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Abstract In this work we join on classical SIR model to describe influenza
epidemic in urban population with procedure of making decision. We sup-
pose that agent in urban population makes a choice: whether or not to
participate in vaccination company. Each decision involve different costs
and indirectly influence on the population state. We formulated an opti-
mal control problem to study the optimal behavior during epidemic period
and vaccination company. All theoretical results are also supported by the
numerical simulations.
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1. Introduction

Originally Susceptible-Infected-Recovered model and its modification describe a fast
spreading process, such as influenza epidemic or other forms of respiratory viral
diseases, circulated in urban population. Total population is divided into three sub-
groups: Susceptible, Infected and Recovered. Susceptible is group where people are
not infected, Infected is a group of people having the disease, and Recovered is
group, where all members have immunity to the disease. Human population meets
influenza epidemic almost every year then SIR model is very actual and can be used
in social and economic applications.

During the years many medical methods such as preventive measures, intensive
treatment, etc. were developed to protect entire population during annual epidemics.
Hence preventive measures or medical treatment can be considered as an external
influence to the development of epidemics and can be used as control parameters
in the model. Since vaccination is one of the most effective method to protect
population from the annual epidemics then we chose is as an control parameter.

However vaccination can not be absolutely effective and moreover such as it was
proofed in the previous research total vaccination is very expensive and usually do
not apply to protect population against a flu epidemics. Hence we can establish a
new problem such as vaccination problem.

We assume that vaccination company occurs before the seasonal epidemic begins,
because it is necessary take into account regulation immune system of individual
after vaccination, because failing health after vaccination not allow to resist against
another viruses. Unfortunately flu vaccines are effective only for one season owing to
mutation of pathogens and waning immunity. We suppose that influenza epidemic
continues until there are no more newly infected individuals.
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In this model we assume that before epidemic period each agent of population
may choose a behavior: participate or not in vaccination company. All decision
provoke corresponding costs and influence on the future agent’s incomes. If agent
of population chooses the application of vaccination then he should pay it costs
and estimate the consequences if vaccine is not effective. Hence in current work we
extend classical Susceptible-Infected-Recovered (SIR) model with the procedure of
making decisions. We reformulate original model in terms of optimal control and
couple it with the process of making decisions.

1.1. Related Works

Recent literature has seen a large amount of interest in using optimal control and
game-theoretic methods to study disease control of influenza for public health.
First, this research problem was refereed in (Kermack and Kendrick, 1927), where
an Susceptible-Infected-Recovered model has been proposed to study the epidemic
spread in a homogeneous population. It provides a deterministic dynamical sys-
tem model as the mean field approximation of the underlying stochastic evolution
of the host subpopulations. In (Behncke, 2000) and (Kolesin and Zhitkova, 2004),
many variants of optimal control models of SIR-epidemics are investigated for the
application of medical vaccination and health promotion campaigns. In the paper
(Fu et al., 2010) the vaccination problem is considered from the individual agents’
point of view.

Also epidemic models can be applied to the different fields of human activity, for
instance in (Khouzani et al., 2010; Khouzani et al., 2011), optimal control methods
have been used to study the class of epidemic models in mobile wireless networks,
and Pontryagin’s maximum principle is used to quantify the damage that the mal-
ware can inflict on the network by deploying optimum decision rules.

Different from the work done in the past, in current work population agents
based on the available information make a decision whether or not they participate
in vaccination company. Their choices are included in the SIR model and as a result
we receive the optimal control strategy (intensity of vaccination) that depends on
the decision procedure.

2. Model

We use Susceptible-Infected-Recovered model to describe epidemiological process in
urban population with following assumption that each agent in population allows
to participate in vaccination company or refuses it. In current model vaccination
company establish the influence to the population and hence we can consider it as
control parameter in the model. Then, at time t, ns, nI , nR correspond to fractions of
the population who are susceptible, infected and for all t, conditionN = ns+nI+nR
is justified. Define

S(t) =
nS
N

, I(t) =
nI1
N

, R(t) =
nR
N

, (R(t) = 1− S(t)− I(t))

as portions of the susceptible, the infected and the recovered in the population.
And in addition to the above the model is formulated as follows (Khatri, 2003;

Kermack and Kendrick, 1927):
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dS

dt
= −δSI − u;

dI

dt
= δSI − σI;

(1)

here transmission rate from state S to I is

δ = δ0m(
nI
N

) = δ0mI, (2)

where value δ0 is a transmissibility of disease, m is a number of contacts per
time unit, and parameter σ = 1

T which is intensive rate of transition from infected
to recovered and it is in inverse proportion to the average duration of the disease.
Here R = 1− S − I, variable u(t) ∈ (0, 1) is control parameter which is interpreted
as the intensity of vaccination in agents per day.

2.1. Objective Function
In this work we will minimize aggregated cost in time interval [0, T ], hence at any
given t following costs exist in the system: fi(I(t)) these are individual’s treatment
costs, which are non-decreasing and twice-differentiable, convex functions, such as
fi(0) = 0, fi(I(t)) > 0, i = 1, N for I(t) > 0; functions li(R(t)) are agent’s benefit
rate, which arise when infected agent becomes recovered, li(R(t)) is non-decreasing
and differentiable function and l(0) = 0; functions hi(u(t)) describe vaccination
costs that help to reduce epidemic spreading, hi(u(t)) is twice-differentiable and
increasing function in ui(t) such as hi(0) = 0, hi(x) > 0, i = 1, N when u > 0.
Hence costs function for i-th agent in population is:

Ji = fi(I(t))− li(R(t)) + hi(u(t)). (3)

Therefore aggregated system costs is:

J =

T∫
0

N∑
i=1

(fi(I(t))− li(R(t)) + hi(u(t)))dt. (4)

2.2. Making decision procedure
In current section we present a procedure of making decisions that influence to the
epidemic process in urban population. Previous researches have proofed that vacci-
nation company as a preventive measure is very effective and allows to reduce the
quantity of infected in entire population. However each agent in population have
a possibilities to estimate his own profit of participation in vaccination company.
Agent can take into account the vaccination cost, feasible complications after vac-
cination and also he can estimate the herd immunity. We suppose that the last
circumstance does not presume than an agent necessarily knows the exact infor-
mation, he can evaluate the average number of his contacts, the current epidemic
situation, that can be presented in mass communication media, etc. Meanwhile the
collective result of vaccination decisions determines the level of population immu-
nity and the strain of the epidemic in current period. When level of vaccination
coverage in total population is increased then even agents who are unvaccinated
have less risk to become infected. Then we assume that every agent, having this
information might decide to decline the vaccination this year and thereby he re-
duces own vaccination costs. However agents might have incomplete information
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with the some rumors from the neighbors or friends, or they also may estimate the
epidemic situation incorrectly, thus this scenario leads following problem, increas-
ing of unvaccinated individuals provoke the diminution of the herd immunity in the
future and thereby collective costs during epidemic period will arise. The reduction
of the vaccinated individuals induces the increasing of infected in population the
then it leads that the frequency of meeting with infected agents is also increased.
Then each unvaccinated agent may transform to the infected and then he should
pay treatment costs, that include healthcare expenses, lost productivity and the
possibility of pain. Usually treatment costs exceed the vaccination expanses.

Thus in current work we suppose that each agent chooses between two possible
alternatives:

– to be vaccinated;
– not to be vaccinated and probably to be infected;

If agent participate in vaccination company then he gets a vaccination costs, in
our model these costs are described by functions hi(u), where u is intensity of vac-
cination. Vaccination costs contain the immediate monetary cost, the opportunity
cost of time spent to get the vaccine and any health effects. We also suppose that
vaccination is not absolutely effective and vaccination company should be finished
before the epidemic starts.

Infected agents incur treatment costs, which are denoted as functions fi(I), and
when agent convalesce then his treatment costs are reduced to the value l(R), which
is benefit function.

Then describe the decision procedure, each season an agent adopts one of the
alternative, which determines whether or not he vaccinated. At the end of the season
each agent decides whether to change the vaccination decision or not, depending
on the current aggregated costs. Then agent i selects at random agent j, and in
imitates his role model if opponents payoff is higher. Define probability that agent
i adopts behavior of agent j as follows (Fu et al., 2010):

ρij =
1

1 + exp(−β(pj − pi))
, (5)

where pj is agent’s payoff on j-th decision, parameter β ∈ (0,∞).
We incorporate this probability to the basic Susceptible-Infected-Recovered model,

which is presented in section 2., thus transmission rate from S to I can be rewritten:

δ = δ0mIρij . (6)

3. Structure of optimal control

We use Pontryagin’s maximum principle (Pontryagin et al., 1962), to find the op-
timal control u = (u1, u2) to the problem described above in Section 2.. Define the
associated Hamiltonian H and adjoint functions λS , λI1 , λIr , λR as follows:

H = −λ0

N∑
i=1

(fi(I(t)) − li(R(t)) + hi(u(t)))+

λS(−δS(t)I(t)− u) + λI(δS(t)I(t)− σI(t)) =

−λ0

N∑
i=1

(fi(I(t)) − li(R(t)) + hi(u(t)))−

δS(t)I(t)(λS − λI)− λSu− λIσ.

(7)
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We construct adjoint system as follows:

λ̇I(t) = −∂H
∂I = λ0

N∑
i=1

f ′
i(I(t)) + δS(λS(t)− λI(t)) + λI(t)σ;

λ̇S(t) = −∂H
∂S = λS(t)δI(t) − λ2(t)δI(t) = δI(t)(λS(t)− λI(t));

(8)

with the transversality conditions given by

λI(T ) = 0, λS(T ) = 0, λR(T ) = 0. (9)

According to Pontryagin’s maximum principle, there exist continuous and piece-
wise continuously differentiable co-state functions λi that at every point t ∈ [0, T ]
where u1 and u2 is continuous, satisfy (8) and (9). In addition, we have λ(t) =
(λ0(t), λS(t), λI(t), λR(t)) òàêàß œòî

u ∈ arg max
u∈[0,1]

H(λ, (S, I, R), u). (10)

To determine an optimal control parameter that maximize Hamiltonian (7) we

consider derivative
∂H

∂u
:

∂H

∂u
= −λ0

N∑
i=1

h′
i(u)− λS = −(λ0

N∑
i=1

h′
i(u) + λS). (11)

Now let equal to zero right parts of equations (11), (8):

−(λ0

N∑
i=1

h′
i(u) + λS) = 0;

λ0

N∑
i=1

f ′
i(I(t)) + δS(λS(t)− λI(t)) + λI(t)σ = 0;

δI(t)(λS(t)− λI(t)) = 0.

(12)

From the first equation of system (12), Hamiltonian reaches maximum if and
only if next condition is satisfied:

(λ0

N∑
i=1

h′
i(u) + λS) < 0. (13)

Let be λ0 = 1, then expression (13) can be reformulated:

N∑
i=1

h′
i(u) < −λS , (14)

and we will proof that λS < 0.
From (12) we received that

λS = − 1

σ

n∑
i=1

f ′
i(I(t)), (15)

where σ ≥ 0,
n∑
i=1

f ′
i(I(t)) ≥ 0 by definition then λS < 0, hence maximum

of Hamiltonian is reached on the negative half-space then we should proof that
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function λS is increasing. Consider adjoint system (8) and show that derivative
λ̇S = δI(t)(λS(t)− λI(t)) ≥ 0.

We will proof this statement base on the next two properties (Khouzani et al.,
2011):

Property 1. Let w(t) be a continuous and piecewise differential function of t. Let
w(t1) = L and w(t) > L for all t ∈ (t1, . . . , t0]. Then ˙w(t+1 ) ≥ 0, where w(t+1 ) =
lim
x→x0

v(x).

Property 2. For any convex and differentiable function y(x), which is 0 at x = 0,
y′(x)x − y(x) ≥ 0 for all x ≥ 0.

Step I. Consider instant time moment t = T , from transversality conditions

(9) we have λS(T )− λI(T ) = 0, and λ̇S(T )− λ̇I(T ) = −
n∑
i

f ′
i(I(T )) < 0, λ̇I(T ) =

n∑
i

f ′
i(I(T )) > 0, therefore function λI is increasing on the interval [0, T ].

Step 2.(Proof by contradiction).
Let 0 ≤ t∗ < T be the last instant moment at which one of the inequality

constraints are performed:

Condition 1. λI(t) > 0, λS(t)− λI(t) = 0 for t∗ < t < T .
Condition 2. λI(t) = 0, λS(t)− λI(t) < 0 for t∗ < t < T .

Now consider a difference:

λ̇S(t
∗+)− λ̇I(t

+∗) = δI(T )(λS − λI)− (λ0

N∑
i=1

f ′
i(I(t)) + δS(λS − λI) + λIσ) =

δI(T )(λS − λI)− λ0

N∑
i=1

f ′
i(I) +

H

I
+

λS
I

u+
λI
I

σI − λIσ

+
λ0

I
(

N∑
i=1

(fi(I(t)) − li(R(t)) + hi(u(t)))) =

= δI(T )(λS − λI)−
λ0

I
(

N∑
i=1

f ′
i(I(t))I −

N∑
i=1

fi(I(t))) +
H

I

−λ0

I

N∑
i=1

li(R(t)) +
λ0

I

N∑
i=1

hi(u(t)) +
λS
I

u+
λI
I

σI − λIσ

(16)
The system ODE is autonomous, i.e., the Hamiltonian and the constraints on

the control u do not have an explicit dependency on the independent variable t.
Then at time t = T Hamiltonian is:

H(T ) = −λ0

N∑
i=1

(fi(I(T )) + li(R(T )) + hi(u(T )))−

−δS(T )I(T )(λS(T )− λI(T ))− λS(T )u(T )− λI(T )σI(T ).
(17)

costs functions follow the next conditions fi(I(T )) ≥ 0, li(R(T )) ≥ 0, hi(u(T )) ≥
0 and transversality conditions (9) at time moment T are justified then
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H(T ) ≤ 0.

Hence as far as functions f , l, h are non-decreasing we have:

H(t)− λ0

N∑
i=1

(fi(I(t)) + li(R(t)) + hi(u(t))) =

−δS(T )I(T )(λS(T )− λI(T ))− λS(T )u(T )− λI(T )σI(T ) ≤ 0.

(18)

By property 2. the term is nonnegative
λ0

I
(

N∑
i=1

f ′
i(I(t))I −

N∑
i=1

fi(I(t))) ≥ 0,

from condition 1 (λS − λI) = 0 and λI > 0 and from (18) we received that
λ̇S(t

∗+)− λ̇I(t
+∗) < 0, then d

dt (λS(t
∗+)− λI(t

∗+)) < 0, which contradicts property
1, thus time moment t∗+ does not exist.
Step II. Consider formula (16) and suppose that condition 2. is satisfied, by

property 2. we have
λ0

I
(

N∑
i=1

f ′
i(I(t))I −

N∑
i=1

fi(I(t))) ≥ 0, for all t it is justified that

H(t) < 0, therefore d
dt (λS(t

∗+)−λI(t
∗+)) < 0. This also contradicts property 1. and

then time moment t∗+ does not exist in case II. Hence for all t ∈ [0, T ] condition
d
dt (λS(t)− λI(t)) > 0 is satisfied.

These proofed results can be formulated as lemmas.

Lemma 1. For all t, 0 < t < T following conditions hold (λS(t)− λI(t)) > 0 and
λI(t) ≤ 0.

Lemma 2. For all t on time interval 0 < t < T we have

(λ0

N∑
i=1

h′
i(u) + λS) < 0. (19)

Based on previous research (Khouzani et al., 2010; Khouzani et al., 2011;
Pontryagin et al., 1962), we show that an optimal control u(t) = (u1(t), u2(t)) has
following form.

Theorem 1. Optimal control program u(t) has following structure:
For all t such as 0 < t < t∗, u(t) satisfies:

λ0

σ

N∑
i=1

f ′
i(I(t) =

N∑
i=1

h′
i(u(t)), (20)

For all t such as t∗ < t < T :
u(t) = 0.

4. Numerical simulations

In this section we present numerical simulation which are used to illustrated the
structure of the optimal control and influence of the human decision to the epidemic
process. In the example we suppose that population size is N = 1000, initial fraction
of subpopulations are: S(0) = 950, I(0) = 50, R(0) = 0. Following values of the
system parameters are used in the simulation: h = 0, 1 is model step, δ0 = 0, 06 is
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transmissibility of decease, l = 35 is number of contacts per time unit, σ = 1/15 =
0, 06(6) is intensity of recovering.

Based on previous research and on the result of the experiments in this work we
assume that typical duration of disease is 10-15 days. After simulation we receive
that with mentioned initial states and auxiliary parameters the maximum quantity
of infected is I(t) = 511 and epidemic peak is reached at t = 15 day.

In figure 1 Susceptible-Infected-Recovered model is presented:

Fig. 1: SIR model without application of the control

Below we present the case, where we apply optimal intensity of vaccination (op-
timal control strategy), which allow to reduce the number of infected in population.
In current model vaccination was used as a control parameters in the system hence
agents from subpopulation Susceptible directly transfer to subpopulation Recov-
ered, obtaining immunity. After numerical simulations for the same initial data we
get that the maximum quantity of infected is I∗(t) = 426 at time t = 13. Therefore
we can see that maximum number of Infected is less than in previous case and in
comparing with Fig.1 epidemic peak is achieved early.

Fig. 2: Application optimal control to the SIR model.

In figure 3 we illustrate the optimal control that minimize aggregated costs on
the preventive measures. For the considered initial states optimal control will be
switched off at t∗ = 7 day.

One of the main aim of the work is to show that participation of agents in
vaccination company reduces aggregated costs of the entire population, hence in
following figures we present aggregated costs for different cases. First individual
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Fig. 3: Optimal control, uopt = 15 agents per day.

agents costs are define as follows: treatment costs are fi(I(t)) = aI(t) + b, where
a = 1, b = 1.4, vaccination costs hi(u(t)) = k1u

2+k2, and k1 = k2 = 0.5, li(R(t)) =
cR(t) + d, c = 1, d = 0.05.

In figures 4.-5 aggregated costs received for the time interval [0, T ] and they are
equal to J(u) = 801.5 monetary units (m.u.), which can be in US dollars, Rubles
or Euros depending on the context.

Fig. 4: Aggregated system cost for SIR model without application of the optimal control.

If optimal control is applied to the system then aggregated system costs decrease
and value of functional is equal to J(u) = 707, 14 m.u.

Fig. 5: Aggregated cost for SIR model with application of the optimal control.

To complete the our illustrative example let’s consider a modification of the
model, where we take into account only agents choices. Let’s say that for instance
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that intensity of vaccination is u = 5 agents per day, it means that only five agent
accept a decision about the participation in vaccination company. We should add
also that u < uopt. In such case dynamics in SIR model is changed, the maximum
number of infected is achieved at t∗ = 14 day and equal to Imax = 482 agents. The
result of simulation is presented in figure 6.

Fig. 6: SIR model with control parameter and decision making procedure.

We can see that the quantity of infected exceeds the number of infected in situa-
tion, where we apply optimal control strategy to the population, and the number of
agents, choosing vaccination decision is not enough to protect population during the
epidemic season. Hence in this case we also can show that aggregates costs increase
and value of functional is J(u) = 761.36 m.u.

Fig. 7: Aggregated costs with u = 0.005 is equal to J(u) = 761.36 m.u.

To summarize the results we have to add that since agents in population do not
have reliable information about epidemic situation then they may choose incorrect
decision, which provoke the degradation of epidemic state in total population.

5. Conclusion

In this paper, we have studied an epidemic model that takes into account the agent
motivation to participation in the vaccination company. We incorporate procedure
of making decision to the simple Susceptible-Infected-Recovered model and have
formulated this model in special case. Using Pontryagin’s maximum principle, we
have shown the structure of optimal control, which is depending on the agents costs
induced by choosing decisions. We supported our results with numerical simulations,
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observing different cases of epidemic process in entire urban population. In future
work we would extend this model including different structure of population, it
means that human decision may depend on his social group, not only his costs and
to modify the model, using number of contacts as a function of the time.
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