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Abstract Since the seminal work of John Maynard Smith (1982), a vast
literature has developed on evolution analysis through game theoretic tools.
Among the most popular evolutionary systems is the Replicator Dynamics,
based in its classical version on the combination between a standard non
cooperative matrix game and a dynamic system which evolution depends on
the payoffs of the interacting species.
Despite its weaknesses, in particular the fact that it does not take into
account emergence and development of species that did not initially exist,
the Replicator Dynamics has the advantage of proposing a relatively simple
model that analyzes and tests some core features of Darwinian evolution.
Nevertheless, the simplicity of the model reaches its limits when one needs
to predict accurately the conditions for reaching evolutionary stability. The
reason for it is quite obvious: it stems from the possible difficulties to find
an analytical solution to the system of equations modelling the Replicator
Dynamics.
An alternative approach has been developed, based on matrix games of a
different kind, called Games of Deterrence. Matrix Games of Deterrence are
qualitative binary games in which selection of strategic pairs results for each
player in only two possible outcomes: acceptable (noted 1) and unacceptable
(noted 0). It has been shown (Rudnianski, 1991) that each matrix Game
of Deterrence can be associated in a one to one relation with a system of
equations called the playability system, the solutions of which determine the
playability properties of the players’ strategies.
Likewise, it has been shown (Ellison and Rudnianski, 2009) that one could
derive evolutionary stability properties of the Replicator Dynamics from the
solutions of the playability system associated with a symmetric matrix Game
of Deterrence on which the Replicator Dynamics is based.
Thus, it has been established that (Ellison and Rudnianski, 2009):
– To each symmetric solution of the playability system corresponds an
evolutionarily stable equilibrium set (ESES)

– If a strategy is not playable in every solution of the playability system,
the proportion of the corresponding species in the Replicator Dynamics
vanishes with time in every solution of the dynamic system

Keywords: evolutionary games, Games of Deterrence, playability, Replica-
tor Dynamics, species, strategies.

Based on these results, the proposed paper will first extend the analysis already
undertaken and propose new results in terms of relations between the solutions of
the Game of Deterrence playability system and the solutions of the dynamic system.
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The paper will then provide a method for systematically modelling standard ma-
trix games as Games of Deterrence, allowing the previous results to be extended to
any standard matrix game. In particular, in certain situations where the standard
methods for analyzing dynamic systems do not work, the above bridging between
standard games and Games of Deterrence will enable to determine the systems’
asymptotic behaviour.

More precisely, in a first part, after having briefly recalled the definition of the
Replicator Dynamics, the paper will recall the definitions and basic properties of
Games of Deterrence.

A second part will distinguish between three categories of strategies in the Game of
Deterrence under consideration, and will associate specific evolutionary properties
with each one.

The third and last part will then develop an algorithm associating a Game of De-
terrence with any standard quantitative symmetric matrix game in a way that will
enable to generalize the method to the analysis of quantitative evolutionary games.

1. Replicator Dynamics and Games of Deterrence

1.1. Replicator Dynamics
The Replicator Dynamics is a classical dynamic system describing the evolution
of a population broken down into several species. The outcome of the interaction
between two individuals is given by a symmetric matrix game G.
Moreover, if θ = (θ1, θ2, ..., θn) represents the population’s profile (i.e. θi is the
proportion of species i in the population), then the Replicator Dynamics associated
with G is the dynamical system D(G) defined by θ′i = θi(ui − uT )
where:

– ui =
∑
k

θkuik where uik represents the payoff of species i when interacting with

species k
– uT =

∑
i

θiui

ui defines the fitness of species i, and it then stems straightforwardly from the above
system of differential equations that the evolution of the proportion of a species i
in the population depends on the relative fitness of i with respect to the average
fitness of the entire population.

The above classical representation of the Replicator Dynamics is equivalent to the
following:

– Let Θ be the space of population profiles
– Let f be a vector field on Θ such that θ′ = f(θ) with fi(θ) = θi(ui − uT )

An equilibrium of the Replicator Dynamics is then defined as a fixed point of f .

In the following, we will always consider that all species are present in the initial
state, i.e. ∀i ∈ {1, ..., n}, θi(0) �= 0
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1.2. Games of Deterrence basic properties

Games of Deterrence consider only two possible states of the world:

– Those which are acceptable for the player under consideration (noted 1)
– Those which are unacceptable for that same player (noted 0)

Given that the players’ objective is to be in an acceptable state of the world, Games
of Deterrence analyze the strategies’ playability.

For the sake of simplicity, in the following we shall only consider matrix games,
but the definitions that will be introduced extend straightforwardly to N-player
games.
Let E and R be two players with respective strategic sets SE (card SE = n) and
SR (card SR = p).

We shall consider finite bi-matrix games (SE , SR, U, V ) in normal form where pos-
sible outcomes are taken from the set {0, 1}. More precisely, for any strategic pair
(i, k) ∈ SE × SR, uik and vik define the outcomes for player E and R respectively.

A strategy i of E is said to be safe iff ∀k ∈ SR, uik = 1.
A non-safe strategy is said to be dangerous.

Let JE(i) be an index called index of positive playability, such that:
If i is safe then JE(i) = 1
If not, JE(i) = (1− jE)(1 − jR)

∏
k∈SR

[1− JR(k)(1 − uik)]

With jE =
∏
i∈SE

(1 − JE(i)) ; and jR =
∏

k∈SR

(1− JR(k))

If JE(i) = 1, strategy i ∈ SE is said to be positively playable.
If there are no positively playable strategies in SE , that is if jE = 1, all strategies
i ∈ SE are said to be playable by default.

Similar definitions apply by analogy to strategies k of SR.

A strategy in SE ∪ SR is playable iff it is either positively playable or playable
by default.
The system P of all equations of JE(i), i ∈ SE , JR(k), k ∈ SR, jE and jR is called
the playability system of the game.

{0, 1}n+p+2 is called the playability set of P

The playability system P may be considered as a dynamic system J = f̂(J) on
the playability set.

A solution of the matrix Game of Deterrence is an element of the playability set
which is a solution of P .
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It has been shown in (Rudnianski, 1991) that any matrix Game of Deterrence
has at least one solution, and that in the general case, there is no uniqueness of the
solution.

Given a strategic pair (i, k) ∈ SE × SR, i is said to be a deterrent strategy vis-
à-vis k iff the three following conditions apply:

– i is playable
– vik = 0

– ∃k′ ∈ SR : JR(k
′) = 1

It has been shown (Rudnianski, 1991) that a strategy k ∈ SR is playable iff there
is no strategy i ∈ SE deterrent vis-à-vis k. Thus, the study of deterrence properties
amounts to analyzing the playability properties of the strategies.

A symmetric Game of Deterrence is a Game of Deterrence (SE , SR, U, V ) such
that SE = SR and U = V t (i.e. ∀i, k, uik = vki)

In the case of symmetric games, the strategic set will be noted S.
A symmetric solution is a solution in which ∀i ∈ S, JE(i) = JR(i)

It has been shown (Ellison and Rudnianski, 2009) that in a symmetric Game of
Deterrence, jE = jR

1.3. Deterrence and evolution

It has been shown (Ellison and Rudnianski, 2009) that for a symmetric Game of
Deterrence G with playability system P and Replicator Dynamics D(G), if:

– P has a symmetric solution for which no strategy is playable by default
– at t = 0, the proportion of each positively playable strategy is greater than the

sum of the proportions of the non-playable strategies,

then, whatever the initial profile:

– The proportion of each non-playable strategy decreases exponentially towards
zero

– The proportion of each playable strategy has a non-zero limit

This result can be interpreted as follows: each symmetric solution of the playability
system is associated with an Evolutionarily Stable Equilibrium Set of the Replicator
Dynamics, i.e. the union of the attraction basins of the equilibria is a neighbourhood
of the equilibrium set.
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2. Further properties of evolutionary Games of Deterrence

2.1. Equivalent strategies and evolution
Definition 1. Two strategies i and j are equivalent if ∀k ∈ S, uik = ujk

Lemma 1. If i and j are equivalent, then:

– θi
θj

is constant in every solution of the Replicator Dynamics
– i and j have the same playability in every solution of the playability system

Proof. Since strategies i and j are equivalent, ui = uj
hence (ln θiθj )

′ = (lnθi)
′ − (lnθj)

′ = (ui − uT )− (uj − uT ) = 0

Definition 2. Given a subset X of the strategic set S, let i, k ∈ S,
k is said to be X-dominant vis-à-vis i if ∀l ∈ X, uil ≤ ukl.
Likewise, i and k are said to be X-equivalent if i is X-dominant vis-à-vis k and k
is X-dominant vis-à-vis i.

X-dominance is a reflexive and transitive relation.

2.2. Categorization of playability system solutions
Let G be a symmetric Game of Deterrence with playability system P .
Let Ψ be a function which associates with any given solution σ of P a partition
(A,B,C) of the strategic set S of G such that:

– A = {i ∈ S| i is positively playable for both players}
– B = {i ∈ S| i is either positively playable for exactly one player or playable by

default for both players}
– C = {i ∈ S| i is non-playable for both players}

Proposition 1. If a partition (A,B,C) of S verifies:

i ∈ A ⇔ (uik = 0⇒ k ∈ C)
i ∈ C ⇔ ∃k ∈ A : uik = 0

}
(C1)

then (A,B,C) ∈ ImΨ

Conversely if (A,B,C) ∈ ImΨ , then (A,B,C) verifies:

i ∈ A ⇔ (uik = 0⇒ k ∈ C)
∃k ∈ A : uik = 0⇒ i ∈ C

}
(C2)

Proof. Let (A,B,C) be a partition of S verifying (C1)

-if A �= ∅,
Let us consider the following element of the playability set defined by:

– ∀i ∈ A, JE(i) = JR(i) = 1
– ∀i ∈ B, JE(i) = 1 and JR(i) = 0
– ∀i ∈ C, JE(i) = JR(i) = 0
– jE = jR = 0
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Let us now verify that this element is a solution of P :
It stems from (C1) that:
∀i ∈ A, (1 − jE)(1 − jR)

∏
k∈S

(1 − JR(k)(1 − uik)) = 1 and (1 − jE)(1 − jR)
∏
k∈S

(1 −

JE(k)(1− uik)) = 1
∀i ∈ C, (1 − jE)(1 − jR)

∏
k∈S

(1 − JR(k)(1 − uik)) = 0 and (1 − jE)(1 − jR)
∏
k∈S

(1 −

JE(k)(1− uik)) = 0

It also stems from (C1) that ∀i ∈ B, ∃k ∈ B : uik = 0.
Indeed, if i ∈ B, i /∈ A and i /∈ C, so ∃k /∈ A ∪ C : uik = 0

Hence ∀i ∈ B,
(1− jE)(1− jR)

∏
k∈S

(1−JR(k)(1−uik)) = 1 and (1− jE)(1− jR)
∏
k∈S

(1−JE(k)(1−

uik)) = 0

Also
∏
k∈S

(1− JR(k)) = 0 and
∏
k∈S

(1 − JE(k)) = 0

The chosen values indeed define a solution σ of P , and (A,B,C) = Ψ(σ)

-if A = ∅,
it stems from the second part of (C1) that C = ∅
Hence B = S

Also, it stems from the first part of (C1) that no strategy in S is safe.
Therefore, there is a solution σ0 of P in which all strategies are playable by default,
and (A,B,C) = (∅, S, ∅) = Ψ(σ0)

Let τ be a solution of P and (A,B,C) = Ψ(τ),
-if jE = jR = 1 in τ ,
then (A,B,C) = (∅, S, ∅)
and since no strategy is safe, ∀i ∈ S, ∃k ∈ S : uik = 0
Hence (A,B,C) verifies (C1).

-if jE = jR = 0,
A = {i ∈ S|JE(i) = JR(i) = 1} = {i ∈ S|

∏
k∈S

(1 − JR(k)(1 − uik)) =
∏
k∈S

(1 −

JE(k)(1− uik)) = 1}
= {i ∈ S|uik = 0⇒ JE(k) = JR(k) = 0} = {i ∈ S|uik = 0⇒ k ∈ C}

similarly, C = {i ∈ S|∃k ∈ A : uik = 0}
Hence (A,B,C) verifies (C1).

Let σ be a solution of P and (A,B,C) = Ψ(σ)
let i ∈ S,

i ∈ A ⇔ JE(i) = JR(i) = 1
⇔ i is safe or (1 − jE)(1 − jR)

∏
k∈S

[1 − JR(k)(1 − uik)] = (1 − jE)(1 − jR)
∏
k∈S

[1 −

JE(k)(1− uik)] = 1
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⇔ i is safe or (je = jR = 0 and (uik = 0⇒ JE(k) = JR(k) = 0))

Yet i is safe ⇒ (je = jR = 0 and (uik = 0⇒ JE(k) = JR(k) = 0))
so i ∈ A ⇔ (je = jR = 0 and (uik = 0⇒ JE(k) = JR(k) = 0))
i ∈ A ⇔ (uik = 0⇒ k ∈ C)

If ∃k ∈ A : uik = 0,
then k is deterrent vis-à-vis i for both players.
Hence i ∈ C

2.3. Categorization of the solutions of the Replicator Dynamics
Let G be a symmetric Game of Deterrence and D(G) its Replicator Dynamics.
Let Γ be a function which associates with any given solution σ of D(G) a partition
(A′, B′, C′) of the strategic set S of G such that:

– A′ = {i ∈ S| θi does not have a zero limit}
– B′ = {i ∈ S| lim θi = 0 and θ(i) is not integrable}
– C′ = {i ∈ S| θi is integrable}

Proposition 2. If a solution σ of D(G) verifies
∫∞
0 1− uT < ∞,

then (A′, B′, C′) = Γ (σ) verifies:

A′ �= ∅
i ∈ A′ ⇔ (uik = 0⇒ k ∈ C′)
∃k /∈ C′ : k is (A′ ∪B′)-dominant vis-à-vis i and uik < ukk ⇒ i ∈ C′

∃k ∈ C′ : k is (A′ ∪B′)-dominant vis-à-vis i ⇒ i ∈ C′

⎫⎪⎪⎬⎪⎪⎭ (C3)

Proof. Let σ be a solution of D(G) such that
∫∞
0 1− uT < ∞,

and let (A′, B′, C′) = Γ (σ).

A′ �= ∅ because
∑
i∈S

θi = 1

Let i ∈ S,
θ′i
θi

= ui − uT = (1− uT )− (1− ui)

hence θi(t) = θi(0)e
∫

t
0
1−uT e−

∫
t
0
1−ui

θi(0)e
∫

t
0
1−uT has a non-zero finite limit,

and e−
∫

t
0
1−ui has a finite limit, since it is positive and decreasing

so θi has a limit.
This being true for all i ∈ S, the solution σ converges towards an equilibrium.

Also lim θi = 0⇔ lim
∫ t
0
1− ui = +∞

1− ui = 1−
∑
k∈S

θkuik =
∑
k∈S

θk(1 − uik) =
∑

k|uik=0

θk

hence lim θi = 0⇔ ∃k ∈ S : uik = 0 and θk is not integrable
i ∈ A′ ⇔ (∀k ∈ S, uik = 0⇒ k ∈ C′)

Let i, k ∈ S such that k is (A′ ∪B′)-dominant vis-à-vis i,
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let θC′ =
∑
c∈C′

θc,

By definition of C′, θC′ is integrable.

ui − uk =
∑
l∈S

θl(uil − ukl) =
∑
l∈C′

θl(uil − ukl) +
∑
l/∈C′

θl(uil − ukl) ≤ θC′

θi
θk
(t) = θi

θk
(0)e

∫
t
0
ui−uk ≤ θi

θk
(0)e

∫
t
0
θC′ ≤ θi

θk
(0)e

∫ ∞
0
θC′ < +∞

θi
θk

is upper-bounded.
Hence, if k ∈ C′, then i ∈ C′

Now if k /∈ C′ and uik < ukk,
ui − uk ≤ θC′ + (uik − ukk)θk = θC′ − θk
so ( θiθk )

′ = θi
θk
(ui − uk) ≤ θi

θk
(θC′ − θk) =

θi
θk

θC′ − θi

0 ≤ θi
θk
(t) ≤ θi

θk
(0) +

∫ t
0
θi
θk

θC′ −
∫ t
0 θi

hence
∫ t
0
θi ≤ θi

θk
(0) +

∫ t
0
θi
θk

θC′

Since θi
θk

is upper-bounded and θC′ is integrable, θiθk θC′ is integrable
hence θi is integrable, and i ∈ C′

Corollary 1. For any solution σ of D(G), let Γσ : S → {A′, B′, C′} be such that
∀i ∈ S, i ∈ Γσ(i) in the partition Γ (σ). Let us equip the set {A′, B′, C′} with the
alphebetical order: A′ ≥ B′ ≥ C′.
Let (i, k) ∈ S2. If k is (A′ ∪B′)-dominant vis-à-vis i, then Γσ(k) ≥ Γσ(i)
Also if i and k are (A′ ∪B′)-equivalent, then Γσ(i) = Γσ(k)

Proof. Let k be (A′ ∪B′)-dominant vis-à-vis i,
If k ∈ C′, then it stems from proposition 2 that i ∈ C′

If k ∈ B′, then k /∈ A′, hence ∃l /∈ C′ : ukl = 0
and since uil ≤ ukl, uil = 0
whence i /∈ A′

If k ∈ A′, then A′ ≥ Γσ(i)
Hence Γσ(k) ≥ Γσ(i)

If i and k are (A′ ∪B′)-equivalent,
then Γσ(k) ≥ Γσ(i) and Γσ(i) ≥ Γσ(k)
Hence Γσ(i) = Γσ(k)

3. Bridging binary and quantitative games

In a first part, the present section will proceed to a classical analysis of the Replicator
Dynamics associated with an elementary example of 2x2 standard game. In a second
part, an alternative approach based on the transformation of the standard game
into a Game of Deterrence will be developed. The third part will generalize the new
approach, which will be applied in the fourth part to a case which the standard
approach cannot solve comprehensively.
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3.1. Example 1: the standard approach

Let us consider the following symmetric matrix game G in which 0 < a < 1:

G
i k

i (1, 1) (1, a)
k (a, 1) (0, 0)

Let θ = (θi, θk) ∈ Θ be the profile of the population.

The average payoffs of the two species are:
ui = 1
uk = aθi
and uT = θi + aθiθk

Hence θ′ = f(θ) = (θi(1− θi − aθiθk), θk(aθi − θi − aθiθk)

It can be seen by the classical analysis of the Replicator Dynamics that in every
solution of D(G), θk decreases exponentially, leading to the equilibrium θ = (1, 0).
Indeed, in this simple example, the classical approach enables to completely deter-
mine the trajectories, and the equilibria.

3.2. Alternative approach

Let us now introduce the following alternative approach the rationale of which will
be justified later.

A possible interpretation of player Column receiving payoff a when the strategic
pair (i, k) is selected, is that species i can be divided into two sub-species i1 and i2,
such that player Column, when playing species k, gets a payoff of 1 against species
i1, and 0 against species i2, provided that the proportion in species i of i1 and i2 is
given by (a, 1− a).

This in turn implies that the dynamics associated with G may be considered equiv-
alent to the dynamics of the following game G′ when the ratio of the two sub-species
equals a

1−a .

G′
i1 i2 k

i1 (1, 1) (1, 1) (1, 1)
i2 (1, 1) (1, 1) (1, 0)
k (1, 1) (0, 1) (0, 0)
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Let ζ = (ζi1 , ζi2 , ζk) be the profile of the population.

The average payoffs of the three species are:
vi1 = 1
vi2 = 1
vk = ζi1
and vT = ζi1 + ζi2 + ζi1ζk

Hence the Replicator Dynamics ζ′ = g(ζ) is such that:
ζ′i1 = ζi1(1− ζi1 − ζi2 − ζi1ζk)
ζ′i2 = ζi2(1− ζi1 − ζi2 − ζi1ζk)
ζ′k = ζk(ζi1 − ζi1 − ζi2 − ζi1ζk)

As it stems from the matrix of G′ that strategies i1 and i2 are equivalent,
ζi1
ζi2

is constant (lemma 1).

Let H be the subset of the set of profiles of D(G′) such that (1− a)ζi1 = aζi2 .
Since the ratio is constant, H is stable under the dynamics D(G′).
Let us then denote by DH(G

′) the restriction of D(G′) to H

let us then define the splitting maps h and h̃ as follows:
h : Θ → H
(θi, θk) �→ (aθi, (1 − a)θi, θk)

and h̃ : R2 → R3

(x, y) �→ (ax, (1 − a)x, y)

It can be easily seen from the above that h̃ ◦ f = g ◦ h

h generates the breakdown of species i into i1 and i2 on the set of profiles, while h̃
does the same on the tangent space of Θ

This relation translates in terms of flows as follows:
Let φtf and φtg be the flows associated with f and g.
h ◦ φtf (θ) = h(θ +

∫ t
0
f(θ)) = h(θ) +

∫ t
0
h̃ ◦ f(θ) = h(θ) +

∫ t
0
g ◦ h(θ) = φtg(h(θ))

h ◦ φtf = φtg ◦ h

Hence, since h is bijective, D(G) and DH(G′) are topologically conjugate.
In other words, the dynamics of G is equivalent to the dynamics of G′ restricted to
H .

The playability system P ′ of G′ has a unique solution in which strategies i1 and i2
are positively playable while k is not playable for both players. Indeed, strategies i1
and i2 are safe and i2 is deterrent vis-à-vis k.

It then stems from (Ellison and Rudnianski, 2009) that whatever the initial profile:
ζ11 and ζ12 have a non-zero limit
ζ2 has a zero limit
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Since f and g|H are topologically conjugate, whatever the initial profile θ(0) in
G:
θ1 has a limit equal to 1
θ2 has a zero-limit

These conclusions match exactly those drawn from the standard approach.

3.3. Generalization
Let G̃ be a standard symmetric matrix game,
Let M = max uik and m = min uik
Through replacing all the payoffs uik by their images via the affinity x �→ x−m

M−m , we
obtain a game G with payoffs comprised between 0 and 1.

It is well known (Weibull, 1995) that the Replicator Dynamics is invariant under
positive affine transformation of payoffs. In this case, it is accelerated by a factor

1
M−m . If f̃ and f denote the vector fields of D(G̃) and D(G) respectively, the asso-
ciated flows satisfy the following relation:
φt
f̃
= φ

(M−m)t
f

Proposition 3. Given a standard symmetric game G with payoffs comprised be-
tween 0 and 1, there is a binary symmetric matrix game G′ and a subset H of
its set of profiles such that the restriction DH(G′) of D(G′) to H and D(G) are
topologically conjugate.

Proof. This demonstration will use an algorithmic construction of the game G′.
Let G be a standard symmetric matrix game with strategic set S = {1, ..., n}

Let i ∈ S,
let p = card({uki, k ∈ S} ∪ {0, 1})− 1,
let (a0, ..., ap) be such that:
0 = a0 < a1 < ... < ap = 1 and {a0, ..., ap} = {uki, k ∈ S} ∪ {0, 1}

Let Gi be the game obtained from G by replacing strategy i with p equivalent
strategies i1, ..., ip and by setting the following payoffs:
vkl = ukl, for k, l ∈ S − {i}
viml = uil, for 1 ≤ m ≤ p, l ∈ S − {i}
vkim = 1 if m ≤ r, where r is such that uki = ar ; and vkim = 0 otherwise, for
k ∈ S − {i}, 1 ≤ m ≤ p
vimim′ = 1 if m′ ≤ r, where r is such that uii = ar ; and vimim′ = 0 otherwise, for
1 ≤ m,m′ ≤ p

Let Hi be the subset of the set of profiles Θi of Gi defined by the following equa-
tions:
∀1 ≤ m ≤ p, θim = (am − am−1)

p∑
m′=1

θim′

The strategies i1, ..., ip are equivalent.
Hence, it stems from lemma 1 that Hi is stable under the dynamics D(Gi)
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Let hi be the splitting map:
hi : Θ → Hi

θ �→ (θ1, ..., θi−1, (a1 − a0)θi, ..., (ap − ap−1)θi, θi+1, ..., θn)

and h̃i : Rn → Rn+p−1

(x1, ..., xn) �→ (x1, ..., xi−1, (a1 − a0)xi, ..., (ap − ap−1)xi, xi+1, ..., xn)

Let θ ∈ Θ and k ∈ S − {i},
vk(hi(θ)) = vk(θ1, ..., θi−1, (a1 − a0)θi, ..., (ap − ap−1)θi, θi+1, ..., θn)

=
∑
l 	=i

θlvkl +
p∑

m=1
(am − am−1)θivkim

=
∑
l 	=i

θlukl +
r∑

m=1
(am − am−1)θi where r is such that ar = uki

=
∑
l 	=i

θlukl + arθi

= uk(θ)
hence ∀k ∈ S − {i}, vk ◦ hi = uk

Similarly, for k ∈ {i1, ..., ip}, vk ◦ hi = ui

hence, by linearity vT ◦ hi = uT
and if f and fi denote the vector fields of the Replicator Dynamics of G and Gi

respectively,
h̃i ◦ f = fi ◦ hi

Hence the flows are conjugate via hi, i.e. hi ◦ φtf = φtfi ◦ hi

And since hi is a one-to-one correspondance between Θ and Hi,
D(G) and DHi(Gi) are topologically conjugate via hi.

Also, {vkim , k ∈ S − {i} ∪ {i1, ..., ip}, 1 ≤ m ≤ p} ⊂ {0, 1}
Hence, the splitting of species i reduces by 1 the number of species which, when
selected by one player, may generate a non-binary payoff for the other player, un-
less strategy i already verifies that property, in which case the algorithm does not
modify the game.

Let G′ = G12...n
be the game obtained from G by successively applying the above

transformation for each strategy of S,
and let H be the corresponding subset of the set of profiles Θ′ of G′,

G′ is a binary matrix game and D(G) and DH(G′) are topologically conjugate.

Consequence: the asymptotic properties of G can be analyzed through G′ and its
playability system.

As the algorithm is applied to G, each strategy is split into up to n equivalent
strategies. Hence, G′ may have up to n2 strategies which can be grouped into n
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sets of equivalent strategies. Now, it is generally useful to reduce the size of the
playabily system. In the case of G′, the fact that equivalent strategies have the
same playability in every solution (cf. lemma 1) allows us to reduce the playability
system. Indeed:

Proposition 4. Let G′ be a symmetric Game of Deterrence with strategic set S′ =
{1, ..., i− 1,
i1, ..., ip, i+1, ..., n}, where i1, ..., ip are equivalent strategies, and let G′′ be the game
obtained from G′ by replacing strategies i1, ..., ip by a strategy i0 and by setting:
wkl = vkl, ∀k, l �= i1, ..., ip
wi0k = vi1k∀k �= i1, ..., ip

wki0 =
p∏

m=1
vkim , ∀k �= i1, ..., ip

wi0i0 =
p∏

m=1
vi1im

Let H ′ = {(JE(1), ..., JE(i−1), JE(i1), ..., JE(ip), JE(i+1), ..., JE(n), JR(1), ..., JR(i−
1), JR(i1), ..., JR(ip),
JR(i + 1), ..., JR(n), jE , jR)|JE(i1) = ... = JE(ip) and JR(i1) = ... = JR(ip)} ⊂
{0, 1}2n+2p,

let P ′ and P ′′ be the playability systems associated with G′ and G′′ respectively,

H ′ is stable under P ′, and the restriction P ′
H′ of P ′ to H ′ is topologically conjugate

to P ′′.

Proof. Let f̂ : {0, 1}2n+2p → {0, 1}2n+2p and ˆ̂
f : {0, 1}2n+2 → {0, 1}2n+2 be the

playability systems P ′ and P ′′ respectively.

Since, i1, ..., ip are equivalent, the components of f̂ corresponding to JE(i1), ..., JE(ip)
are equal, as are those corresponding to JR(i1), ..., JR(ip).
Hence H ′ is stable under f̂ . (In fact, Imf̂ ⊂ H ′.)
So P ′ can be restricted to H ′.

Let hi : H
′ → {0, 1}2n+2 be such that:

hi : (JE(1), ..., JE(i− 1), JE(i1), ..., JE(ip), JE(i+ 1), ..., JE(n), JR(1), ..., JR(i− 1),
JR(i1), ..., JR(ip), JR(i+1), ..., JR(n), jE , jR) �→ (JE(1), ..., JE(i− 1), JE(i1), JE(i+
1), ..., JE(n), JR(1), ..., JR(i − 1),
JR(i1), JR(i + 1), ..., JR(n), jE , jR)
hi is a bijection.

In order to prove the topological conjugacy, we must verify that hi ◦ f̂ |H′ =
ˆ̂
f ◦ hi

Let (JE(1), ..., JE(i− 1), JE(i1), ..., JE(ip), JE(i+ 1), ..., JE(n), JR(1), ..., JR(i− 1),
JR(i1), ..., JR(ip), JR(i + 1), ..., JR(n), jE , jR) ∈ H ′, let k �= i1, ..., ip,
It stems from the construction of G′′ that k is safe in G′′ iff it is safe in G′

So if k is safe, the components of hi ◦ f̂ |H′ and ˆ̂
f ◦ hi corresponding to JE(k) and

JR(k) are all equal to 1.
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Similarly, i0 is safe iff i1, ..., ip are all safe.
Let us now suppose that strategy k is dangerous.
The component of ˆ̂

f(JE(1), ..., JE(i−1), JE(i1), JE(i+1), ..., JE(n), JR(1), ..., JR(i−
1), JR(i1),
JR(i+ 1), ..., JR(n), jE , jR) corresponding to JE(k) is:

(1− jE)(1 − jR)
∏
l 	=i0

(1− JR(l)(1 − wkl))× (1 − JR(i1)(1 − wki0 ))

= (1 − jE)(1− jR)
∏
l 	=i0

(1 − JR(l)(1− vkl))× (1− JR(i1)(1−
p∏

m=1
vkim ))

= (1 − jE)(1− jR)
∏
l 	=i0

(1 − JR(l)(1− vkl))×
p∏

m=1
1− JR(i1)(1 − vkim)

= (1 − jE)(1− jR)
∏
l∈S′

(1− JR(l)(1 − vkl)),

which is exactly the same component of hi◦ f̂(JE(1), ..., JE(i−1), JE(i1), ..., JE(ip),
JE(i+ 1), ..., JE(n),
JR(1), ..., JR(i− 1), JR(i1), ..., JR(ip), JR(i+ 1), ..., JR(n), jE , jR)

Similarly, all other components match.
Hence P ′

H′ and P ′′ are topologically conjugate.

Corollary 2. Let G′ be a symmetric Game of Deterrence with a strategic set con-
taining several subsets of equivalent strategies.
Let G′′ be the game obtained by replacing each subset of equivalent strategies by a
single strategy as in proposition 4.
Let H ′ be the subset of the playability set of elements such that any two equivalent
strategies have the same playability for both players.
Then, using the notations of proposition 4, P ′

H′ and and P ′′ are topologically con-
jugate.

Proof. The result stems straightforwardly from the application of proposition 4 to
each subset of equivalent strategies.

Remark 1: Since Imf̂ ⊂ H ′, all the solutions of the playability system P ′ are in
H ′, and restricting P ′ to H ′ does not reduce the number of solutions. Thus, solving
P ′′ is equivalent to solving P ′.

Remark 2: The above simplification of the playability system also works in the
case of non symmetric Games of Deterrence, when either player E or player R has
equivalent strategies.

Remark 3: Let G be a symmetric game with payoffs comprised between 0 and 1,
and let G′′ be the game obtained by first transforming G into G′ as in proposition
3, then transforming G′ into G′′ as in proposiiton 4. If G does not have equivalent
strategies in its strategic set, then the strategic set of G′′ contains the same number
of strategies as that of G. Indeed, each strategy is first replaced by a set of equivalent
strategies, which is in turn replaced by a single strategy. If there are equivalent
strategies in the strategic set of G, we will choose not to regroup those strategies
when building G′′, so as to maintain the number of strategies.
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3.4. Example 2
Let us consider the following example deriving from the one developped in (Elli-
son and Rudnianski, 2009), in which individuals may adopt one of three possible
behaviours:

– A: aggressive
– D: defensive
– N : neutral

Furthermore, let us assume that:

– when two individuals of the same type interact, the outcome for each one is
1, which means that an aggressive individual will not try to attack another
aggressive individual (maybe because of the fear of the outcome)

– a defensive type, when encoutering an aggressive individual, will respond by
inflicting damages, represented by a payoff 0 ≤ x < 1 for the aggressor, and will
get a 0

– when meeting a defensive or a neutral type, the defensive type does not attack,
and the outcome pair is (1, 1)

– a neutral type never responds agressively, and receives a payoff 0 ≤ y < 1 when
attacked.

G
A D N

A (1, 1) (x, 0) (1, y)
D (0, x) (1, 1) (1, 1)
N (y, 1) (1, 1) (1, 1)

It has been shown (Ellison and Rudnianski, 2009) that in the extreme case where
x = y = 0, the profile (1, 0, 0), which corresponds to the whole population being
aggressive, is an evolutionarily stable equilibrium, and the set of profiles {(0, t, 1−
t), 0 < t < 1}, which are not individually evolutionarily stable, is an evolutionarily
stable equilibrium set.

Let us now consider the case where 0 < x, y < 1.

Let G′ and G′′ be the following matrix games:

G′
A1 A2 D1 D2 N

A1 (1, 1) (1, 1) (1, 0) (0, 0) (1, 1)
A2 (1, 1) (1, 1) (1, 0) (0, 0) (1, 0)
D1 (0, 1) (0, 1) (1, 1) (1, 1) (1, 1)
D2 (0, 0) (0, 0) (1, 1) (1, 1) (1, 1)
N (1, 1) (0, 1) (1, 1) (1, 1) (1, 1)

G′′
A0 D0 N

A0 (1, 1) (0, 0) (1, 0)
D0 (0, 0) (1, 1) (1, 1)
N (0, 1) (1, 1) (1, 1)
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Let H be the set of profiles in G′ such that (1−x)θA1 = xθA2 and (1−y)θD1 = yθD2 .
By proposition 3, D(G) and DH(G

′) are topologically conjugate.

Let H ′ be the subset of the playability set of G′ comprised of elements such that A1

and A2 on one hand, and D1 and D2 on the other hand, have the same playability
for both players.
By proposition 4, P ′

H′ and P ′′ are topologically conjugate.

It can be easily seen from the matrix of G′′ that P ′′ has three solutions:

– (1, 0, 0, 1, 0, 0, 0, 0) (A0 is positively playable while D0 and N are not playable
for both players)

– (0, 1, 1, 0, 1, 1, 0, 0) (D0 and N are positively playable while A0 is not playable
for both players)

– (0, 0, 0, 0, 0, 0, 1, 1) (all the strategies are playable by default for both players)

Hence, it stems from the topological conjugacy that P ′ also has three solutions:

– (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0) (A1 and A2 are positively playable while D1, D2 and
N are not playable)

– (0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0) (D1, D2 and N are positively playable while A1 and
A2 are not playable)

– (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) (all the strategies are playable by default for both
players)

The first two of these solutions satisfy the conditions described in section 1.3. Hence
D(G′) has two evolutionarily stable equilibrium sets:

– ESES1 = {(t, 1− t, 0, 0, 0), 0 < t < 1} where only species A1 and A2 remain
– ESES2 = {(0, 0, t1t2, (1−t1)t2, 1−t2), 0 < t1, t2 < 1} where only species D1,D2

and N remain

Hence ESES1 ∩ H and ESES2 ∩ H are asymptotically stable equilibrium sets in
DH(G

′)
ESES1∩H = {(x, 1−x, 0, 0, 0)} and ASES2∩H = {(0, 0, yt2, (1−y)t2, 1− t2), 0 <
t2 < 1}

Now DH(G
′) is topologically equivalent to D(G),

hence (1, 0, 0) is an evolutionarily stable equilibium and {(0, t, 1− t), 0 < t < 1} is
an evolutionarily stable equilibrium set in D(G).

The results previously established for the game G in the case where x = y = 0
have been extended to all 0 < x, y < 1. The bridging between binary and quantita-
tive games allows us to establish asymptotic properties of evolutionary quantitative
games via playability properties of associated Games of Deterrence.

Also, if a solution σ of D(G) tends towards the equilibrium (1, 0, 0), then θD and
θN decrease exponentially. So Γ (σ) = ({A}, ∅, {D,N}).
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And if σ tends towards {(0, t, 1− t), 0 < t < 1}, then θA decreases exponentially.
So Γ (σ) = ({D,N}, ∅, {A}).

It can be easily seen from the matrix of G that these two partitions are the only
ones which verify condition (C3). In this case, ImΓ is exactly the set of partitions
of S which verify (C3).

3.5. Shortcut
Proposition 5. Let G̃ be a symmetric matrix game.
Let M and m be the maximal and minimal payoffs in G̃.
Let G be the game obtained by applying the affinity x �→ x−m

M−m to all the payoffs of
G̃. Let G′ be defined as in proposition 3, and G′′ as in proposition 4.
Then G′′ is the game obtained by replacing the maximum payoff by 1 and all other
payoffs by 0 in the matrix of G̃.

Proof. Using the previous notations (uik, vik and wik represent the payoffs in the
games G,G′ and G′′ respectively), we have:

wki0 =
p∏

m=1
vkim , ∀k �= i1, ..., ip

wi0i0 =
p∏

m=1
vi1im

and:
vkim = 1 if m ≤ r, where r is such that uki = ar ; and vkim = 0 otherwise, for
k ∈ S − {i}, 1 ≤ m ≤ p
vimim′ = 1 if m′ ≤ r, where r is such that uii = ar ; and vimim′ = 0 otherwise, for
1 ≤ m,m′ ≤ p

Hence:
wki0 = 1 if uki = 1 and wki0 = 0 otherwise
wi0i0 = 1 if uii = 1 and wi0i0 = 0 otherwise

As payoff 1 in game G is the image of payoff M in game G̃, it follows that G′′

is obtained by replacing the maximum payoff by 1 and all other payoffs by 0 in the
matrix of G̃.

Proposition 6. Let G̃ be a symmetric matrix game, and let G′′ be the game ob-
tained by replacing the maximum payoff by 1 and all other payoffs by 0 in the matrix
of G̃. Let σ be a solution of D(G). If:

– the playability system P ′′ of G′′ has a symmetric solution for which no strategy
is playable by default

– σ is such that at t = 0, the proportion of each strategy of G̃ corresponding to a
positively playable strategy in G′′ is greater than the sum of the proportions of
the strategies of G̃ corresponding to non-playable strategies in G′′,

then:

– The proportion of each strategy of G̃ corresponding to a non-playable strategy
in G′′ decreases exponentially towards zero
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– The proportion of each strategy of G̃ corresponding to a playable strategy in G′′

has a non-zero limit

Proof. Let M and m be the maximal and minimal payoffs in G̃.
Let G be the game obtained by applying the affinity x �→ x−m

M−m to all the payoffs
of G̃. Let G′ and H be defined as in proposition 3, and G′′ andH ′ as in proposition 4.

P ′′ is topologically conjugate to P ′
H′ , so the symmetric solution of P ′′ is conju-

gate to a solution τ of P ′, which is also symmetric.
By applying the result of section 1.3 to τ , we obtain that if at t = 0, the proportion
of each strategy which is positively playable in τ is greater than the sum of the
proportions of the non-playable strategies, then the proportion of each positively
playable strategy has a non-zero limit, and the proportion of each non-playable
strategy decreases exponentially towards zero.

Then, the conclusions about G̃ follow from the topological conjugacy between D(G)

and DH(G′) and the invariance by affine transformation linking D(G̃) and D(G).

4. Conclusion

Starting from a symmetric quantitative game G̃, we have established the following
construction:

G̃ −→ G −→ G′ −→ G′′

such that:

– the payoffs of G are comprised between 0 and 1 and φt
f̃
= φ

(M−m)t
f

– G′ is binary and DH(G
′) and D(G) are topologically conjugate

– G′′ has the same size as G̃ and P ′
H′ and P ′′ are topologically conjugate

Now, G′′ can be constructed directly from G̃ without computing G and G′.

The results obtained in the previous sections thus enable to:

1. overcome the possible difficulties of solving analytically the Replicator Dynamics
2. establish asymptotic properties of solutions of the Replicator Dynamics associ-

ated with any standard symmetric matrix game
3. bridge standard quantitative games with Games of Deterrence, thus paving the

way for a treatment of optimality issues through acceptability analysis.
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