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1. Introduction

There has developed an interest in the theory and applications of linking, also called
‘interconnection’. The basic idea is the following. Consider a group of decision mak-
ers who are simultaneously involved in several different real world problems (issues).
The standard approach is to consider the decision making process for each problem
in isolation. In practice, however, the decision making process with respect to one
problem is usually influenced by the decision making processes with respect to the
other problems (spill-over effects or links). Discarding the links among the issues and
analyzing the decision process on each issue separately rather than in a multi-issue
decision making context is likely to lead to biased outcomes. Particularly, a single
issue approach ignores the possibility that if the issues have compensating asym-
metries of similar magnitudes, an exchange of concessions may allow and enhance
cooperation which extends beyond cooperation in the single issue context.

Some well-known real world examples of linking are the negotiations ‘on land
for peace’ between Israel and Palestina and the deal on WTO membership and
participation in the Kyoto agreement between the EU and Russia. In the economics
literature the notion of linking has been applied in the context of multimarket
behaviour in oligopolistic markets (see e.g. Bernheim andWhinston, 1990; Spagnolo,
1999) and of international environmental problems (see e.g. Folmer et al., 1993;
Botteon and Carraro, 1998; Carraro and Siniscalco, 1999; Finus, 2001).

A game theoretical framework for the linking of repeated games was developed
by Folmer et al. (1993) and by Folmer and von Mouche (1994). In Folmer and von
Mouche (2000) the following themes for linking of discounted infinitely repeated
games were suggested:
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– linking may sustain more cooperation;1
– linking may eliminate social welfare losses;
– linking may bring Pareto improvements;
– linking may facilitate cooperation.

We observe that ‘may’ is used here to indicate that the characteristics of linking of
repeated games mentioned do no hold unconditionally but depend on the particular
nature of the problem at hand. However, to our best knowledge, the conditions under
which these characteristics hold have not yet been thoroughly analysed which is a
major omission in the light of the practical and theoretical relevance of linking.
Admittedly, some results about the conditions under which the characteristics of
more cooperation and Pareto improvements hold can be found in Ragland (1995)
and Just and Netanyahu (2000). However, these results are limited in scope because
the settings in these publications concern the special case of linking of two repeated
2× 2-bimatrix games.

The main purpose of the article2 is to identify classes of isolated stages games for
which the themes ‘linking may sustain more cooperation’ and ‘linking may bring
Pareto improvements’ materialize or not; special attention is paid to the role of
asymmetries. As these themes refer to properties of subgame perfect Nash equi-
libria of the linked and isolated games, Folk theorems, and in particular feasible
individually rational payoff regions, come into the picture. In fact we formalize the
two themes in terms of these regions and analyse how these regions for the isolated
games relate to that of the linked game. Our results apply to the linking of an arbi-
trary finite number of discounted infinitely repeated games with an arbitrary finite
number of (the same) players.

From a mathematical point of view analysing the two themes concerns the han-
dling of two geometric problems. As these problems are in their own interesting
and make sense without their game theoretic motivation, we organize the article as
follows. In Section 2 we introduce notations and present some useful general results
about Minkowski sums, normal cones and Pareto boundaries with which we shall
handle the two geometric problems. The material in this section may have some
interest in its own, especially as we cannot give good references for it in the liter-
ature. In Section 3 we state and analyse the two geometric problems in their pure
form. Next, in Section 4 we show how the results in Section 3 induce results for the
two themes for linked repeated games.

2. Convexity and Geometry

For the whole article we fix positive numbers m,n and write

N := {1, . . . , n}, M := {1, . . . ,m}.

For a = (a1, . . . , an),b = (b1, . . . , bn) ∈ IRn we write a ≥ b if ai ≥ bi for all
i ∈ N . We write a > b if a ≥ b and a �= b. And we write a ! b if ai > bi for all
i ∈ N .
1 This is the counterpart of the theme ‘repetition enables cooperation’ for repeated games.
’More’ is relative to the single issue case.

2 The article concerns an improved version of Folmer and von Mouche (2007) and deals
with a research question proposed in Folmer and von Mouche(2000).
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The relation≥ on IRn is a partial order. ForA ⊆ IRn its (strong) Pareto boundary

P(A)

is defined as the set of maximal elements of A, i.e. as the set of elements a of A
for which there does not exist c ∈ A with c > a. And for A ⊆ IRn its weak Pareto
boundary

Pw(A)

is defined as the set of elements a of A for which there does not exist c ∈ A with
c! a. Of course, P(A) ⊆ Pw(A).

Proposition 1. Let A be a compact subset of IRn. For every a ∈ A there exists
b ∈ P(A) with b ≥ a. "

Proof. Z := {z ∈ IRn | z ≥ a} is closed. This implies that Z ∩ A is compact. As
a ∈ Z ∩ A w have Z ∩ A �= ∅ and therefore also P(Z ∩A) �= ∅. Take b ∈ P(Z ∩ A).
Then b ∈ Z ∩ A ⊆ Z, so b ≥ a. Now we prove by contradiction that b ∈ P(A). So
suppose there would exist c ∈ A with c > b. Then we had c > b ≥ a, so c ∈ Z ∩A
and c > b, which is a contradiction with b ∈ P(Z ∩A). Q.E.D.

Proposition 2. Let B,C ⊆ IRn. Suppose for no c ∈ C there exists d ∈ IRn \ C
with d > c. Then P(B ∩ C) = P(B) ∩C. "

Proof. ‘⊆’: by contradiction. So suppose a ∈ P(B ∩ C) and a �∈ P(B) ∩ C. As
a ∈ B ∩ C ⊆ C, it follows that a �∈ P(B). As a ∈ B, there is b ∈ B with b > a.
As a ∈ P(B ∩ C), it follows that b �∈ B ∩ C. Thus b ∈ IRn \ C, a ∈ C and b > a,
which is a contradiction.

‘⊇’: suppose d ∈ P(B)∩C. So d ∈ B ∩C. If we would have a ∈ B∩C such that
a > d, then, noting that a ∈ B and d ∈ B, we would have a contradiction. Q.E.D.

Denote the set of permutations of N by

Sn.

For π ∈ Sn, the mapping Tπ : IRn → IRn defined by

Tπ(x1, . . . , xn) := (xπ(1), . . . , xπ(n))

is a linear isomorphism. We have

Tπ2 ◦ Tπ1 = Tπ1◦π2 , Tid = id, (Tπ)
−1

= Tπ−1 .

We call A ⊆ IRn permutation-symmetric if Tπ(A) = A for all permutations
π ∈ Sn. So each subset of IR is permutation symmetric.

Define the function C : IRn → IR by

C(a) :=
∑
l∈N

al

and for a subset A of IRn, denoting by C � A the restriction of the function C to A,

S(A) := argmax(C � A), s(A) := sup(C � A). (1)
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The following simple properties hold:

s(Conv(A)) = s(A) and S(Conv(A)) = Conv(S(A)); (2)

for all π ∈ Sn : s(Tπ(A)) = s(A) and S(Tπ(A)) = Tπ(S(A)). (3)

Closedness (boundedness) of A implies closedness (boundedness) of S(A). And, with
Weierstrass’ theorem,

A non-empty and compact ⇒ S(A) non-empty and compact. (4)

The sets S(A),P(A),Pw(A) are subsets of the topological boundary ∂A of A:

S(A) ⊆ P(A) ⊆ Pw(A) ⊆ ∂A.

So, by (4), P(A) �= ∅ if A is non-empty and compact.

Definition 1. Let Ak (k ∈ M) be non-empty subsets of IRn and a ∈ A =
∑

k∈M Ak.3

We call (a(1), . . . , a(m)) ∈ A1 × · · · ×Am a decomposition of a if a =
∑
k∈M a(k). "

For this situation:

Proposition 3. For every p ∈ IRn and a ∈ A

p · z ≤ p · a (z ∈ A) ⇔ p · z(k) ≤ p · a(k) (k ∈ M, z(k) ∈ Ak). "

Proof. ‘⇒’: by contradiction, suppose there exists k and z(k) such that p · z(k) >
p · a(k). Then b := z(k) +

∑
l∈M\{k} a

(l) ∈ A and p · b > p · a, which is a
contradiction.

‘⇐’: suppose z ∈ A. Let (z(1), . . . , z(m)) be a decomposition of z. By assumption
p · z(k) ≤ p · a(k) (k ∈ M). Summing over k ∈ M gives p · z ≤ p · a. Q.E.D.

Proposition 4. Let Ak (k ∈ M) be subsets of IRn and A =
∑

k∈M Ak.

1. If Ak �= ∅ (k ∈ M), then s(A) =
∑

k∈M s(Ak).
2. S(A) =

∑
k∈M S(Ak). "

Proof. 1. As Ak �= ∅ (k ∈ M) we obtain

s(
∑
k

Ak) = sup(C(
∑
k

Ak)) = sup(
∑
k

C(Ak)) =
∑
k

sup(Ck(Ak)) =
∑
k

s(Ak).

2. In case there is an k with Ak = ∅, the desired result holds. Now suppose
Ak �= ∅ (k ∈ M). Taking p = (1, 1, . . . , 1) in Proposition 3 gives for a decomposition
(a(1), . . . , a(m)) of a ∈ A: a ∈ S(A) ⇔ a(k) ∈ S(Ak) (k ∈ M), i.e. the desired
result. Q.E.D.

Proposition 5. Let Ak (k ∈ M) be subsets of IRn and A =
∑

k∈M Ak.

1. Suppose every Ak is non-empty. For every decomposition (a(1), . . . , a(m)) of
a ∈ A it holds that a ∈ P(A) ⇒ a(k) ∈ P(Ak) (k ∈ M).

2. P(A) ⊆
∑

k∈M P(Ak). "
3 The sum here is a Minkowski sum.
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Proof. 1. By contradiction, suppose a ∈ P(A) and there exists l such that b(l) ∈ Al
and b(l) > a(l). With y := b(l)+

∑
k∈M\{l} a

(k) ∈ A one has y = a+(b(l)−a(l)) >
a, a contradiction.

2. This follows from part 1. Q.E.D.

In general, the inclusion in Proposition 5(2) is not an equality. Here is a special
case where equality holds:

Proposition 6. If m = 2 and A1 or A2 has a maximiser, then P(A1 + A2) =
P(A1) + P(A2). "

Proof. We may assume that A2 has a maximiser, say b. So we have

y ≤ b (y ∈ A2) (5)

This implies P (A2) = {b}. By Proposition 5(2) only ‘⊇’ remains to be proved. This
we do by contradiction. So suppose c ∈ P(A1) + P(A2), but c �∈ P(A1 + A2). Let
a ∈ P(A1) such that c = a + b. As c ∈ A1 + A2 and c �∈ P(A1 + A2), there is
d ∈ A1 +A2 with d > c. Let a′ ∈ A1 and b′ ∈ A2 such that d = a′ + b′. Then, by
(5), a′ > a+ (b− b′) ≥ a, so a′ > a. But a ∈ P(A1), a contradiction. Q.E.D.

Let A be a non-empty subset of IRn and z ∈ A, i.e. z is an element of the
topological closure of A. Then

NA(z) := {d ∈ IRn | d · (a− z) ≤ 0 for all a ∈ A}.

NA(z) is a convex cone and is called the normal cone of A in z. Moreover, we define
for z ∈ A the positive normal cone of A in z as

N+
A (z) := {d ∈ NA(z) | d > 0}.

Note that 0 ∈ NA(z), but that N+
A (z) may be empty.

Proposition 7. Let Ak (k ∈ M) be non-empty subsets of IRn, A =
∑

k∈M Ak and
(a(1), . . . , a(m)) a decomposition of a ∈ A. Then NA(a) = ∩k∈MNAk

(a(k)) and
N+
A (a) = ∩k∈MN+

Ak
(a(k)). "

Proof. We prove the first statement; then the second holds too.
⊆: suppose d ∈ NA(a). So d · z ≤ d · a (z ∈ A). Proposition 3 implies d · z(k) ≤

d · a(k) (k ∈ M, z(k) ∈ Ak). Thus d ∈ NAk
(ak) (k ∈ M).

⊇: suppose d ∈ ∩k∈MNAk
(a(k)). So d · z(k) ≤ d · a(k) (k ∈ M, z(k) ∈ Ak).

Proposition 3 implies d · z ≤ d · a (z ∈ A). Thus d ∈ NA(a). Q.E.D.

Proposition 8. Let A be a non-empty convex subset of IRn. Then z ∈ Pw(A) ⇒
N+
A (z) �= ∅. "

Proof. Define B := {b ∈ IRn | b ≥ z}. For
◦
B, i.e. for the topological interior of

B one has
◦
B = {b ∈ IRn | b ! z} and thus

◦
B ∩ A = ∅. The sets

◦
B and A are

convex, non-empty and disjoint. Using a separation theorem, there exists an affine
hyperplane that separates A and

◦
B. Therefore there exists d ∈ IRn \ {0} such that

d · a ≤ d · b (a ∈ A, b ∈
◦
B). Even now

d · a ≤ d · b (a ∈ A,b ∈ B). (6)



Analysing the Folk Theorem for Linked Repeated Games 151

With b = z it follows that d ·a ≤ d ·z (a ∈ A). Now we prove by contradiction that
d > 0. So (remembering that d �= 0) suppose di < 0 for some i. For b ∈ B defined
by bj := zj (j �= i) and bi := c where c ≥ ai, we have

d · b =

n∑
j∈N\{i}

djzj + dic.

For c large enough d · b ≤ d · z, which is a contradiction with (6). Q.E.D.

Proposition 9. For non-empty subsets A and B of IRn with A ⊆ B one has:
B compact and P(B) ⊆ A ⇒ N+

B (z) = N+
A (z) (z ∈ A). "

Proof. Because A ⊆ B one has N+
B (z) ⊆ N+

A (z). By contradiction we prove that
N+
B (z) ⊇ N+

A (z). So suppose d ∈ N+
A (z)\N+

B (z). Now (w−z) ·d ≤ 0 for all w ∈ A,
but not for all z ∈ B. This implies that there is a w ∈ B\A such that d·(w−z) > 0.
As B is compact, there is, by Proposition 1, b ∈ P(B) such that b ≥ w. As d > 0,
also d · (b− z) > 0. So b �∈ A. But b ∈ P(B) ⊆ A, which is a contradiction. Q.E.D.

3. Two Geometric Problems

3.1. Stating the Problems

In this section fix non-empty subsets U1, . . . , Um of IRn and define, denoting by IRn+
the closed positive octant of IRn,

Fk := Conv(Uk) ∩ IRn+ (k ∈ M), F :=
∑
k∈M

Fk,

U :=
∑
k∈M

Uk, F� := Conv(U) ∩ IRn+.

Note that Conv(U) =
∑

k∈M Conv(Uk). It is easy to see (also see Proposi-
tion 10(1)) that

F ⊆ F�. (7)

Problem 1. Provide interesting conditions under which F ⊂ F�.

Our second problem deals with the following object

EXP = {v ∈ P(F ) | there exists w ∈ F� with w! v}.

We refer to the elements of EXP as expansion points of PB(F ). Note that So

F = F� ⇒ EXP = ∅. (8)

Of course, also P (F ) = ∅ implies that EXP = ∅. But EXP = ∅ is also possible if
P (F ) �= ∅ and F ⊂ F� as Figure 4 below shows.

Problem 2. Provide interesting conditions under which EXP = ∅, under which
∅ ⊂ EXP ⊂ P(F ) and under which ∅ ⊂ EXP = P(F ).
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Now we illustrate these two problems (in case m = n = 2) with some figures.4

Remark. (1) In all these figures every Conv(Uk) are polygons. This makes that
Fk (k ∈ m), F,U and F� are polygons.

Figure 1 relates to

U1 = {(2, 1), (−3, 2), (5,−1), (0, 0)}, U2 = {(1, 2), (−1, 5), (2,−3), (0, 0)}.

Figure 1 (and also Figures 2 – 5) are to be interpreted as follows. Four polygons
are drawn: the sets Conv(U1) and Conv(U2), the Minkowski sum of these two sets
and the set F = F1 + F2 being the boldfaced polygon. These four polygons are
respectively drawn in the following three figures:

–2

2

4

–2 2 4

–4

–2

0

2

4

6

–4 –2 2 4 6

0

1

2

3

4

1 2 3 4

We note that in the case of Figure 1

U1 + U2 = {(3, 3), (1, 6), (−2, 4), (−4, 7), (4,−2), (2, 1), (−1,−1), (−3, 2),

(6, 1), (4, 4), (1, 2), (−1, 5), (7,−4), (5,−1), (2,−3), (0, 0)}.
Figure 2 relates to

U1 = {(0, 2), (3, 1), (−3, 0), (0, 0)}, U2 = {(0, 1), (1, 1/2), (−2, 0), (0, 0)}.

–4

–2

0

2

4

6

–4 –2 2 4 6

Fig. 1: F ⊂ F� and ∅ ⊂ EXP = P (F ). (Neither U1 nor U2 is permutation-symmetric).

Figure 3 relates to

U1 = {(7, 1), (−3, 3), (10,−2), (0, 0)}, U2 = {(1, 7), (−2, 10), (3,−3), (0, 0)}.

Figure 4 relates to

U1 = {(2, 2), (−2, 4), (4,−2), (0, 0)}, U2 = {(2, 2), (−1, 1), (1,−1), (0, 0)}.
4 Figures 1, 3, 4, 5 are taken from Folmer and von Mouche (2000).
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Fig. 2: F = F� and EXP = ∅. (Neither U1 nor U2 is permutation-symmetric).
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Fig. 3: F ⊂ F� and ∅ ⊂ EXP ⊂ P (F ) (U1 and U2 are not permutation-symmetric).

Figure 5 relates to

U1 = {(2, 2), (−2, 10), (10,−2), (0, 0)}, U2 = {(3, 3), (−3, 4), (4,−3), (0, 0)}.

3.2. On Problem 1
Now let us return to Problem 1.

Proposition 10. 1. F ⊆ F�. And F = F� if and only if
∑
k∈M (Conv(Uk)∩IRn+) ⊇

IRn+ ∩
∑
k∈M Conv(Uk).

2. If m = 1, then F = F�. "

Proof. 1. F =
∑

k∈M (Conv(Uk) ∩ IRn+) ⊆
∑

k∈M IRn+ ∩
∑
k∈M Conv(Uk) = IRn+ ∩∑

k∈M Conv(Uk) = F�.
2. F = F1 = Conv(U1) ∩ IRn+ = Conv(U) ∩ IRn+ = F�. Q.E.D.

Of course, because of (7), if F� = ∅, then F = F� holds. The next proposition
identifies two little bit less trivial cases for this to hold:

Proposition 11. Each of the following conditions is sufficient for F = F� to hold.

1. There exist rk > 0 (k ∈ M) and c ∈ IRn such that Uk = rk(U1 + c) (k ∈ M).
2. Uk ⊆ IRn+ (k ∈ M). "

Proof. 1. We have Conv(Uk) ∩ IRn+ = Conv(rk(U1 + c)) ∩ IRn+ = rk Conv(U1 + c) ∩
rkIR

n
+ = rk(Conv(U1+c)∩IRn+); here the last equality holds as rk �= 0. This implies,

with r :=
∑
k rk and with sums on k ∈ M∑

(Conv(Uk) ∩ IRn+) =
∑

rk(Conv(U1 + c) ∩ IRn+) = r(Conv(U1 + c) ∩ IRn+);
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Fig. 4: F ⊂ F� and EXP = ∅ (U1 and U2 are permutation-symmetric).
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Fig. 5: F ⊂ F� and ∅ ⊂ EXP ⊂ P (F ) (U1 and U2 are permutation-symmetric).

here the last equality holds as IRn+ ∩ Conv(U1 + c) is convex and the rk are non-
negative. Further

r(Conv(U1 + c) ∩ IRn+) = r Conv(U1 + c) ∩ r IRn+ = r Conv(U1 + c) ∩ IRn+

= IRn+ ∩
∑

(rk Conv(U1 + c)) = IRn+ ∩
∑

Conv(Uk).

So the proof is complete by Proposition 10(1).
2. Using Uk ⊆ IRn+ and

∑
k Conv(Uk) ⊆ IRn+ we obtain

∑
k(Conv(Uk) ∩ IRn+) =∑

k Conv(Uk) = Conv(
∑

k Uk) = Conv(
∑

k Uk)∩IR
n
+ = IRn+∩

∑
k Conv(Uk). Q.E.D.

Figure 2 shows that there are situations with F = F� that are not covered by
Proposition 11. In all other figures F ⊂ F� holds. Theorem 1 below gives our main
result for F ⊂ F� to hold. This theorem is based on the following principle:

Proposition 12. Suppose there exists l ∈ M such that Conv(S(Ul))∩ IRn+ = ∅ and
S(U) ∩ IRn+ �= ∅, then F ⊂ F�. "

Proof. We shall prove that S(U) ∩ IRn+ ⊆ F� \ F (and then the desired result
follows). So fix b ∈ S(u) ∩ IRn+. Of course, b ∈ F�. Now we shall prove by contra-
diction that b �∈ F . So suppose b ∈ F =

∑
k Fk. Take hk ∈ Conv(Uk) ∩ IRn+ such

that b =
∑

k h
k. Using (2), we have for every k ∈ M∑

j

hkj ≤ s(ConvUk) = s(Uk). (9)

Because hl ∈ IRn+ it follows that hl �∈ Conv(S(Ul)) and so hl ∈ Conv(Ul) \
Conv(S(Ul)). By virtue of (2) we have Conv(S(Ul)) = S(Conv(Ul)) and so hl ∈
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Conv(Ul) \ S(Conv(Ul)). Therefore, in (9) we have a strict inequality for k = l.
Because b ∈ S(U), one has

∑
j bj = s(U). With Proposition 4 it follows that

s(U) =
∑
k s(Uk) >

∑
k

∑
j F

k
j =

∑
j

∑
k F

k
j =

∑
j bj = s(U), which is a contra-

diction. Q.E.D.

Now we shall identify a more concrete situation (i.e. in terms of the Uk) that
satisfies this principle. In order to do so we introduce some notions in the following
two definitions.

Definition 2. Let Ak (k ∈ M) be subsets of IRn. The sets Ak (k ∈ M) have
compensating asymmetries of exactly the same magnitude if m = n and there are
πk ∈ Sn (k ∈ M) with π1 = Id such that

{π1(j), . . . , πn(j)} = N (j ∈ N) and Ak = Tπk
(A1) (k ∈ M). "

Remarks. (2) If m = n = 1, then A1 has compensating asymmetries of exactly
the same magnitude.

(3) If at least one Ak is permutation-symmetric, then Ak (k ∈ M) have com-
pensating asymmetries of exactly the same magnitude if and only if all Ak are
identical.

(4) If Ak (k ∈ M) have compensating asymmetries of exactly the same mag-
nitude, their Minkowski sum A is not necessarily permutation-symmetric as the
following example shows;5 but it is if m = 2 as Proposition 13(4) shows.

Example 1. Let m = n = 3, A1 = {(3, 0, 1), (0, 2, 4)} and (using cycle notations)
π1 = id, π2 = (132), π3 = (123). So A2 = π2(A1) = {(1, 3, 0), (4, 0, 2)}, A3 =
π3(A1) = {(0, 1, 3), (2, 4, 0)}. The sets Ak (k ∈ M) have compensating asymmetries
of exactly the same magnitude and

A = {(4, 4, 4), (6, 7, 1), (7, 1, 6), (9, 4, 3), (1, 6, 7), (3, 9, 4), (4, 3, 9), (6, 6, 6)}. "

Proposition 13. Suppose Ak (k ∈ M) are subsets of IRn that have compensating
asymmetries of exactly the same magnitude. Let A =

∑
k∈M Ak and l ∈ M .

1. S(Al) �= ∅ ⇔ S(A) �= ∅. And #S(Al) = 1 ⇔ #S(A) = 1.
2. If S(Al) �= ∅, then (s(Al), . . . , s(Al)) ∈ S(A).
3. s(A) = ns(Al).
4. If m = 2, then A is permutation-symmetric. "

Proof. It is easy to see that we may suppose l = 1.
Let πk (k ∈ M) be as in Definition 2. By Proposition 4(2) and (3)

S(A) =
∑
k∈M

Tπk
(S(A1)). (10)

1. By (10).
2. Let a ∈ S(A1). By (10), b :=

∑
k Tπk

(a) ∈ S(A). For i ∈ N we have
bi =

∑
k aπk(i) =

∑
k ak. Thus b1 = · · · = bn. As nb1 = s(A) = ns(A1) it follows

that b = (s(A1), . . . , s(A1)) ∈ S(A).

5 Indeed, there T(12)A �= A.



156 Henk Folmer, Pierre von Mouche

3. This holds if A1 = ∅. Now suppose A1 �= ∅. By Proposition 4, s(A) =
s(
∑
k Tπk

(A1)) =
∑

k s(Tπk
(A1)) =

∑
k s(A1) = ns(A1).

4. Let π ∈ Sn. We shall prove that Tπ(A) = A. Well, Tπ(A) = Tπ(A1 +
Tπ2(A1)) = Tπ(A1) + Tπ(Tπ2(A1)) = Tπ(A1) + (Tπ2◦π)(A1). As S2 = {π1, π2},
we obtain Tπ(A) = A1 + Tπ2(A1) = A. Q.E.D.

The notion in the following definition is taken from Folmer and von Mouche
(2000).

Definition 3. Let X be a subset of IRn. For j ∈ N , X has a j-defect if yj < 0 for
all y ∈ S(X). And X has a defect if it has a j-defect for some j. "

Proposition 14. Let X be a subset of IRn with a defect.

1. If X has a j-defect and π ∈ Sn, then Tπ(X) has a π−1(j)-defect.
2. If S(X) �= ∅ and X ∩ IRn+ �= ∅, then X is not permutation-symmetric.
3. Conv(S(X)) ∩ IRn+ = ∅. "

Proof. We suppose that X has a j-defect.
1. Suppose b ∈ S(Tπ(X)). By (3), b ∈ Tπ(S(X)). Take a ∈ S(X) such that

b = Tπ(a). So bπ−1(j) = aj . Using that X has a j-defect, we see that bπ−1(j) < 0.
2. By contradiction, suppose X is permutation-symmetric. By part 1, for each

π ∈ Sn the set Tπ(X) has a π−1(j)-defect. As Tπ(X) = X , the set X has an i-defect
for every i ∈ N . Take y ∈ S(X). Now yi < 0 (i ∈ N). Let w ∈ X ∩ IRn+. Then one
has

∑n
j=1 wj ≥ 0 >

∑n
i=1 yi, a contradiction with y ∈ S(X).

3. With Ij := {a ∈ IRn | aj < 0}, X having a j-defect is equivalent with
S(X) ⊆ Ij . As Ij is convex, this in turn is equivalent with Conv(S(X)) ⊆ Ij . As
Ij ∩ IRn+ = ∅, it follows that Conv(S(X)) ∩ IRn+ = ∅. Q.E.D.

Proposition 15. Suppose Uk (k ∈ M) have compensating asymmetries of exactly
the same magnitude. Let l ∈ M .

1. [S(Ul) �= ∅ and s(Ul) ≥ 0] ⇔ S(U) ∩ IRn+ �= ∅.
2. [S(Ul) �= ∅ and s(Ul) > 0] ⇔ S(U) ∩ IRn++ �= ∅. "

Proof. 1. ‘⇐’: so S(U) �= ∅. By Proposition 4, S(Ul) �= ∅. Take u ∈ S(U) ∩ IRn+.
Then s(U) = C(u) ≥ 0. Proposition 13(3) implies s(Ul) ≥ 0.

‘⇒’: with Proposition 13(2), (s(Ul), . . . , s(Ul)) ∈ S(U) ∩ IRn+.
2. Analogous to part 1. Q.E.D.

Theorem 1. Suppose Uk (k ∈ M) have compensating asymmetries of exactly the
same magnitude, S(U1) �= ∅ and s(U1) ≥ 0.6

1. (a) S(U) ∩ IRn+ �= ∅, so U does not have a defect.
(b) if U1 has a defect, then F ⊂ F�.

2. Suppose U1 ∩ IRn+ �= ∅. Fix n ∈ U1 ∩ IRn+ and y ∈ S(U1).
(a) No Uk is permutation-symmetric.
(b) With7 a :=

∑
k Tπk

(n) and b :=
∑
k Tπk

(y) we have a ∈ U ∩ IRn+,
b ∈ S(U) and b! a.

6 This implies that n �= 1 and therefore also that m �= 1.
7 Here πk (k ∈M) are as in Definition 2.
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(c) S(U) ∩ IRn++ �= ∅. "

Proof. 1a. By Proposition 15(1).
1b. By the principle (i.e. Proposition 12). It applies by virtue of Proposition 14(3)

and part 1a.
2. a. By Proposition 14(2), U1 is not permutation symmetric. Now further apply

also the first part of this proposition.
b. Note that Tπk

(n), Tπk
(y) ∈ Uk (k ∈ M). Also Tπk

(n) ∈ IRn+ (k ∈ M). So

a =
∑
k

Tπk
(n) ∈ U ∩ IRn+, b =

∑
k

Tπk
(y) ∈ U.

By (3), Tπk
(y) ∈ S(Tπk

(U1)) = S(Uk) (k ∈ M). By Proposition 4, b ∈ S(U).
For i ∈ N we have ai =

∑
k nπk(i) =

∑
k nk and bi =

∑
k yπk(i) =

∑
k yk. So

a1 = a2 = · · · = an =: a and b1 = b2 = · · · = bn =: b follows. As U1 has a defect
and n ∈ IRn+, n �∈ S(U1) holds. Proposition 3 now implies that a �∈ S(U). It follows
that na < nb. Therefore a < b which implies that b! a.

c. By part 2b. Q.E.D.

Theorem 1(1b) explains F ⊂ F� in Figure 1. In this figure also the assumptions
of Theorem 1(2) and therefore also its conclusions hold.

Although in Theorem 1(2) no Uk is permutation symmetric, we observe from
Figures 4 and 5 that F ⊂ F� is compatible with every Uk permutation-symmetric.

The next result generalises Theorem 1(1): indeed, there in case s(U1) ≥ 0 it is
possible to take Wk = Uk (k ∈ M) and v(k) = Tπk

(y) (k ∈ M).

Theorem 2. Suppose Uk (k ∈ M) have compensating asymmetries of exactly the
same magnitude and S(U1) �= ∅. Fix y ∈ S(U1). Suppose W1, . . . ,Wn are subsets of
IRn such that for every k ∈ M there exists v(k) ∈ S(Wk) such that

v
(k)
i ≥ yπk(i) −

s(U1)

n
(i ∈ N). (11)

Let W :=
∑

kWk,

1. (a) S(W ) ∩ IRn+ �= ∅, so W does not have a defect;
(b) if some Wk has a defect, then F ⊂ F�.

2. if the inequalities in (11) are strict, then S(W ) ∩ IRn++ �= ∅. "

Proof. 1a. Let v :=
∑

k v
(k). By Proposition 4(2), v ∈ S(W ). For i ∈ N we have

vi =
∑
k

v
(k)
i ≥

∑
k

(yπk(i) −
s(U1)

n
) =
∑
k

yk − s(U1) = s(U1)− s(U1) = 0.

Thus also v ∈ IRn+.
1b. By the principle. It applies by virtue of Proposition 14(3) and part 1a.
2. Analogous to part 1a. Q.E.D.

Figure 3 shows that there are situations where the Uk (k ∈ M) have compensat-
ing asymmetries of exactly the same magnitude where F ⊂ F� holds that are not
covered by Theorem 1.



158 Henk Folmer, Pierre von Mouche

3.3. On Problem 2
Now let us return to problem 2.

Proposition 16. 1. P(F�) = P(Conv(U)) ∩ IRn+ and P(Fk) = P(Conv(Uk)) ∩
IRn+ (k ∈ M).

2. EXP = P(F ) \ Pw(F�). "

Proof. 1. By Proposition 2.
2. ‘⊆’: suppose u ∈ EXP. Then u ∈ P(F ) and there exists w ∈ F� such that

w! u. By (7), u ∈ F�. Therefore u �∈ Pw(F�).
‘⊇’: suppose u ∈ P(F ) \ Pw(F�). By (7), u ∈ F�. As u �∈ Pw(F�), there is an

w ∈ F� with w! u. Thus u ∈ EXP. Q.E.D.

Theorem 1(1b) also explains F ⊂ F� in the following example and shows that
EXP = ∅ can hold under the general assumptions of Theorem 1.

Example 2. m = n = 2, U1 = {(−1, 1), (−1,−2)}, U2 = {(1,−1), (−2,−1)}. Now
U = {(0, 0), (−3, 0), (0,−3), (−3,−3)}, F1 = ∅, F2 = {−1} × [0, 1], F = ∅, F� =
{(0, 0)}, F ⊂ F� and EXP = ∅. "

Proposition 17. If a ∈ P(F ), then a ∈ EXP ⇔ N+

Conv(U)
(a) = ∅. "

Proof. ‘⇒’: let c ∈ F� such that c ! a. For all d > 0 one has d · (c − a) > 0.
Because c ∈ Conv(U), it follows that d �∈ N+

Conv(U)
(a).

‘⇐’: by Proposition 8, a �∈ Pw(Conv(U)). So there exists c ∈ Conv(U) with
c! a. Since a ∈ IRn+, also c ∈ IRn+. This implies c ∈ F�. Thus a ∈ EXP. Q.E.D.

We have already seen that if F = F� holds, then EXP = ∅. A natural question
now is whether F ⊂ F� implies that EXP = ∅. The answer is ‘no’ as Figure 3
shows. Proposition 11(2) implies that the condition Uk ⊆ IRn+ (k ∈ M) is sufficient
for EXP = ∅ to hold. This condition is quite strong. In the next proposition, which
also explains EXP = ∅ in Figure 4, there are more interesting conditions.

Proposition 18. If, in case m = 2, P(Conv(U)) ⊆ IRn+ and Conv(U1) or Conv(U2)
has a maximiser which belongs to IRn+, then

1. P(F�) ⊇ P(F );
2. EXP = ∅. "

Proof. 1. We may assume that Conv(U2) has a maximiser, say b. This implies
P (Conv(U2)) = {b}. As b ∈ IRn+, we have b ∈ F2. This implies that b also is
a maximiser of F2 and therefore P (F2) = {b}. Now with Proposition 16(1) and
Proposition 6

P(F�) = P(Conv(U)) ∩ IRn+ = P(Conv(U)) = P(Conv(U1) + Conv(U2))

= P(Conv(U1)) + P(Conv(U2)) ⊇ P(Conv(U1)) ∩ IRn+ + P(Conv(U2))

= P(F1) + P(F2) = P(F1 + F2) = P(F ).

2. By part 1 and Proposition 16(2). Q.E.D.
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Remark. (5) Figure 4 shows that the general conditions of Proposition 18 are
compatible with F ⊂ F�,EXP = ∅ and P(F�) ⊂ P(F ).

The next theorem explains EXP = ∅ in Figure 2.

Theorem 3. Suppose Conv(Uk) (k ∈ M) are compact. If P(Conv(Uk)) ⊆ IRn+ (k ∈
M), then EXP = ∅. "

Proof. According to Proposition 17 the proof is complete if we can prove that
N+

Conv(U)
(z) �= ∅ for all z ∈ P(F ). So suppose z ∈ P(F ) = P(

∑
k Fk). By Proposi-

tion 8 one has N+∑
k Fk

(z) �= ∅. As z ∈
∑

k Fk, there exists z(k) ∈ Fk (k ∈ M) such
that z =

∑
k z

(k). With Proposition 7 one obtains

∅ �= N+∑
k Fk

(z) = ∩kN+
Fk
(z).

By assumption P(Conv(Uk)) ⊆ IRn+ for all k. Therefore P(Conv(Uk)) ⊆ Conv(Uk)∩
IRn+ = Fk. So we can apply Proposition 9 with A = Fk, B = Conv(Uk) and z = z(k)

and get
N+

Conv(Uk)
(z(k)) = N+

Fk
(z(k)) (k ∈ M)

and therefore ∩kN+

Conv(Uk)
(z) �= ∅. Applying Proposition 7, N+

Conv(U)
(z) �= ∅

follows. Q.E.D.

Note that in Figure 2 even F = F� holds. However, under the conditions of
Theorem 3, F ⊂ F� may hold as the following example shows.

Example 3. In case m = 3, n = 1, U1 = {−1, 1}, U2 = {2}, U3 = {3} one has
F = [5, 6], F� = [4, 6]. Thus F ⊂ F� and EXP = ∅. "

The above results partially solve Problem 2.

4. Application to Linked Repeated Games

4.1. Games in strategic form
Consider a game in strategic form Γ among n players. That is, for each player
i ∈ N = {1, . . . , n} we have a non-empty (action) set X i and a real-valued (payoff )
function f i on the set of action profiles X := X1 × · · · × Xn. For x ∈ X,
f(x) := (f1(x), . . . , fn(x)) is called the payoff vector at x and f i(x) is called
the payoff of player i at x. We call

B := {f(x) | x ∈ X}

the set of basic payoff vectors. Its convex hull Conv(B) is called the feasible set. The
minimax payoff of player i is defined by

vi := inf
z∈X1×···×Xi−1×Xi+1×···×Xn

sup
xi∈Xi

f i(z1, . . . , zi−1, xi, zi+1, . . . , zn).

An element w of IRn is called individually rational if wi ≥ vi (i ∈ N) and strictly
individually rational if wi > vi (i ∈ N)
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We call the game regular if each payoff function is bounded and each player has
minimax payoff 0.8

A Nash equilibrium e is an action profile with the property that for every i ∈
N the function f i(e1, . . . , ei−1, ·, ei+1, . . . , en) has ei as maximiser. Payoff vectors
at Nash equilibria are individually rational. An action profile that maximises the
total payoff function

∑
i∈N f i is called fully cooperative. Denoting the set of fully

cooperative strategy profiles by Y we have (in terms of (1)

S(B) = f(Y ), (12)

So sufficient for Y to be non-empty is that B is compact.
For π ∈ Sn, i.e. a permutation of N , the game in strategic form π(Γ ) (called

a permuted game of Γ ) is defined as the game in strategic form where the action
set Zi of player i is Xπ(i) and his payoff function hi is given by hi(z1, . . . , zn) =

fπ(i)(zπ
−1(1), . . . , zπ

−1(n)). Note that

the set of basic payoff vectors of π(Γ ) equals Tπ(B). (13)

The game Γ is called symmetric if each player has the same action set and if for
every π ∈ Sn one has Γ = π(Γ ). If Γ is symmetric, then Tπ(B) = B for all π ∈ Sn,
i.e. (see section 2) B is permutation-symmetric.

4.2. Repeated games
A repeated game is specified by a game in strategic form Γ , called the stage game,
a number T (positive or +∞) and a number δ ∈ [0, 1]. Such a game simply will be
denoted by

< Γ > .

T is called the number of repetitions and δ is called a discount factor.9 When T =
∞, we always suppose to avoid convergence problems that δ < 1 and that payoff
functions are bounded. Itself < Γ > is a game in strategic form with player set
N where the action set of player i now is called his strategy set, denoted by [X i],
and defined as the collection of sequences of mappings σi = (σit)0≤t<T with σit :∏t−1
τ=0X → X i. And the payoff function of player i in < Γ > is the function

[f i] : [X1]× · · · × [Xn]→ IR defined by

[f i](σ) :=

T−1∑
t=0

δtf i(at(σ)),

where ajt (σ) ∈ Xj (0 ≤ t < T ), called outcome path for player j, inductively is
defined by aj0(σ) := σj0 and ajt (σ) := σjt (a0(σ), a1(σ), . . . , at−1(σ)) (1 ≤ t < T ).

For a regular game in strategic form Γ the intersection of IRn+ and its feasible set
is an important object. One calls it the feasible individually rational payoff region
of the game. The feasible individually rational payoff region plays an important role
in Folk theorems which relate to the geometric structure of the set of (average)

8 Note that for a regular game in strategic form it is possible that its feasible set does not

contain 0. Indeed, this for example holds for the regular bimatrix game
(−2; 2 0; −4
1; −3 −2; 0

)
.

9 Notice that in our setting a discount factor is player independent.



Analysing the Folk Theorem for Linked Repeated Games 161

subgame perfect Nash equilibrium payoff vectors for infinitely repeated games <
Γ >. For the purpose of this paper it is not necessary to go into the details of the
Folk theorems.10 For this, we refer to, for example, Benoît and Krishna (1996).

4.3. Direct sum games
Consider games in strategic form 1Γ, . . . ,mΓ with (the same) n players. We refer
to them as isolated stage games. M = {1, . . . ,m} is the set of issues. Denote, for
k ∈ M , by

Uk

the set of basic payoff vectors of kΓ . So Uk ⊆ IRn. Let, for k ∈ M and j ∈ N ,
kX

j be the action set and kf
j the payoff function of player j in kΓ . Define for each

k ∈ M

kX := kX
1 × · · · × kX

n

and for each player j ∈ N

∗Xj := 1X
j × · · · × mXj.

Moreover, define the mapping Ψ : 1X× · · · × mX→ ∗X1 × · · · × ∗Xn by

Ψ(1x, · · · ,mx) := (∗x1, . . . , ∗xn).

Ψ is called the canonical mapping. Note that the canonical mapping is a bijection.
The trade-off direct sum game (⊕Γ )α is defined as the game in strategic form where
player j has action set ∗Xj and his payoff function is given by11

f jα(∗x
1, . . . , ∗xn) :=

∑
k∈M

kf
j(kx

1, . . . , kx
n).

(In the case of two bimatrix games (⊕Γ )α is the tensor sum of the individual
bimatrix games.) The set of basic payoffs vectors U of (⊕Γ )α equals the Minkowski
sum of the Uk:

U =
∑
k∈M

Uk.

Let, for k ∈ M , kE be the set of Nash equilibria of kΓ , kY the set of fully
cooperative action profiles of kΓ . And let Eα be the set of Nash equilibria of (⊕Γ )α
and Yα the set of fully cooperative action profiles of (⊕Γ )α . It can be shown that
(see Folmer and von Mouche (1994))

Ψ(1E × · · · × mE) = Eα, (14)

Ψ(1Y × · · · × mY ) = Yα (15)

and also that regularity of each kΓ implies regularity of (⊕Γ )α. In this case the
feasible individually rational payoff region of kΓ is

Fk := Conv(Uk) ∩ IRn+

10 Especially one has to specify the types of strategies.
11 The α refers to the fact that in this formula the payoffs of the isolated games are added
(with weights 1).
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and the feasible individually rational payoff region of (⊕Γ )α is

F� = Conv(U) ∩ IRn+.

Finally, define the aggregated feasible individually rational payoff region as

F :=
∑
k∈M

Fk.

4.4. Tensor games
Let 1Γ, . . . ,mΓ be regular isolated stage games with (the same) n players and
consider the infinitely repeated games < kΓ > (k ∈ M).12 Linking of the (isolated)
repeated games < kΓ > (k ∈ M) is done by combining them into a repeated
game (⊗Γ )α, a so-called trade-off tensor game. Formally (⊗Γ )α just is the infinitely
repeated game with (⊕Γ )α as stage game. In Folmer et al. (1993) it is shown that
Nash equilibria for each repeated game < kΓ > lead in a canonical way to a Nash
equilibrium for the trade-off tensor game (⊗Γ )α.

13 In general, the trade-off tensor
game also has other (subgame perfect) Nash equilibria. Folk theorems are useful
for investigating these equilibria. In fact, the effects of linking can be studied by
comparing the sets F and F�. This has been done in Section 3. All the results
there, in particular F ⊆ F�, apply. The five figures in Section 3 are compatible with
the following regular games. Below we shall discuss game theoretic pendants of the
results in Section 3.

Figure 1: 1Γ =

(
2; 1 −3; 2
5; −1 0; 0

)
, 2Γ =

(
1; 2 −1; 5
2; −3 0; 0

)
.

Figure 2: 1Γ =

(
0; 2 3; 1
−3; 0 0; 0

)
, 2Γ =

(
0; 1 1; 0.5
−2; 0 0; 0

)
.

Figure 3: 1Γ =

(
7; 1 −3; 3

10; −2 0; 0

)
, 2Γ =

(
1; 7 −2; 10
3; −3 0; 0

)
.

Figure 4: 1Γ =

(
2; 2 −2; 4
4; −2 0; 0

)
, 2Γ =

(
2; 2 −1; 1
1; −1 0; 0

)
.

Figure 5: 1Γ =

(
2; 2 −2; 10

10; −2 0; 0

)
, 2Γ =

(
3; 3 −3; 4
4; −3 0; 0

)
.

A strict inclusion F ⊂ F� (see Problem 1 in Section 3) can be interpreted as
‘linking sustains more cooperation’. And EXP �= ∅, i.e. the existence of an expansion
point of the Pareto boundary PB(F ) (see Problem 2 in Section 3), can be interpreted
as ‘Linking brings Pareto improvements’. So in this way we now have formalized for
tensor games the themes ‘linking may sustain more cooperation’ and ‘linking may
bring Pareto improvements’ from the introduction.

The results in Section 3 now can be formulate in terms of the above game the-
oretic situation. (8) implies that in the case linking brings Pareto improvements, it
also sustains more cooperation. The reverse does not hold in general. Proposition 11
leads in an obvious way to two classes of isolated stage games for which linking does
12 It is is implicitly assumed that in each of them the periods are the same and the discount
factors are the same.

13 It is straightforward to show that this statement remains valid if one replaces ‘Nash
equilibrium’ by ‘subgame perfect Nash equilibrium’.



Analysing the Folk Theorem for Linked Repeated Games 163

not sustain more cooperation. The next theorem is the game theoretic pendant of
Theorem 1 and is a formalisation of the basic idea that an exchange of concessions
may enhance cooperation if the issues have compensating asymmetries of similar
magnitude.

Theorem 4. Consider isolated regular stage games 1Γ, . . . ,mΓ with m = n players
for which there are πk ∈ Sn (k ∈ M) with π1 = Id such that {π1(j), . . . , πn(j)} =
N (j ∈ N) and kΓ = Tπk

(1Γ ) (k ∈ M). Also suppose the basic payoff set U1 is
compact. Suppose 1Γ has a Nash equilibrium and U1 has a defect.

1. Then linking sustains more cooperation.
2. The game (⊕Γ )α has a Nash equilibrium e and a fully cooperative action pro-

file y, with strictly individually payoff vector, which is an unanimous Pareto
improvement of e.14 "

Proof. Let n be a Nash equilibrium of 1Γ . As 1f(n) is individually rational, we
have 1f(n) ∈ U1 ∩ IRn+. So s(U1) ≥ 0. As U1 is compact, S(U1) �= ∅. By (12),
S(U1) = 1f(1Y ). Fix r ∈ 1Y . So 1f(r) ∈ S(U1).

1. (13) implies that Uk (k ∈ M) have compensating asymmetries of exactly the
same magnitude. Now apply Theorem 1(1b).

2. Now kx := (nπk(1), . . . , nπk(n)) ∈ kE (k ∈ M). By (14), e := Ψ(1x, . . . ,mx)
∈ Eα, i.e. e is a nash equilibrium of (⊕Γ )α. Also kz := (rπk(1), . . . , rπk(n)) ∈
kY (k ∈ M). By (15), y := Ψ(1z, . . . ,mz) ∈ Yα, i.e. y is a fully cooperative action
profile of (⊕Γ )α.

The payoff vector at e equals a :=
∑

k∈M Tπk
(1f(n)).15 And that at y equals

b :=
∑

k∈M Tπk
(1f(y)). Now apply Theorem 1(2b,2c). Q.E.D.

With Theorem 2 we have studied how far can one deviate in Theorem 1 from
the situation of (exact) permuted games. In doing so, we have made more precise
the above ‘similar magnitude’. Concerning Pareto improvements, we identified in
Proposition 18 and Theorem 3 classes where linking does not bring Pareto improve-
ments. We also showed with Figure 5 that in the case all isolated stage game are
symmetric (but not identical), more cooperation and even Pareto improvements are
possible.

We note that the above isolated stage games related to Figures 1, 3 and 5 are
prisoners’ dilemma games.16 Concerning this we mention that sufficient for the
condition ‘Suppose 1Γ has a Nash equilibrium and U1 has a defect’ in Theorem 4
to hold is that 1Γ is a 2× 2-bimatrix prisoners’ dilemma game with a unique fully
cooperative action profile.17

14 I.e. f j
α(y) > f j

α(e) (j ∈ N).
15 Indeed: a = (

∑
k kf

1(kx), . . . ,
∑

k kf
n(kx)) =

∑
k(kf

1(kx), . . . , kf
n(kx)) =∑

k(1f
πk(1)(n), . . . , 1f

πk(n)(n)) =
∑

k Tπk(1f
1(n), . . . , 1f

n(n)) =
∑

k Tπk(1f(n)).
16 We call a game in strategic form a prisoners’ dilemma game if every player i ∈ N has
a strictly dominant action (i.e. a unique action that gives player i for every choice of
actions of the other players a maximal payoff) and the unique Nash equilibrium is in
the weak sense Pareto-inefficient (i.e. there exists an action profile in which every payoff
is higher than in the equilibrium).

17 Indeed, for this situation 1Γ has a Nash equilibrium and a defect. The existence of a
defect follows from the fact that for every 2 × 2-bimatrix prisoners’ dilemma game for
each player his payoff at the unique Nash equilibrium equals his minimax payoff 0.
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