative distribution function of the ran-
dom variable T . Using the cumulative distribution functions of the random variables
T1, T2, we can write the expression for F (t) in an explicit
form (Kostyunin et al., 2011)

F (t) = 1− (1 − F1(t))(1 − F2(t))

Mathematical expectation (5) could be represented in the
equivalent form (Borovkov, 1999)

Ii(t0, x0, u1, u2) =

∫ ∫ τ

t0

hi(t)dt dF (τ).

Thus, we could consider the expected integral payoff (5) as the mathematical
expectation of a function of a random variable T :

Ii(t0, x0, u1, u2) = E

[∫ T

t0

hi(t)dt

]
, (6)

where E[·] is the mathematical expectation of a function of a random variable
T .

If the instantaneous payoff function is nonnegativehi(τ, x, u1, u2), ∀τ, x, u1, u2

then the following equality holds (Kostyunin and Shevkoplyas, 2011)

Ii(t0, x0, u1, u2) =

∞∫
t0

hi(τ)(1 − F (τ))dτ. (7)

If the instantaneous payoff function does not satisfy the condition of nonnegativ-
ity, (7) holds if the following condition is satisfied (Kostyunin and Shevkoplyas, 2011)

lim
T→∞

(F (T )− 1)

T∫
t0

hi(t)dt = 0. (8)

Note, that for a nonnegative instantaneous payoff function hi(t) the existence of
the integral in the right-hand side of (7) implies that (8) holds.
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3.2. Expected terminal payoff
Consider the expected terminal payoff (3)

Si(t0, x0, u1, u2) = E
[
Φi(x(Tj))I[Ti>Tj ]

]
,

The expectation in (3) could be expressed as the following Lebesgue-Stieltjes
integral:

E
[
Φi(x(Tj))I[Ti>Tj ]

]
=

∫
Φi(x(tj))I[ti>tj ]dFT1,T2(t1, t2). (9)

Suppose that the function Φi(x) satisfies the condition of nonnegativity. In this
case we can use the following theorem on iterated integrals (Borovkov, 1999)

Theorem 1 (Theorem on iterated integrals). For a Borel function g(x, y) ≥ 0,
and independent random variables ξ1 è ξ2:∫

g(x1, x2)dFξ1ξ2(x1, x2) =

∫ [∫
g(x1, x2)dFξ2 (x2)

]
dFξ1(x1).

Using this theorem, we obtain the following expression for (9)∫ +∞

t0

[∫ +∞

t0

Φi(x(tj))I[ti>tj ]dFi(ti)
]
dFj(tj).

Then we obtain∫ +∞

t0

[∫ tj

t0

Φi(x(tj))I[ti>tj ]dFi(ti) +
∫ +∞

tj

Φi(x(tj))I[ti>tj ]dFi(ti)

]
dFj(tj).

The first term under the integral equals to zero. Further, we find∫ +∞

t0

[∫ +∞

tj

Φi(x(tj))dFi(ti)

]
dFj(tj) =

∫ +∞

t0

[
Φi(x(tj))

∫ +∞

tj

fi(ti)dti

]
fj(tj)dtj .

Finally, we obtain an expression for the expectation in (3)

E
[
Φi(x(Tj))I[Ti>Tj ]

]
=

∫ +∞

t0

Φi(x(tj))(1 − Fi(tj))fj(tj)dtj . (10)

Then, the sufficient condition for total payoff transformation is given by the
following propositions.

Proposition 1. If the instantaneous payoff function and the terminal payment
function are nonnegative

hi(τ, x(τ), u1, u2) ≥ 0, Φi(x(t)) ≥ 0,

then the total expected payoff of player i (4) could be written as

Ki(t0, x0, u1, u2) =

∫ ∞

t0

[hi(τ) (1− F (τ)) + Φi(x(τ))fj(τ)(1 − Fi(τ))] dτ. (11)
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Proposition 2. If the terminal payment function is nonnegative

Φi(x(t)) ≥ 0,

and the following condition is satisfied

lim
T→∞

(F (T )− 1)

T∫
t0

hi(t)dt = 0,

then the total expected payoff of player i (4) could be written as (11).

4. Hamilton-Jacobi-Bellman equation

Let the game Γ (t0, x0) develops along the trajectory x(t). Then at the each time
instant t, t∈(t0;∞) players enter a new game (subgame) Γ (t, x(t)) with initial state
x(t) = x.

The expected payoff for player i in this subgame is given by the following equa-
tion (Kostyunin et al., 2011)

Ki(t, x.u1, u2) =

1

(1− F1(t))(1 − F2(t))

+∞∫
t

[h∗
i (τ) (1− F (τ)) + Φi(x

∗(τ))fj(τ)(1 − Fi(τ))] dτ.

We denote by Wi(t, x) the i-th optimal value function of the problem starting at
t ∈ (0,+∞), with initial data x(t) = x. The Hamilton-Jacobi-Bellman equation has
the same form as in the case where the terminal instants of the players are bounded
from above (Kostyunin et al., 2011)

−∂Wi(t, x)

∂t
+Wi(t, x)

[
f1(t)

1− F1(t)
+

f2(t)

1− F2(t)

]
=

max
ui

[hi(t, x, u1, u2) + Φi(x(t))
fj(t)

1 − Fj(t)
+

∂Wi(t, x)

∂x
φ(t, x, u1, u2)]. (12)

4.1. Hamilton-Jacobi-Bellman equation and hazard function

Let us remark that the term f(ϑ)
1−F (ϑ) in the left-hand side of equation (12) is a well-

known function in mathematical reliability theory. It has a name of Hazard function
(or failure rate) with typical notation λ(ϑ)

λ(t) =
f(t)

1− F (t)
. (13)

Using the definition of the Hazard function (13), we get the following form for
new Hamilton-Jacobi-Bellman equation (12):

−∂Wi(t, x)

∂t
+Wi(t, x) [λ1(t) + λ2(t)] =

max
ui

[hi(t, x, u1, u2) + Φi(x(t))λj(t) +
∂Wi(t, x)

∂x
φ(t, x, u1, u2)]. (14)
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4.2. Exponential distribution case
For exponential distribution of terminal instants F (t) = 1− e−λt, the Hazard func-
tion is constant: λ(t) = λ. So, inserting λi instead of λi(t) into (12), we easily get
the Hamilton-Jacobi-Bellman equation for player i

−∂Wi(t, x)

∂t
+Wi(t, x) [λ1 + λ2] =

max
ui

[hi(t, x, u1, u2) + Φi(x(t))λj +
∂Wi(t, x)

∂x
φ(t, x, u1, u2)]. (15)

5. An example

Consider the following framework, borrowed from (Rubio, 2006) (Example 2.1) and
(Dockner et al., 2000) (Example 5.7) and modified with the above discount factor.
This example originally describes the joint exploitation of a pesticide, but its struc-
ture makes it suitable for our aim. Note that, in contrast to (Rubio, 2006), we
confine our attention to the Nash equilibrium under simultaneous play, and we con-
sider the non-stationary feedback case, that is our optimal value function explicitly
depends on the initial instant t.

We fix m = 1, i.e., a unique state variable x(t), denoting the amount of the
resource, whereas the i-th payoff function explicitly depends on the rate of extraction
of the i-th player but not on the state variable:

hi(x(t), ui(t)) = lnui(t),

whereas the terminal payoff is given by

Φi(x
∗(T )) = ci ln(x(Ti)).

Note that hi(·) is well-defined and concave for ui > 0.
The transition function is linear and decreasing in the controls, so the dynamic

constraint is: {
ẋ = −u1 − u2

x(0) = x0 > 0
.

The kinematic equation ensures that the terminal payoff is well-defined in that the
resource cannot equal 0 in finite time.

Using the data of the above model, we obtain:

Wi(0, x0) = E

⎡⎣ Ti∫
0

lnu∗
i dtI[Ti<Tj ] +

Tj∫
0

lnu∗
i dtI[Ti>Tj ] + ci lnx(Tj)I[Ti>Tj ]

⎤⎦ .

The i-th optimal value function of the problem starting at t ∈ (0, ω), and with
initial condition x(t) = x, is given by:

Wi(t, x) =

1

(1− Fi(t))(1 − Fj(t))

ω∫
t

[lnu∗
i (τ, x(τ)) (1− F (τ)) + ci lnx(τ)fj(τ)(1 − Fi(τ))] dτ.

(16)
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In compliance with the previous Section, the Hamilton-Jacobi-Bellman equations
are given by:

−∂Wi(t, x)

∂t
+Wi(t, x) [λi(t) + λj(t)] =

max
ui

[
ln(ui) + ci lnx(t)λj(t)−

∂Wi(t, x)

∂x
(ui + u∗

j)

]
. (17)

In order to explicitly determine the optimal strategy in the feedback Nash struc-
ture, we guess the following ansatz for the solution to (17):

Wi(t, x) = Ai(t) ln x+Bi(t),

where Ai(t) and Bi(t) are unknown functions of t, such that the following limits are
satisfied:

lim
t→ω

Ai(t) = 0, lim
t→ω

Bi(t) = 0. (18)

The relevant first order partial derivatives to be employed in (17) are:

∂Wi(t, x)

∂t
= Ȧi(t) lnx+ Ḃi(t),

∂Wi(t, x)

∂x
=

Ai(t)

x
.

Maximizing the r.h.s. of (17) yields:

1

u∗
i

− ∂Wi(t, x)

∂x
= 0 ⇐⇒ u∗

i =
x

Ai(t)
.

Hence, plugging u∗
i ,

∂Wi(t, x)

∂t
and

∂Wi(t, x)

∂x
into (17), we obtain the following

equation:

−Ȧi(t) lnx− Ḃi(t) + (Ai(t) lnx+Bi(t)) [λi(t) + λj(t)] =

ln
x

Ai(t)
+ ci lnxλj(t)−

Ai(t)

x

(
x

Ai(t)
+

x

Aj(t)

)
. (19)

After collecting terms with and without lnx, we determine the following ODEs
for the time-dependent coefficients of Wi(t, x):

−Ȧi(t) +Ai(t) [λi(t) + λj(t)]− 1− ciλj(t) = 0, (20)

−Ḃi(t) +Bi(t) [λi(t) + λj(t)] + lnAi(t) + 1 +
Ai(t)

Aj(t)
= 0, (21)

composing a Cauchy problem endowed with the transversality conditions:

lim
t−→ω

Ai(t) = 0, lim
t−→ω

Bi(t) = 0. (22)

Proposition 3. The optimal feedback strategy for the i-th firm is given by:

u∗
i (t, x) =

x∫ ω
t
(1 + ciλj(τ))e

− ∫
τ
t
(λi(θ)+λj(θ))dθdτ

. (23)
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Proof. We just consider the Cauchy problem in Ai(t), because the explicit calcu-
lation of Bi(t) can be avoided in that Bi(t) does not appear in the expression of
u∗
i : {

Ȧi(t) = Ai(t) [λi(t) + λj(t)]− 1− ciλj(t)

lim
t→ω

Ai(t) = 0
,

whose general solution is given by:

Ai(t) = e
∫ t
0
(λi(τ)+λj(τ))dτ

(
C −

∫ t

0

(1 + ciλj(τ))e
− ∫ τ

0
(λi(s)+λj(s))dsdτ

)
, (24)

where the constant C is determined by employing the transversality condition on
Ai(t):

C =

∫ ω

0

(1 + ciλj(τ))e
− ∫ τ

0
(λi(s)+λj(s))dsdτ,

leading to the solution:

A∗
i (t) = e

∫
t
0
(λi(τ)+λj(τ))dτ

[∫ ω

t

(1 + ciλj(τ))e
− ∫

τ
0
(λi(s)+λj(s))dsdτ

]
. (25)

We can simplify:

A∗
i (t) =

∫ ω

t

(1 + ciλj(τ))e
− ∫

τ
t
(λi(s)+λj(s))dsdτ. (26)

Finally, the expression of the optimal feedback strategy for the i-th firm can be
achieved from the FOCs of the model:

u∗
i (t, x) =

x

A∗
i (t)

=
x∫ ω

t
(1 + ciλj(τ))e

− ∫ τ
t
(λi(θ)+λj(θ))dθdτ

. (27)

As a further application, we can consider the circumstance where the two dis-
tributions of the firms are the standard exponential distributions, i.e.

fi(t; λi) =

{
λie

−λit, if t ≥ 0

0, if t < 0
,

whose means are respectively λ−1
1 , λ−1

2 , both positive, with λ1 �= λ2, ensuring
asymmetry.

In this case the hazard functions are constant, i.e. λ1(t) ≡ λ1 and λ2 ≡ λ2, then
substituting in (23) we obtain the two optimal feedback strategies:

u∗
1(t, x) =

(λ1 + λ2)x

(1 + c1λ2)[1− e−(λ1+λ2)(ω−t)]
, (28)

u∗
2(t, x) =

(λ1 + λ2)x

(1 + c2λ1)[1− e−(λ1+λ2)(ω−t)]
. (29)
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6. Concluding remarks

This paper intends to be a contribution to the literature of differential games in an
area which can be defined as deterministic, but enriched with some stochastic ele-
ments. In particular, it is focused on the feature of extraction games that is definitely
realistic: the uncertainty about the terminal times of an extracting activity.

The dynamic feedback equilibrium structure has been determined and the spe-
cific technicalities of this setting have been pointed out. As an example, a model of
nonrenewable resource extraction with a logarithmic utility structure was examined
and solved in a closed form.

There exist some possible further extensions, also concerning the example we
developed. It would be interesting to check the specific optimal strategies in pres-
ence of more complex hazard functions (for example, the Weibull distribution) or
endowed with alternative payoff structures. Another interesting development might
consist in considering a competition among more than 2 firms, having different
terminal times.
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