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Abstract In present article are considered the models explaining the mech-
anisms of emergence and development of situations, in which it is appropriate
for economic agents to collaborate and act together despite of having inde-
pendent goals. The main attention is concentrated to different approaches to
definition of concept of equilibrium for model of collaboration of two agents.
The work is devoted to problems in the study of economic instruments,
inducing the agents, which initially have independent and uncoordinated
systems of goals to commission any beneficial actions. Particularly, we con-
sider an interaction of economic agents when each of them may take the
actions, that bring benefit to other. Stimulus to "positive" behavior each
agent is a waiting counter actions, that will be useful for him. To identify
this class of situations it is proposed to use the term "collaboration". In a
model of collaboration between two economic agents is proposed version to
express of mixed strategies of players in the form of continuous distribution,
which enabled us to formulate two alternative approaches of equilibrium:
based on the criterion of minimizing variance of utility of participants and
based on the criterion of minimizing of VaR.
Keywords: Game theory, collaboration, Nash equilibrium, value at risk
(VaR), quantile.

Models that explain the mechanisms of emergence and situation development, in
which it is appropriate for economic agents to collaborate and act together despite
of having independent goals have become rather interesting in both theoretical
and application way. An interaction of economic agents, where each of them takes
actions that bring direct benefit not only to him but to other agents, can serve as
the simplest example. An expectation of a beneficial counter action is an incentive
for each agent to behave in this way. The most important difference between this
behavior model from the "classical" models of rational economic agent’s utility
optimization is that here the utility of each agent depends directly on decisions
made by others, whom he can indirectly influence.
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We define such examples of agents’ interaction with the term "collaboration".
We could as well use the "indication" collaboration for that. On the other hand,
such definition could create false associations with models based on cooperative
games, also a further framework of the proposed model is solely based on a strategy
game with complete information.

The main problem which is considered in this article is to present one possible
approach based on the methods of modern game theory, which makes us able to
describe and explain the mechanisms of collaborative relations between economic
agents.

Obviously collaboration (in the context in which we agreed to consider it) and
related issues may arise, for example, between the parties of public and private
partnership, alongside with major investment projects or different schemes of fi-
nancing from various levels of budget sources. Moreover, such models can also be
useful in situations that go beyond "pure" economics. For instance, they can be
applied to studies of intergovernmental negotiation processes aimed at achievement
of agreements, which will complexly take both economic and political interests of
the parties into account.

We will consider a simplified situation in order to explain the fundamental ideas
of the proposed model. It describes interaction between two parties (agents, par-
ticipants, players) i ∈ I = {1, 2}, who make a decision upon the value of their
own contribution to some common project. This contribution (degree) is quantita-
tively characterized by some arbitrary value from 0 to 1: where "0" stands for lack
of affirmative action in the project (non-collaboration, extremely selfish behavior,
etc.), and "1" reflects the highest possible level of affirmative action (the maximum
propensity to collaborate, ultimately constructive behavior).

If we take into consideration previously set objectives when we define the utility
functions of players, we assume that the input (costs) performed by the agents
reduce utility they can get, utility can increase due to inputs of his opponents. Linear
relations are acceptable in model, because they reflect adequately its fundamental
properties. So we define the utility function of the first player, as

u1(x1, x2) = b1x2 − a1x1 (1)

and the utility function of the second player as

u2(x1, x2) = b2x1 − a2x2 (2)

Accordingly, a is a value (score, a measure of regret) of a resource unit spent
(invested in the project) by the player i and b is utility (effect, measure of satis-
faction) for the i–th player, which he gets from a unit invested in the project by
another party. Let’s imaging such a situation as "classical" finite non-cooperative
two-person game. We face the fact that it has an obvious Nash equilibrium in pure
strategies

x∗
1 = 0, x∗

2 = 0. (3)

Obviously our productivity functions are arranged in such a way (see Fig.2) that
the best response of the first player to any second player’s strategy will be to reduce
his share of participation to zero.

max
x1∈[0,1]

{u1(x1, x2)} = u1(0, x2), ∀x2 ∈ [0, 1] (4)
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Fig. 1: Productivity functions

max
x2∈[0,1]

{u2(x1, x2)} = u2(x1, 0), ∀x1 ∈ [0, 1] (5)

Thus, if we follow the concept of Nash equilibrium, we arrive to a pessimistic
conclusion that the model described in the framework of collaboration between the
players would not happen (the most stable situation is "mutual self–interest"). In
this context, this is a particular interest to study modifications of this model in
order to explain the mechanisms, which lead to the emergence of a collaborative
relationship (collaboration) between economic agents.

First of all we concentrate on the approaches associated with transition from
the original game to its mixed extension. Due to the fact that this scenario is based
on a continuous set of pure strategies of the players, it seems obvious to set their
mixed strategies as probability distributions with densities p1(x1) and p2(x2) on
the interval [0, 1], see Fig.7. According to this suggestion, a particular choice of
strategies by players in a particular round of the game can be interpreted as an
implementation of independent random variables x̃1 and x̃2.

Fig. 2: Mixed strategies densities

This idea of mixed strategies of the players is a generalization of the "traditional"
definition of mixed strategies in matrix and bimatrix games, which can be defined
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as a likelihood (p1, . . . , pk, . . .) in accordance with every player implement one or
another pure strategy. To follow this logic, we would have had to sample the intervals
[0, 1] in order to bring in traditional "discontinuous" mixed strategies. This method,
however, seems to be not enough justified and reasonable in terms of reflecting the
economic realities.

When mixed strategies are defined in the form of continuous distributions, a
player’s strategic choice is generally reduced to the choice of parameters of these
distributions. Due to the fact that the number of parameters in different probability
distributions classes is different, we come to a conclusion that definition of the play-
ers’ strategies within the stated model will vary according to the type of distribution
p1(x) or p2(x) we’ve chosen. Actually the value of strategies chosen by the partici-
pants in each act of the game can be viewed as a realization of independent random
variables x̃1, x̃2, whose densities are known; and utilities u1(x̃1, x̃2), u2(x̃1, x̃2) are
determined as functions of random variables, which characteristics, generally spo-
ken, can be determined with the help of p1(x), p2(x).

We should note that specification of participants’ strategic choices in the form
of continuous probability distributions can be justified by the theory of evolution-
ary games. Namely, we can assume that we have a community consisting of groups
(populations). Different populations of players have different tendencies to collabo-
rate (collaborative behavior). These tendencies are realizations of random variables
x̃i with densities pi(x). When members of different populations confront in some
acts of the game, their success (or lack of success) can be expressed in terms of util-
ity ũi. After that evolution of stochastic characteristics of propensity to cooperate
takes place and these indicators reach some "benchmark" stable states, based on
the experience accumulated by populations.

Of course if the strategies of participants are determined with continuous proba-
bility distributions, we can only compare them correctly if function pi(x) is restricted
by some single parametric class Pi. In this case, parameters of density functions
pi(x) become "obvious" characteristics of strategies. Accordingly, the set of possible
situations in a game is defined by the set of all possible combinations pi(x) of all
players.

In terms of the classical Nash approach (Vorobiev, 1984), (Vorobiev, 1985),
(Moulin, 1985), (Pecherskiy and Belyaeva, 2001) the equilibrium (solution) in of
the described model will be characterized by such joint choice of probability dis-
tributions (p∗1(x), p

∗
2(x)) from which every participant in the game would not be

advantageous to deviate separately from, i.e.:

E{u1(x̃1, x̃2) ‖ p∗1(x), p
∗
2(x)} � E{u1(x̃1, x̃2) ‖ p1(x), p

∗
2(x)} (6)

E{u1(x̃1, x̃2) ‖ p∗1(x), p
∗
2(x)} � E{u1(x̃1, x̃2) ‖ p∗1(x), p2(x)} (7)

for every p1(x) ∈ P1, p2(x) ∈ P2, where E{ui(x̃1, x̃2) ‖ p1(x), p2(x)} is expected
value of ui(x̃1, x̃2), calculated in the assumption that distribution x̃1 is determined
by the density function p1(x) and distribution x̃2 by the density function p2(x).

Since a randomized model is being described, we cannot deny admissibility and
validity of alternative approaches, which determine the equilibrium conditions with
respect to other criteria. Particularly, they may be:

– minimization of variances of players’ utilities (perhaps with additional restric-
tions on the lower levels, below which the utility expectation value cannot go);
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– minimization of α–quintile values of players’ utility function distributions, that
is, below which the value of the utility will not fall with a probability 1− α.

1. Equilibrium based on minimization of utility variance

Let us consider the first mentioned approach in details. To some extent, the ideas of
this approach are similar to the ideas in the Markowitz model of portfolio selection
that minimizes risk (Binmore, 1987), (Binmore, 1988), (Cheon, 2003). In this case,
we may assume that equilibrium in this model will be characterized by such joint
selection of probability distributions p∗1(x) ∈ P1 and p∗2(x) ∈ P2, which will provide
us with conditions fulfilled:

D{u1(x̃1, x̃2) ‖ p∗1(x), p
∗
2(x)} � D{u1(x̃1, x̃2) ‖ p1(x), p

∗
2(x)} (8)

D{u1(x̃1, x̃2) ‖ p∗1(x), p
∗
2(x)} � D{u1(x̃1, x̃2) ‖ p∗1(x), p2(x)} (9)

D{u1(x̃1, x̃2) ‖ p1(x), p2(x)} — variance of u1(x̃1, x̃2), calculated in assumption
that distribution of x̃1 is determined by a density function p1(x), and distribution
of x̃2 is determined by a density function p2(x).

In other words, conditions (8)–(9) define the situation, in which participants
make an attempts to deviate from, taken by one or another party on an individual
basis, lead to an increase in the risk. Variance is used as a measure of risk. A "weak"
point of this approach in determination of equilibrium is connected with the fact,
that minimal risks can be achieved at an unacceptably low expected utility values.
This, in turn, can be "corrected" by introducing a concept of conditional equilib-
rium, under which one can understand a joint choice of probability distributions
p∗1(x) ∈ P1 and p∗2(x) ∈ P2, which provides fulfillment of conditions (8)–(9), as well
as conditions

E{u1(x̃1, x̃2) ‖ p1(x), p2(x)} � ūi, i = {1, 2} (10)

where ūi are lower bounds on acceptable levels of expected utility of participants.
Subsequent development of the approach (8)–(9) is clearly possible under condition
that we specify classes of possible distributions pi(xi). We should note that this step
is substantial, moreover, it can be critical to the prospects of using this model.

Based on the general properties of solutions, which are made by real economic
agents and concern issues of mutual collaboration, we can use an asymmetric tri-
angular distribution for modeling the behavior of variables x̃i, see Fig. 71. On the
interval [0, 1] densities of asymmetric triangular distributions are uniquely deter-
mined by the choice of parameter m — the point of mode. It is known that an
arbitrary random variable distributed in an asymmetric triangular law on the in-
terval [0, 1] has expected value

Ex̃ =
1

3
(m + 1) (11)

and variance
Dx̃ =

1

18
(m2 −m + 1). (12)

1 The distribution which is used here is a generalization of an asymmetric triangular
distribution (Simpson’s Distribution)
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On the basis of (11) and (12) we can obtain an expression for expectation of utility
functions of players (1) — (2), considering them after the transition to the mixed
extension of the game as functions of random variables x̃1, x̃2:

E{u1(x̃1, x̃2)} = E{b1x̃2 − a1x̃1} =
1

3
[b1(m2 + 1)− a1(m1 + 1)], (13)

E{u2(x̃1, x̃2)} = E{b2x̃1 − a2x̃2} =
1

3
[b2(m1 + 1)− a2(m2 + 1)], (14)

and their variances as well

D{u1(x̃1, x̃2)} = D{b1x̃2 − a1x̃1} = b21Dx̃2 + a21Dx̃1 = (15)

=
b21
18

[m2
2 −m2 + 1] +

a21
18

[m2
1 −m1 + 1],

D{u2(x̃1, x̃2)} = D{b2x̃1 − a2x̃2} = b22Dx̃1 + a22Dx̃2 = (16)

=
b22
18

[m2
1 −m1 + 1] +

a22
18

[m2
2 −m2 + 1],

Having (15) and (16) we derive that D{u1(x̃1, x̃2)} and D{u2(x̃1, x̃2)} are convex
quadratic functions of parametersm1 and m2, and, consequently, they reach a global
extremum at the point

(m∗
1,m

∗
2) = (

1

2
,
1

2
), (17)

which determines the state of equilibrium in the sense of (8) — (9) for a model
of collaboration. Thus, a situation of mutual stability (in terms of minimization
of risk criterion) in models constructed on basis of triangular distributions occurs
when players choose their strategies relying on symmetric triangular distributions.
This reflects the advantage of behavior based on the "golden mean" between ex-
treme selfishness and willingness to maximize collaboration. If guided by the con-
cept of conditional equilibrium (8) — (10), the global minimum point of variances
D{ui(x̃1, x̃2)} (17) may be outside of set of valid values m1,m2, defined by condi-
tions {

−a1m1 + b1m2 � 3ū1 − (b1 − a1)

b2m1 − a2m2 � 3ū2 − (b2 − a2)

In this case, the procedure of finding conditional equilibrium in the sense of (8)
— (10) reduces to solving a series of quadratic programming problems. Of course,
the hypothesis, that values x̃i are distributed under the triangular law, cannot be
regarded as an assumption which has non-alternative benefits. Other interesting and
meaningful results for this model can also be obtained for the distributions of other
classes. In particular, let us consider the model of collaboration, which is based on
the assumption that the distribution of values x̃i is exponential2 with parameters
λi, i.e.

pi(x) = λie
−λixi

If we compare modifications of densities of triangular and exponential distribu-
tions, it is easy to see that the latter reflects the situation of initially low "propensity
2 Obviously, in this case we assume the possibility of expanding the domain of xi on the
whole positive axle shaft, provided that the probability of x̃i > 1 is close to zero.
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to collaborate" of the economic agents more appropriately, see Fig. 3.One can also
note that gamma distribution can be used for more flexible modeling of "propensity
of players to collaborate" ratios.

Fig. 3: Exponential, gamma and triangular distributions

If x̃i are exponentially distributed then the expected utilities of players will be

E{u1(x̃1, x̃2)} = E{−a1x̃1 + b1x̃2} = −a1
λ1

+
b1
λ2

, (18)

E{u2(x̃1, x̃2)} = E{b2x̃1 − a2x̃2} =
b2
λ1

− a2
λ2

(19)

In accordance with the formula for adding the variances of independent random
variables, the dispersion of the utility can be expressed as

D{u1(x̃1, x̃2)} =
(

a1
λ1

)2

+

(
b1
λ2

)2

(20)

D{u2(x̃1, x̃2)} =
(

b2
λ1

)2

+

(
a2
λ2

)2

(21)

As appears from (21) — (22) functions D{ui(x̃1, x̃2)} have obvious infimums equal
to 0, when λ1 → ∞, λ2 → ∞. This means nothing more than a repetition of
"pessimistic outcome", which has been obtained earlier: the variance for exponential
distributions will be as smaller, as closer they are concentrated near xi = 0, which
corresponds to a situation of lack of collaboration.

The above considerations are valid if x̃i are gamma distributed with some pa-
rameters κi, λi .This follows directly from the form of expectation and variance for
the corresponding random variables.

Ex̃i =
κi
λi

, Dx̃i =
κi
λ2
i

2. Equilibrium based on the criterion of minimizing VaR utility

Let us now consider a specific approach, where players make choice about appropri-
ate degrees of collaboration taking distribution of their utility function utility into
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consideration, i.e.
Fu1(x̃1,x̃2)(u) = P{u1(x̃1, x̃2) � u}

and
Fu2(x̃1,x̃2)(u) = P{u2(x̃1, x̃2) � u}

A similar approach can be considered as an analogue of the concept of value at
risk (VaR), which is widely used in modern risk management. The behavior of
the utility distribution function of a player i is a function of independent random
variables x̃1, x̃2 in this model. It is presented on Fig. 8. Taking into consideration
(1) and (2) we can note that for xi ∈ [0, 1]ui ∈ [−ai, bi], and consequently

Fig. 4.

At the same time the choice of specific parameter values for p1(x) and p2(x)
determines how function Fui(x̃1,x̃2)(u) will increase on the interval [−ai, bi]. Thus,
for the same level of probability quantiles of the distribution function

u(α) = F−1
ui(x̃1,x̃2)

(α, p1(x), p2(x))

depends on the choice of parameters of probability distributions (densities p1(x)
and p2(x)) of random variables x̃1, x̃2. As we can see from Fig. 8,

u(1)(α) < u(2)(α),

i.e. α–quantile of the distribution function of the first player’s utility , which we
get from densities p

(1)
1 (x) and p

(1)
2 (x), is lower than the one corresponding densities

p
(2)
1 (x) and p

(2)
2 (x). Thus, for the first player a strategic option defined by p

(2)
1 (x) and

p
(2)
2 (x) is preferred, since its threshold below which his utility ui(x̃1, x̃2) wouldn’t

drop will be higher with probability 1− α.
In this particular approach, the equilibrium in the model of collaboration

can be defined as a set of probability distributions (p∗1(x), p∗2(x)) of some
parametric classes P1 and P2, which define strategies of participants which
satisfy the following conditions (with a given level of probability α and
any other probability distributions (p1(x) ∈ P1 and (p2(x) ∈ P2)

F−1
u1(x̃1,x̃2)

(α, p∗1(x), p
∗
2(x)) � F−1

u1(x̃1,x̃2)
(α, p1(x), p

∗
2(x)) (22)
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F−1
u2(x̃1,x̃2)

(α, p∗1(x), p
∗
2(x)) � F−1

u2(x̃1,x̃2)
(α, p∗1(x), p2(x)) (23)

We will now pay a little bit more attention to usage of the following approach in
a case when pi(x) determine random variables x̃i, which are distributed under the
asymmetric triangular law. As it has been already noted, the choice of the actual
density pi(x) is uniquely connected to the choice of parameter mi, which is a mode,
and therefore we can consider players’ utility distribution functions ui(x̃1, x̃2) as
function of m1 and m2 using the notation Fui(x̃1,x̃2)(u,m1,m2). We should pay our
attention to the fact that even with such a simple functional form of density in
the case of an asymmetric triangular distribution, functions Fui(x̃1,x̃2)(u,m1,m2)
do not have a "compact" analytic expression. "Method" of finding the value of
Fu1(x̃1,x̃2)(u,m1,m2) having a particular value for ū1 is shown on Fig. 2.. There is
evident from Fig.5, in order to find the value

Fu1(x̃1,x̃2)(ū1,m1,m2) = P{u1(x̃1, x̃2) � ū1 = −a1x1 + b1x2}

we should calculate the sum FI + FII + FIII + FIV , where

FI =

m1∫
0

2x1

m1

⎡⎢⎢⎣
min

{
ū1+a1x1

b1
;m2

}∫
0

2x2

m2
dx2

⎤⎥⎥⎦ dx1,

FII =

1∫
m1

2x1 − 2

m1 − 1

⎡⎣ m2∫
0

2x2

m2
dx2

⎤⎦ dx1,

FIII =

m1∫
b1m2−ū1

a1

2x1

m1

⎡⎢⎢⎣
ū1+a1x1

b1∫
m2

2x2

m2 − 1
dx2

⎤⎥⎥⎦ dx1,

FIV =

1∫
m1

2x1 − 1

m1 − 1

⎡⎢⎢⎣
ū1+a1x1

b1∫
m2

2x2 − 2

m2 − 1
dx2

⎤⎥⎥⎦ dx1,

Thus, in order to find the values of distribution functions Fui(x̃1,x̃2)(u,m1,m2) for
arbitrary u ∈ [−ai, bi] we will only have to consider all possible situations of geom-
etry of line ui(x1, x2) and point (m1,m2).

In spite of "bad" analytical properties of functions Fui(x̃1,x̃2)(u,m1,m2) we
are able to describe their behavior with appropriate accuracy by using numeri-
cal methods for specific ai and bi. In particular the results of numerical model-
ing of function Fu1(x̃1,x̃2)(u,m1,m2) with the help of MathCAD software tools for
a1 = 1, b1 = 2, m2 = 0.8 are shown on Fig. 2.. In other words, in a situation
where the first player gives value to the actions of a second player twice as much as
his own costs and the strategy of a second player is determined by the asymmet-
ric triangular distribution with mode equal to 0.8. Fig. 2. depicts graphics of the
first player’s utility distribution function for cases when his strategy is determined
by the asymmetric triangular distribution with mode m

(1)
1 = 0.2 (line FI_1) and

m
(2)
1 = 0.8 (line FI_2).
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Fig. 5.

As follows from geometry of quantile lines for a level of probability α the quan-
tiles found with respect to the distribution function FI_2 will be less than quantiles
found in respect to the distribution function FI_1. Thus in these conditions when
the second player chooses the level of collaboration equal to m

(2)
1 = 0.8, it is prefer-

able for the first player to choose the higher level of collaboration m
(2)
1 = 0.8, not

m
(1)
1 = 0.2, which would mean more egoistic type of behavior.

In particular - actual values.

Fig. 6.
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It should be admitted that from a mathematical point of view, we should modify
the criterion function in respect to which the equilibrium conditions are determined
in order to abandon the situation of a non-constructive equilibrium in the proposed
model. Roughly speaking, if the players evaluate their results depending on the
utility (or expected utility), then situation of non–collaboration becomes stable. At
the same time, if they apply different criteria (variance, measure of risk, or VaR
utility), the situation of collaboration is preferable.

This is what gives the approaches considered above an added significance in
terms of economic meaning. In particular, applying them, we can form the principles
of construction and maintenance of mechanisms for collaboration in situations that
are initially characterized with selfish behavior of the parties.
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