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Abstract Repeated bidding games were introduced by De Meyer and Sa-
ley (2002) to analyze the evolution of the price system at finance markets
with asymmetric information. In the paper of De Meyer and Saley arbitrary
bids are allowed. It is more realistic to assume that players may assign only
discrete bids proportional to a minimal currency unit. This paper represents
a survey of author’s results on discrete bidding games with asymmetric in-
formation.
Keywords: multistage bidding, asymmetric information, price fluctuation,
random walk, repeated game, optimal strategy.

1. Introduction

1.1. Modeling financial markets by repeated games
Regular random fluctuations in stock market prices are usually explained by effects
from multiple exogenous factors subjected to accidental variations. The work of De
Meyer and Saley (2002) proposes a different strategic motivation for these phenom-
ena. The authors assert that the Brownian component in the evolution of prices on
the stock market may originate from the asymmetric information of stockbrokers
on events determining market prices. ”Insiders” are not interested in the immediate
revelation of their private information. This forces them to randomize their actions
and results in the appearance of an oscillatory component in price evolution.

De Meyer and Saley demonstrate this idea on a model of multistage bidding
between two agents for risky assets (shares). The liquidation price of a share depends
on a random ”state of nature”. Before the bidding starts a chance move determines
the ”state of nature” and therefore the liquidation price of a share once and for all.
Player 1 is informed on the ”state of nature”, but Player 2 is not. Both players know
the probability of a chance move. Player 2 knows that Player 1 is an insider.

At each subsequent step t = 1, 2, ..., n both players simultaneously propose their
prices for one share. The maximal bid wins and one share is transacted at this price.
If the bids are equal, no transaction occurs. Each player aims to maximize the value
of his final portfolio (money plus liquidation value of obtained shares).
� This study was partially supported by the Russian Foundation for Basic Research,
projects 04-06-80430-a, 07-06-00174-a, 10-06-00348-a and 13-01-00462-a.
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In this model the uninformed Player 2 should use informed Player 1’s history of
moves to update his beliefs about the state of nature. Thus Player 1 must maintain a
delicate balance between taking advantage of his private information and concealing
it from Player 2.

De Meyer and Saley consider a model where a share’s liquidation price takes
only two values and players may make arbitrary bids. They reduce this model to
a zero-sum repeated game with lack of information on one side, as introduced by
Aumann and Maschler (1995), but with continual action sets. De Meyer and Saley
show that these n-stage games have the values (i.e. the guaranteed gains of Player
1 are equal to the guaranteed losses of Player 2). They find these values and the
optimal strategies of players. As n tends to infinity, the values infinitely grow up
with rate

√
n. It is shown that Brownian Motion appears in the asymptotics of

transaction prices generated by these strategies.
More exactly, De Meyer and Saley construct continuous time processes Πn(t)

with t ∈ [0, 1] representing these finite random sequences and prove that, as n tends
to ∞, the processes Πn converge in law to the limit process Π expressed by means
of Brownian Motion.

In De Meyer (2010) a model of a market with one risky asset and perfectly
general trading mechanism was considered. For example, transactions of arbitrary
amount of shares at any stage of a game and presence of non-zero bid-ask spread can
be implemented by means of this mechanism. The model of De Meyer and Saley is
a particular case of this general model. For this general problem the limiting prop-
erties as the number of repetitions tends to infinity were investigated. It was shown
that when both players use their optimal strategies the price process (expected price
of a risky asset giving the history up to a current stage) converges after proper nor-
malization in finite dimensional distributions to a martingale adapted to the natural
Brownian filtration with terminal distribution coinciding with prior distribution of
the share price. This class of price evolutions was called CMMV (continuous martin-
gales of the maximal variation). The limit of the value and “asymptotically optimal”
strategy of informed player were explicitly characterized too. Rather surprisingly, it
was found that all the limiting objects do not depend on particular trading mecha-
nism. To obtain these results a breakthrough technique to analyze repeated games
with incomplete information was developed. The main idea was to look at the game
from the point of view of informed player and to reduce it to some martingale op-
timization problem, the so-called problem of the maximal variation. This approach
then allowed to apply a broad variety of tools from theory of stochastic processes.

The ideas of De Meyer about reduction to the martingale optimization problem
were extended by Gensbittel (2010) in his thesis to a general repeated games with
incomplete information (not necessary modelling a finance market). Moreover, he
considered several improvements of the general trading mechanism of De Meyer: the
case of several risky assets and the non-zero sum case (the total amount of money
is not conserved).

It is to be mentioned that all the results of De Meyer and Gensbittel are obtained
under several assumptions on trading mechanism: invariance with respect to non-
risky part of the risky asset (i.e., shift invariance) and invariance with respect to
numeraire change (i.e., scale invariance). These assumptions significantly simplify
the analysis because they result in very handy linear structure of a game. But both
these assumptions do not reflect the properties of real bidding. Indeed, only bids
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proportional to the minimal currency unit are allowed in real bidding. Therefore,
neither shift invariance nor scale invariance really hold.

1.2. Results on discrete bidding games with asymmetric information
De Meyer and Marino (2005), Domansky and Kreps (2005), Domansky (2007) ana-
lyze a bidding model analogous to the model of De Meyer and Moussa-Saley (2002),
where market makers have to post prices within a discrete grid. it corresponds to
prices proportional to a minimal currency unit . The n-stage games Gm

n (p) are
considered with two possible values of liquidation price, an integer m > 0 with
probability p and 0 with probability 1 − p, and with admissible bids being integer
numbers.

The works mentioned above show that, unlike the model of De Meyer and Saley,
the sequence of values V m

n (p) of the games Gm
n (p) is bounded from above and

converges as n tends to∞. The authors calculate its limit Hm, that is a continuous,
concave, and piecewise linear function with m domains of linearity [k/m, (k+1)/m],
k = 0, . . . ,m− 1, and the values at peak points Hm(k/m) = k(m− k)/2.

The proof in De Meyer and Marino (2005) differs in essential ways from the proof
in Domansky (2007). The last proof is more concise due to exploiting a ”reasonable”
strategy of Player 2. In fact, this is his optimal strategy for the game with infinite
number of steps.

As the sequence V m
n (p) is bounded from above, it is reasonable to consider

the games Gm
∞(p) with infinite number of steps. The games Gm

∞(p) are infinitely
repeated, non-discounted games with non-averaged payoffs that differs from the
classical model of Aumann and Maschler (1995). Unlike the case of n < ∞, the
existence of a value for the games Gm

∞(p) has to be proved.
In section 2 following Domansky (2007) we show that the value V m

∞ is equal to
Hm and construct explicitly the optimal strategies of players. The fastest optimal
strategy of Player 1 provides him the maximal possible expected gain 1/2 per step.
For this strategy the posterior probabilities perform a simple random walk over the
lattice l/m, l = 0, . . . ,m, with absorbing extreme points 0 and 1. The absorption
of posterior probabilities means revealing of the true value of share by Player 2.
For the initial probability k/m, the expected duration of this random walk before
absorption is k(m − k). The bidding terminates almost surely in a finite number
of steps, and the expected number of steps is also finite. This random time of
absorption is a time for disclosure of information. The game terminates naturally
when the posterior expectation of liquidation price coincide with its real value.

The set of all optimal strategies of Player 1 for Gm
∞(p) consists of the described

fastest strategy and its slower modifications.
The results of Domansky (2007) cannot be extended to a general transaction

mechanism introduced by De Meyer (2010). As mentioned in the last paper, the
discretized mechanism does not satisfy axioms of shift- and scale-invariance. Note
that in practice a grid of possible bids is not shift- and scale-invariant simultaneously.

Obtaining exact solutions for games Gm
n (p) with finite numbers of steps seems

to be a rather hard problem because of combinatorial difficulties as this may be
observed at the two simplest case: solutions for one-stage games (Sandomirskaya,
Domansky, 2012) and solutions for games with three admissible bids (Kreps, 2009).

In section 3 we describe the set of peak points of value function V m
1 (p) and

analyze the structure of bids used in optimal strategies of both players. On the
base of this analysis we develop recurrent approach to computing optimal strategies
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of uninformed player for any probability p. Non-strictly speaking, recursion is on
the number of pure strategies used by Player 2 in his optimal mixed strategy. As
optimal strategy of insider equalizes the spectrum of optimal strategy of Player 2,
we get Player 1’ optimal strategies solving the system of difference equations arising
from equalizing conditions.

In section 4 we construct the exact solutions for games G3
n(p) in the explicit

form for any number of steps n. The value function V 3
n (p) and the players’ optimal

strategies are expressed using a second-order recursive sequence.
In section 5 we show that the fastest optimal strategy of Player 1 for the infinitely

repeated game Gm
∞(p) is a ε-optimal strategy of Player 1 for any finitely repeated

game Gm
n (p) of length n, where ε = O(cosn π/m). This is not so for slower optimal

strategies of Player 1 (Sandomirskaya, 2013, unpublished).
In section 6 following Domansky and Kreps (2009) we consider a model where a

share liquidation price may take any integer value according to a probability distri-
bution p over the one-dimensional integer lattice. Any integer bids are admissible.
This n-stage model is described by a zero-sum repeated game with countable state
and action spaces. The games considered in section 2 can be reduced to particu-
lar cases of these games corresponding to probability distributions with two-point
supports.

We show that if the liquidation price of a share has a finite expectation, then
the values of n-stage games exist. If its variance is finite, then, as n tends to ∞,
the sequence of values is bounded from above and converges. The limit H is a
continuous, concave, piecewise linear function with a countable number of domains
of linearity.

As the sequence of n-stage game values is bounded from above, it is reasonable
to consider the games G∞(p) with an infinite number of steps. We show that the
value V∞(p) is equal to H(p).

The optimal strategies are given in an explicit form. For constructing the optimal
strategy of Player 1 for the game G∞(p) with an arbitrary distribution having an
integer expectation, we use the solutions for the games with two-point distributions
and the symmetric representation of distributions over one-dimensional integer lat-
tice with fixed integer mean values as convex combinations (probability mixtures)
of distributions with two-point supports and with the same mean values.

The insider optimal strategy generates a random walk of posterior expectations
over the one-dimensional integer lattice with absorption. The absorption may occur
at any stage t if the posterior expectation of share price at this stage coincides with
its prior expectation.

For any initial distribution with an integer mean value the expected duration
of this random walk is equal to the variance of the liquidation price of a share.
The value of infinite game is equal to the expected duration of this random walk
multiplied by the constant one-step gain 1/2 of informed Player 1.

In section 7 we consider multistage bidding models where two types of risky as-
sets are traded between two agents that have different information on the liquidation
prices of traded assets (Domansky and Kreps, 2013, submitted to RAIRO-Operation
Research). These prices are random integer variables that are determined by the ini-
tial chance move according to a probability distribution p over the two-dimensional
integer lattice that is known to both players. Player 1 is informed on the prices of
both types of shares, but Player 2 is not. The bids may take any integer value.
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The model of n-stage bidding is reduced to the zero-sum repeated game with
lack of information on one side.

If the expectations of share prices are finite, then the value of such n-stage
bidding game does not exceed the sum of values of games modeling the bidding
with one-type shares. This means that simultaneous bidding of two types of risky
assets is less profitable for the insider than separate bidding of one-type shares.
This is explained by the fact that the simultaneous bidding leads to revealing more
insider information, because the bids for shares of each type provide information on
shares of the other type.

We show that, if liquidation prices of both shares have finite variances, then the
sequence of values of n-step games is bounded. This makes it reasonable to consider
the bidding of unlimited duration that is reduced to the infinite game.

We begin with constructing solutions for these games with distributions p having
two- and three-point supports (elementary games). Next, using symmetric represen-
tations of probability distributions over the two-dimensional plane with given mean
values as convex combinations of distributions with supports containing not more
than three points and with the same mean values (Domansky, 2013), we build the
optimal strategies of Player 1 for bidding games G∞(p) with arbitrary distributions
p as convex combinations of his optimal strategies for elementary games.

The optimal strategies of Player 1 generate a random walk of transaction prices.
But unlike the case of one-type assets, the symmetry of this random walk is broken
at the final stages of the game.

We demonstrate that the value V∞(p) is equal to the sum of values of corre-
sponding games with one-type risky asset. Thus, the profit that Player 2 gets under
simultaneous n-step bidding in comparison with separate bidding for each type of
shares disappears in a game of unbounded duration.

In the bidding models considered in the sections 2-7 players propose only one
price for a share at each step, i.e. bid and ask prices coincide. In a more realistic
model developed in section 8 both players simultaneously propose their bid and ask
prices for one share at each step of bidding. The bid-ask spread s is fixed by rules of
bidding. Transaction occurs from a seller to a buyer by a bid price. The simplified
model (sections 2-7) corresponds to the case s = 0 what is equivalent to s = 1 due
to the price discreteness.

One-step payoff matrices of corresponding repeated games with incomplete in-
formation have more complicated structure than for the case s = 1 and solutions of
these games are not found.

In section 8, for any integer s > 1 and two possible states of nature, by analogy
with the zero-spread case of section 2 we construct an upper bound of value function
provided by a reasonable strategy of Player 2. We construct a lower bound provided
by a strategy of Player 1 that is the best strategy generating a simple random walk
of price expectations. The bounds have the same form and coincide for s = 1 being
equal to the value function of of the game under consideration.

By analogy with zero spread case (see section 6), for any integer s > 1 the results
are generalized to the case of countable set of possible values for a share price.

As for s > 1 the constructed Player 1’ strategy is not optimal, we conclude
that the insider’s optimal strategy does not generate simple random walk of price
expectations and leads apparently to non-symmetric price fluctuations.
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2. Bidding games with two states of nature

2.1. Bidding games of finite and infinite duration: Gm
n (p) and Gm

∞(p)

In this section we consider the repeated games Gm
n (p) modelling the bidding with

two possible random "state of nature", the state space S = {L,H}. Before bidding
starts a chance move determines the "state of nature" L or H and therefore the
liquidation value of a share once for all. This value is a positive integer m with
probability p at the state H and 0 with probability 1− p at the state L. Player 1 is
informed about the "state of nature", Player 2 is not. Both players know probability
p. Player 2 knows that Player 1 is an insider.

At each subsequent stage t = 1, . . . , n (n may be infinite) of bidding both players
simultaneously propose their prices for one share, it for Player 1 and jt for Player
2. Then the pair (it, jt) is announced to both Players before proceeding to the next
stage. The maximal bid wins and one share is transacted at this price. Therefore,
if it > jt, Player 1 gets one share from Player 2 and Player 2 receives the sum of
money it from Player 1. If it < jt, Player 2 gets one share from Player 1 and Player
1 receives the sum l from Player 2. If it = jt, then no transaction occurs.

The bids may take arbitrary integer numbers, but the bids 0, 1, 2, . . . ,m− 1 are
efficient only. Indeed, as the minimal value of a share is 0 and the maximal value is
m > 0, the bids k < 0 and k > m − 1 are senseless and thus k = 0, . . . ,m − 1. So
the action spaces are I = J = 0, . . . ,m− 1.

At state L, i.e. if the liquidation value of the share is equal to zero, the one-step
gains of Player 1 are given with the following matrix AL,m:⎛⎜⎜⎜⎜⎝

0 1 2 . . . m− 1
−1 0 2 . . . m− 1
−2 −2 0 . . . m− 1
. . . . . . . . . . . . . . .

−m+ 1 −m+ 1 −m+ 1 . . . 0

⎞⎟⎟⎟⎟⎠
At state H , i.e. if the liquidation value of the share is equal to m, then the matrix
AH,m of the one-step gains of Player 1 takes the form⎛⎜⎜⎜⎜⎝

0 −m+ 1 −m+ 2 . . . −1
m− 1 0 −m+ 2 . . . −1
m− 2 m− 2 0 . . . −1

. . . . . . . . . . . . . . .
1 1 1 . . . 0

⎞⎟⎟⎟⎟⎠
We consider n-step games Gm

n (p) with total (non-averaged) payoffs

Km
n (p, σ, τ) =

n∑
t=1

E(σ,τ)[(1− p)aL,m(iLt , jt) + p · aH,m(iHt , jt)]. (2.1)

Note that at step t it is enough for both Players to take into account the sequence
(i1, . . . , it−1) of Player 1’s previous actions only. Thus, a strategy σ for Player 1
(insider) is a sequence of moves

σ = (σ1, . . . , σt, . . .),

where σt : S×It−1 → Δ(I) is the probability distribution used by Player 1 to select
his action at stage t, given the state s and previous observations.
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A strategy τ for uninformed Player 2 does not depend on state s and represents
a sequence of moves

τ = (τ1, . . . , τt, . . .),

where τt : I
t−1 → Δ(J).

We also consider the infinite games Gm
∞(p). For certain pairs of strategies (σ, τ),

the payoff function Km∞(p, σ, τ), given by the infinite series (2.1), may be indefinite.
If we restrict the set of Player 1’s admissible strategies to strategies with nonnegative
one-step gains

E(σ1,j)[(1− p)aL,m(iL, j) + p · aH,m(iH , j)].

against any action j of Player 2, then the payoff function of the gameGm∞(p) becomes
completely definite (may be infinite).

Observe that Player 1 has many strategies, ensuring him a nonnegative one-step
gain against any action of Player 2. In fact, any "reasonable" strategy of Player 1
should possess this property.

Remind that, due to the recursive structure of the repeated game, it is sufficient
to define the first move for any prior probability p to define the whole strategy of
Player 1. Further this move will be played if the current posterior probability be-
comes equal to p. Thus, if for any prior probability p, the first move is "reasonable",
the whole strategy is "reasonable".

The games Gm
n (p) with n < ∞, as games with a finite sets of actions, have values

V m
n (p). The values V m

n (p) are positive and do not decrease, as the number of steps
n increases.

2.2. Asymptotics of values V m
n (p)

The next theorem provides an upper bound for the values Vm
n (p).

Theorem 2.1. The functions V m
n are bounded from above by a function Hm that

is continuous, concave, and piecewise linear with m domains of linearity [k/m, (k+
1)/m], k = 0, . . . ,m − 1. It is completely determined with its values at the peak
points k/m, k = 0, . . . ,m:

Hm(k/m) = k(m− k)/2.

To prove this theorem, we define recursively the set of infinite "reasonable"
strategies τk,m, k = 0, . . . ,m − 1 of Player 2, suitable for the games Gm

n (p) with
arbitrary n.

Definition 2.1. The first move τk,m1 is the action k. The moves τk,mt for t > 1
depend on the last observed pair of actions (it−1, jt−1) only:

τk,mt (it−1, jt−1) =

⎧⎪⎨⎪⎩
jt−1 − 1, for it−1 < jt−1;
jt−1, for it−1 = jt−1 ;
jt−1 + 1, for it−1 > jt−1 .

The next theorem provides a lower bound for the values V m
n (p).

Theorem 2.2. The following inequalities hold:

Lmn (p) ≤ Vm
n (p) ∀p ∈ [0, 1],
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where the functions Lmn are continuous, concave, and piecewise linear on the interval
[0, 1] with m domains of linearity [k/m, (k + 1)/m], k = 0, . . . ,m − 1. At the peak
points k/m, the values Lmn (k/m) are given with recursive formulas

Lmn (k/m) = 1/2 + 1/2(Lmn−1((k − 1)/m) + Lmn−1((k + 1)/m)),

with the initial condition Lm0 (k/m) = 0, and the boundary conditions Lmn (0) =
Lmn (1) = 0.

To prove this theorem, we define the strategy σ̄m of Player 1 ensuring these
lower bounds.

Definition 2.2. For the initial probability k/m, the first move of the strategy σ̄m

makes use of two actions k− 1 and k only. These actions occur with the same total
probabilities q(k − 1) = q(k) = 1/2.

The corresponding conditional posterior probabilities of the state H are

pH(k − 1) = (k − 1)/m,

for the action k − 1, and
pH(k) = (k + 1)/m,

for the action k.

Remark 2.1. These lower bounds have the same form as the upper bounds of
Theorem 2.1.

Remark 2.2. As all posterior probabilities belong to the set p = k/m, k = 0, . . .m,
these first moves define the strategy σ̄m for the games Gm

n (k/m) of arbitrary dura-
tion.

Corollary 2.1 (Asymptotics of values V m
n (p)). The following equalities hold:

lim
n→∞V m

n (p) = Hm(p), m = 2, 3, . . . .

2.3. Solutions for the games Gm
∞(p) and random walks

As the values V m
n (p) are bounded from above on the number of steps n, the con-

sideration of values for the games Gm
∞(p) with infinite number of steps becomes

reasonable.
We restrict the set of Player 1’s admissible strategies in these games to the set

Σ+ of strategies employing only the moves ensuring him a nonnegative one-step
gain against any action of Player 2. Consequently, the payoff functions Km

∞(p, σ, τ)
of the games Gm∞(p) become definite (may be infinite) at all cases.

We show that the infinite game Gm
∞(p) has a value and this value is equal to

Hm(p).
The existence of values for these games does not follow from common consid-

erations and has to be proved. We prove it by providing the optimal strategies
explicitly.

Theorem 2.3. The game Gm
∞(p) has a value V m

∞ (p) equal to Hm(p). Both Players
have optimal strategies.
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For p = k/m, k = 1, . . . ,m−1, the optimal strategy of Player 1 is the strategy σ̄m,
given by Definition 2.2. For the interior points p ∈ (k/m, (k + 1)/m), the optimal
first move of Player 1 is the convex combination of the first moves corresponding
to the extreme points of this interval. This optimal first move makes use of three
actions k − 1, k and k + 1, using them with total probabilities

q(k − 1) = 1/2(k + 1−mp), q(k) = 1/2, q(k + 1) = 1/2(mp− k).

Corresponding posterior probabilities are

P (H |k− 1) = (k− 1)/m, P (H |k) = (2k+1−mp)/m, P (H |k+1) = (k+2)/m.

For p ∈ (k/m, (k+1)/m), k = 0, . . . ,m− 1, the optimal strategy τ̄m of Player 2
coincides with the strategy τk,m, given by Definition 2.1. For the peak points k/m,
k = 1, . . . ,m − 1, any convex combination of the strategies τk−1,m and τk,m is
optimal.

Corollary 2.2. For the initial probabilities p = l/m, l = 0, . . . ,m, the random
sequence of posterior probabilities, generated with the optimal strategy σ̄m of Player
1, is the elementary symmetric random walk (p̄mt )∞t=1, over the points k/m, k =
0, . . . ,m with the absorbing extreme points 0 and 1, i.e. the Markov chain with the
transition probabilities

P (k/m, (k − 1)m) = P (k/m, (k + 1)/m) = 1/2, k = 1, . . . ,m− 1,

P (0, 0) = P (1, 1) = 1.

For the initial probabilities p �= l/m, l = 0, . . . ,m, the random sequence of posterior
probabilities hits the set p = k/m, k = 0, . . . ,m, with probability 1/2 after each step.
Further it continues as the elementary symmetric random walk with the absorbing
extreme points 0 and 1.

Further we consider the random process {cmt }∞t=1, formed by the prices of trans-
actions cmt = max{xmt , ymt } at sequential steps of the infinite game Gm

∞(p). We say
that the transaction occurs at step t if xmt �= ymt .

Theorem 2.4. a) For each step t = 1, 2, . . ., the probability that transaction occurs
is 1/2.
b) For pmt ∈ [k/m, (k + 1)/m], under the condition that the transaction occurs at
step t, the following random transaction prices occur:

cmt (pmt ) =

{
k with probability k+1-mp ;
k + 1 with probability mp-k .

In particular, for pmt = k/m, under the condition that the transaction occurs at
step t, cmt = pmt = k, and the price process reproduces the random walk of posterior
probabilities.
c) Player 1’s one-step gain is 1/2.
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3. Solution for one-stage bidding game with incomplete information

In this section we give the solution for the one-stage bidding game Gm
1 (p) with

arbitrary integer m and with any probability p ∈ (0, 1) of the high share price. The
complete description is given in the paper of Sandomirskaia and Domansky (2012).

If the share price is zero (state L), then Player 1 posts the zero bid at the one-
stage game Gm

1 (p) for any probability p. So the problem is to describe the optimal
strategy of Player 1 for the state H and the optimal strategy of Player 2. The latter
does not depend on the state of nature.

Thus, solving of the zero-sum game Gm
1 (p) with incomplete information is re-

duced to solving the game with complete information with payoff matrix

Am(i, j) =

⎧⎨⎩ (1− p)j + p(m− i), for i > j;
(1− p)j, for i = j;
(1− p)j + p(−m+ j), for i < j,

here i ∈ I is the bid of insider at state H , j ∈ J is the bid of uninformed player.
We develop recurrent approach to computing optimal strategies of uninformed

player for any probability p based on analysis of structure of bids used in optimal
strategies of both players. Non-strictly speaking, recursion is on the number of pure
strategies used by Player 2 in an optimal mixed strategy.

3.1. Properties of spectra of optimal strategies.
The value Vm

1 (p) of the game Gm
1 (p) is a continuous concave piecewise linear func-

tion over [0, 1] with a finite number of linearity intervals. The optimal strategy of
the uninformed Player 2 is constant over linearity intervals and is unique in its
interiors.

Let xm(p) = (xm0 (p), . . . , xmm−1(p)) and ym(p) = (ym0 (p), . . . , ymm−1(p)) be opti-
mal mixed strategies of Players 1 and 2 respectively for an initial probability p.

For probabilities p ∈ [0, 1/m] and p ∈ [(m−1)/m, 1] the game Gm
1 (p) has solution

in pure strategies. Out of these intervals optimal strategies of Player 1 and Player
2 for the game Gm

1 (p) are mixed ones.
A change of the set Specym(p) (the set of positive components of the optimal

strategy ym(p)) takes place at a point p if and only if p is a peak point of value
function V m

1 (p).
Consider the set Pm = {p1, . . . , pm−1}, 0 < p1 < . . . < pm−1:

1− p1 =
m− 1

m
, 1− p2 =

m− 2

m− 1
, 1− pk = (1− pk−2)

m− k

m− k + 1
.

and the set Qm = {q1, . . . , qm−1}, 1 > q1 > · · · > qm−1 = pm−1:

1− q1 =
1

m
, 1− q2 =

1

m− 1
, 1− qk =

1− pk−2

m− k + 1
.

Proposition 3.1. If p ∈ Pm ∪Qm, then p is a peak point of value function V m
1 (p)

and
Vm
1 (p) = m · p(1− p) for p ∈ Pm ∪Qm.

Corollary 3.1. The value of one-step bidding game with arbitrary bids being equal
to m · p(1− p) (see De Meyer, Saley, 2002) coincides with V m

1 (p) for p ∈ Pm ∪Qm.
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Corollary 3.2. As the set Pm∪Qm is asymptotically everywhere dense over [0, 1],
it follows that

lim
m→∞V m

1 (p)/m = p(1− p).

Remark 3.1. For p < pm−1 (pm−1 ≈ 1/2), the spectra of optimal strategies of
both players expand as p increase until these spectra reach the bid m − 1. For
p > pm−1 they narrow down but retaining the bid m− 1.

Remark 3.2. For m < 5 there are no other peak points of V m
1 (p) but the point

1/2.

Denote by k1(x
m(p)) the maximal element of the set Specxm(p) of positive

components of strategy xm(p). At a peak point p we put k1(x
m(p)) equal to its

value to the right adjacent linearity interval.
Analogous notation k2(y

m(p)) for strategy ym(p). The function k2(y
m(p)) =

k2(p) is piece-wise constant over [0, 1].

Remark 3.3. If m ≥ 5, then the function k2(p) has no jump at p ∈ Pm ∪Qm. But
the set Pm∪Qm does not cover the set of all peak points p without a jump of k2(p).

Here we describe an ordering of two subset of peak points such that the function
k2(p) has a jump at these points:

Sm = {s3, . . . , sm−1}, p2 < s3 < p3, ..., pm−2 < sm−1 < pm−1.

At the point si the bid i appears at the spectrum of the optimal strategy of Player
2.

Tm = {t4, . . . , tm−1} q3 > t4 > q4, ..., qm−2 > tm−1 > qm−1 = pm−1.

At the point tm−r, r = 2, . . . ,m−4 the bid m− r quits the spectrum of the optimal
strategy of Player 2.

Remark 3.4. For m = 5 the combination P 5 ∪ Q5 ∪ S5 ∪ T 5 coincides with the
whole set of peak points V 5

1 (p).

Definition 3.1. We call a lacuna of a strategy spectrum the set of successive bids
that player does not use in this strategy, while using greater and smaller bids with
positive probability.

Note that for m ≤ 5 there are no lacunas in the optimal strategy spectra except
of either {1} or {2}. For m > 5 the structure of spectra of optimal strategies is more
complicated having various lacunas.

Lemma 3.1. A spectrum of optimal strategies of any player has no lacunas such
that the number of its elements is more than 1 and the first element of the spectrum
after the lacuna is less than m− 1.
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3.2. Solutions for games Gm
1 (p)

Here we restrict ourselves to description solutions of games Gm
1 (p) for p ∈ (0, pm−1).

The solutions for the interval (pm−1, 1) are analogues and (not strictly speaking)
mirror-like with respect to the point pm−1.

We use the following numeration for the linearity intervals of value function
V m
1 (p):

I0 = I1,0 = [0, p1], I1 = I1,1 = I2,0 = [p1, p2] and I2 = I2,1 = [p2, s3];

Ik,0 = [sk, pk], Ik,1 = [pk, sk+1] and Ik = Ik,0 ∪ Ik,1, k = 3, . . . ,m− 1.

The following proposition describes the spectra of optimal strategies over intervals
Ik.

Proposition 3.2. For p ∈ I0, Player 2 uses the bid 0. Player 1 uses the bid 1.
For p ∈ I1 ∪ I2, Player 1 uses the bids 1 and 2. For p ∈ I1 = I2,0, Player 2 uses the
bids 0 and 1. For p ∈ I2 = I2,1, Player 2 uses the bids 0 and 2.
For p ∈ Ik, k > 2, Player 1 uses the bids 1, 2, 3, . . . , k. The maximal bid of Player
2 is k.
For p ∈ Ik,0, k = 3, . . . ,m− 1, Player 2 uses the bids 0, 2, 3, . . . , k, if the number
k is odd, and the bids 0, 1, 3, . . . , k, if k is even.
For p ∈ Ik,1, k = 3, . . . ,m− 2, Player 2 uses the bids 0, 1, 3, . . . , k, if the number
k is odd, and the bids 0, 2, 3, . . . , k, if k is even.

Let vHk,i and vLk,i be the gains of Player 1 for the state H and for the state L
corresponding to the best reply of Player 1 to the optimal strategy of Player 2 for
p ∈ Ik,i.

The following theorem provides the recurrent description of value function V m
1 (p)

for any linearity domain.

Theorem 3.1. For p ∈ Ik,i,

V m
1 (p) = vLk,i(1 − p) + vHk,ip,

where
vL1,0 = 0, vH1,0 = m− 1, vL2,0 =

1

m− 1
, vH2,0 = m− 2,

vL2,1 =
2

m− 1
, vH2,1 =

(m− 2)2

(m− 1)
,

and for k = 3, . . . ,m − 2, i = 0, 1, payoffs vHk,i and vLk,i are given by the recurrent
formulas

vHk,i =
(m− k)2

vHk−1,i+1

, vLk,i = (vLk−1,i+1 − k)

(
m− k

vHk−1,i+1

)
+ k,

Here i+ 1 is calculated modulo 2.

Corollary 3.3. For any point p ∈ (0, 1) the inequality

V m
1 (p) ≤ m · p(1− p) (3.1)

holds. According to Proposition 3.1 for any p ∈ Pm∪Qm it turns to be the equality.

Remark 3.5. As the value of one-stage bidding game with arbitrary bids is equal
to m · p(1 − p), see De Meyer, Saley (2002), the inequality (3.1) implies that this
value exceeds the value of one-stage bidding game with discrete bids.
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4. Solutions for games G3
n(p) and recursive sequences

The problem of solution for the n-step games Gm
n (p) still remains open. The case

of two admissible bids (m = 2) is trivial: the optimal strategy of Player 1 for any a
priori probability p is to choose at the first step action 0 in the state L and action
1 in the state H , The both actions of Player 1 are "revealing" and the true price of
a share is revealed by Player 2 at the first step.

At the fist step an optimal strategy of Player 2 is to post 1 for p < 1/2, and to
post 1 for p > 1/2. For p = 1/2 any of the possible actions or any their probabilistic
mixture is optimal. Thus, after the first move the insider’s payoff is stabilized, and
V 2
n (p) = V 2

1 (p) = min{p, 1− p}.
In this section we consider the qualitatively more complicated case of three

reasonable bids 0, 1 and 2 (m = 3). Even the solution for the one-step game G3
1(p)

is nontrivial (see the previous section).
For m = 3 the one-step gains of Player 1 are given with the following matrices:

AL = [aLij ] =

⎡⎣ 0 1 2
−1 0 2
−2 −2 0

⎤⎦ ,

AH = [aHij ] =

⎡⎣0 −2 −12 0 −1
1 1 0

⎤⎦ .

We construct the exact solutions for games G3
n(p) in the explicit form for any

number of steps n. The value function V 3
n (p) and the optimal players’ strategies are

expressed using the second-order recursive sequence δn, n = 0, 1, 2, . . ., determined
by the recurrence relations

δn+1 = 2(δn + δn−1), δ0 = 0, δ1 = 2. (4.1)

The theory of recursive sequences can be used to obtain the analytical expression
for the sequences δn:

δn =
(1 +

√
3)n − (1−

√
3)n√

3
.

We show that the piecewise linear continuous concave value function V 3
n (p) of the

game G3
n(p) has three non-smoothness points on the interval (0, 1): 1/3, pn ∈

(1/3, 2/3) and 2/3, where

pn = (δn−1 + δn)/(δn−1 + 2δn).

The values of the function V 3
n (p) at these points are also determined using the

recursive sequence δn.
We demonstrate that

V 3
n (pn) = max

0≤p≤1
V 3
n (p),

i.e. the maximal payoff from private information is obtained by the insider in the
case of the largest initial uncertainty of the partner which for the one-step game
takes place for the prior probability of high price p = 1/2, and for the n-step game
with three admissible bids for p = pn.
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The insider controls the sequence of posterior probabilities of high stock price,
which are calculated with help of his strategies at the preceding steps. We show
that the optimal strategy of the insider in the n-step game generates the posterior
probability equal to pn−1 after the first step, and the posterior probability equal
to pn−2 after the second step, etc., and finally, before the last step the probability
equal to 1/2.

The optimal first move of Player 2 for n-step game G3
n(p) is independent of

the exact value of p. It depends only on the fact which linearity interval the prior
probability p belongs to. The optimal move of Player 2 at the step t = 2,′ ldots, n
depends only on the interval which the corresponding posterior probability belongs
to.

When n → ∞ the sequences of values V 3
n (1/3), V 3

n (pn) and V 3
n (2/3) converge

to 1. Thus, in the limit, the non-smoothness point pn disappears and the functions
V 3
n (p) converge to the value V 3

∞(p) of the game with unbounded duration G3
∞(p)

calculated in section 2.
The next theorem gives the exact formulation of the result.

Theorem 4.1. The piecewise linear continuous value function V 3
n (p) of the game

G3
n(p) on the interval [0, 1] has three non-smoothness points: 1/3, pn, 2/3. The

function V 3
n (p) is determined by its values at the ends of the interval V 3

n (0) =
V 3
n (1) = 0 and the peak points:

V 3
n (p) =

⎧⎨⎩1− 2/3δn for p = 1/3,
1− 1/(2δn + δn−1) for p = pn,
1− 1/3δn−1 for p = 2/3,

and

V 3
n (p) =

⎧⎪⎪⎨⎪⎪⎩
(3− 2/δn)p, if p ∈ [0, 1/3],
(1− 1/δn)(1 − p) + p, if p ∈ [1/3, pn],
(1 + 1/δn−1)(1 − p) + (1− 1/δn−1)p, if p ∈ [pn, 2/3],
(3− 1/δn−1)(1 − p), if p ∈ [2/3, 1].

Both players have the optimal strategies σ∗n è τ∗n, which on the four corre-
sponding linearity intervals of the function V 3

2 , enumerated by the Roman figures
I, II, III, IV, have the following structure:
I. The interval p ∈ [0, 1/3]. The first move of the strategy σ∗n(p, I) is

σ∗n
1 (L, p, I) = (1− 2pδn−1/(1− p)δn, 2pδn−1/(1− p)δn, 0), σ∗n

1 (H, p, I) = (0, 1, 0).

The first move τ∗n
1 (I) of the strategy τ∗n(I) is (1, 0, 0).

The continuation τ∗n(·|i, I) of the strategy τ∗n(I) after observation of the bid i
is determined by the relations

τ∗n(·|i, I) =
{

τ∗(n−1)(I), if i = 0,

(τ∗(n−1)(II)δn−1 + τ∗(n−1)(III)δn−2)/(δn−1 + δn−2), if i = 1.

II. The interval p ∈ [1/3, pn]. The first move of the strategy σ∗n(p, II) is

σn1 (L, p, II) = (1−δn−1/δn, δn−1/δn, 0), σn1 (H, p, II) = (0, (1−p)/2p, (3p−1)/2p).

The first move τ∗n
1 (II) of the strategy τ∗n(II) is (1/δn, 1− 1/δn, 0).
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The continuation τ∗n(·|i, II) of the strategy τ∗n(II) after observation of the bid
i is determined by the relations

τ∗n(·|i, II) =

⎧⎨⎩
τ∗(n−1)(I), if i = 0,

(τ∗(n−1)(II)δn−1 + τ∗(n−1)(III)δn−2)/(δn−1 + δn−2), if i = 1,
τ∗(n−1)(IV ), if i = 2.

III. The interval p ∈ [pn, 2/3]. The first move of the strategy σ∗n(p, III) is

σn1 (L, p, III) = ((2− 3p)/(1− p), (2p− 1)/(1− p), 0),

σn1 (H, p, III) = (0, (2p− 1)δn/2pδn−1, 1− (2p− 1)δn/2pδn−1).

The first move τ∗n
1 (III) of the strategy τ∗n(III) is (0, 1− 1/δn−1, 1/δn−1).

The continuation τ∗n(·|i, III) of the strategy τ∗n(III) after observation of the
bid i is determined by the relations

τ∗n(·|i, III) =

⎧⎨⎩
τ∗(n−1)(I), if i = 0,

τ∗(n−1)(II), if i = 1,
τ∗(n−1)(IV ), if i = 2.

IV. The interval p ∈ [2/3, 1]. The first move of the strategy σ∗n(p, IV ) is

σn1 (L, p, IV ) = (0, 1, 0), σn1 (p,H) = (0, (1− p)δn/2pδn−1, 1− (1− p)δn/2pδn−1).

The first move τ∗n
1 (IV ) of the strategy τ∗n(IV ) is (0, 0, 1).

The continuation τ∗n(·|i, IV ) of the strategy τ∗n(IV ) after observation of the
bid i is determined by the relations

τ∗n(·|i, IV ) =

{
τ∗(n−1)(II), if i = 1,

τ∗(n−1)(IV ), if i = 2.

5. Analysis of lower bounds for values V m
n (p) of games Gm

n (p).

In section 2 we constructed the Player 1’ fastest optimal strategy σ̄m for the bidding
game Gm

∞(p) of unlimited duration (see Definition 2.2.). The strategy σm provides
Player 1 the maximal possible expected gain 1/2 per step. For this strategy the pos-
terior probabilities perform a simple random walk over the grid l/m, l = 0, . . . ,m,
with absorbing extreme points 0 and 1. At the random time Θm of absorption of
posterior probabilities revealing the true share value by Player 2 occurs. For the
initial probability k/m, the expected duration βm∞(k) = Ek[Θ

m] of this random
walk before absorption is k(m − k), where Ek is the expectation for the random
walk starting at the point k/m.

For the n-stage game Gm
n (p) the strategy σ̄m ensures the Player 1’ gain that

does not exceed Lmn (p). The Player 1’ guaranteed gain is equal to Lmn (p) if he uses
the strategy σ̄m.

The continuous, concave, and piecewise linear lower bound Lmn (p) for value
V m
n (p) at its peak points k/m is given with recursive formulas (section 2, Theo-

rem 2.2).
In this section we obtain an explicit formula for Lmn (p), i.e. for the guaranteed

gain of Player 1 in the n-stage game if he applies his optimal strategy σm for the
game Gm

∞(p) of unlimited duration. Let Wm
n (σ, τ |p) be the payoff function of the

game Gm
n (p).
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Theorem 5.1. If Player 1 exploits the strategy σm in the game Gm
n (k/m), then his

guaranteed gain Lmn (k/m) = infτ Wm
n (σm, τ |k/m) is given with the formula

Lmn (k/m) =
(m− k)k

2
− εmn (k), (5.1)

where

εmn (k) =
1

2m

[m/2]∑
l=1

cosn
π(2l − 1)

m
sin

πk(2l− 1)

m
ctg

π(2l − 1)

2m

(
1 + ctg2

π(2l − 1)

2m

)
,

(5.2)
with [α] being the integer part of α.

Sketch of the proof. Let βmn (k) = Ek[Θ
m ∧ n] denote the average number of

steps of the simple random walk of posterior probabilities starting at the point
k/m in the n-stage game Gm

n (p). Then the expected insider’s profit is given by
Wm
n (k) = 1

2β
m
n (k).

The recursive equations for βmn (k) hold βmn+1(k) =
1
2β

m
n (k+1)+ 1

2β
m
n (k− 1)+1

with the boundary conditions βmn (0) = βmn (m) = 0 and with the initial condition
βm0 (k) = 0.

The values βm∞(k) satisfy the equations βm∞(k) = 1
2β

m
∞(k + 1) + 1

2β
m
∞(k − 1) + 1

with the boundary conditions βm∞(0) = βm∞(m) = 0.
Thus the differences εmn (k) = 1

2 (β
m
∞(k)− βmn (k)) satisfy the homogeneous re-

cursive equations

εmn+1(k) =
1

2
εmn (k + 1) +

1

2
εmn (k − 1)

with the boundary conditions εmn (0) = εmn (m) = 0 and with the initial condition
εm0 (k) = βm∞(k)/2.

Solving these equations we obtain the representation (5.2) for εmn (k).

Corollary 5.1. The strategy σm is a εmn -optimal strategy of Player 1 for the finitely
repeated game Gm

n (p) of length n, where εmn = O(cosn π/m), i.e. the “error term”
εmn (k) decreases exponentially.

This is not so for slower optimal strategies of Player 1.

The case m=3.
For m = 3 the above result means

ε3n(k) =
1

2n
, k = 1, 2.

As the exact solutions for the n-stage games G3
n(p) are known (see section 4), we

may refine the values of the “error term” estimating the difference between the value
V 3
n (p) and the lower bound L3

n(p), not only (V 3∞(p)− L3
n(p)).

In section 4 the value functions V 3
n (p) are expressed by means of a second-order

recursive sequence. They converge to the value V 3
∞(p) of the game with unbounded

duration G3
∞(p). Using the theory of recurrent sequences it is easy to estimate

function V 3
n (p) at the peak points p = 1/3 and p = 2/3,

V 3
n (1/3) ≈ 1− 2√

3(1 +
√
3)n

, V 3
n (2/3) ≈ 1− 1 +

√
3√

3(1 +
√
3)n

,
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and to get the refined values

ε̄3n(1) = (V 3
n (1/3)− L3

n(1/3)) ≈
1

2n
− 2√

3(1 +
√
3)n

,

ε̄3n(2) = (V 3
n (2/3)− L3

n(2/3)) ≈
1

2n
− 1 +

√
3√

3(1 +
√
3)n

.

So for sufficiently large n the optimal strategy of the insider for the bidding game
of infinite duration is a rather good approximation of his optimal strategy for the
n-stage game.

6. Bidding games Gn(p) and G∞(p) with countable state space

In this section we consider the model where any integer non-negative bids are ad-
missible and the liquidation price of a share Cp may take any nonnegative integer
values k = 0, 1, 2, . . . according to a probability distribution p = (p0, p1, p2, . . .).

At stage 0 a chance move determines the liquidation value of a share for the whole
period of bidding n according to the probability distribution p = (p0, p1, p2, . . .) over
the one-dimensional integer lattice, S = ZZ+. Structure of information and trading
mechanism are the same as in section 2 for the case of two possible states of nature.

This n-stage model is described by a zero-sum repeated game Gn(p) with in-
complete information of Player 2 and with countable state space S = ZZ+ and with
countable action spaces I = ZZ+ and J = ZZ+. One-step gains of Player 1 are given
with the matrices As = [as(i, j)]i∈I,j∈J , s ∈ S,

as(i, j) =

⎧⎪⎨⎪⎩
j − s, for i < j ;
0, for i = j ;
−i+ s, for i > j .

At the end of the game Player 2 pays to Player 1 the sum

n∑
t=1

as(it, jt).

This description is common knowledge to both Players. The games Gm
n (p) consid-

ered in section 2 represent particular cases of these games corresponding to proba-
bility distributions with two-point supports, p0 = 1− p and pm = p.

Theorem 6.1. If the random variable Cp, determining the liquidation price of a
share has a finite mathematical expectation E[Cp], then the values Vn(p) of n-stage
games Gn(p) exist The values Vn(p) are positive and do not decrease, as the number
of steps n increases.

The theorem follows from the fact that for this case the payoff of game Gn(p)
can be approximated by payoffs of games Gn(pk) with probability distributions pk
having finite support.
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6.1. Upper bound for values Vn(p)

If the variance D[Cp] is infinite, then, as n tends to∞, the sequence Vn(p) diverges.
The next theorem demonstrates that on the contrary, if the variance D[Cp] is

finite, then, as n tends to ∞, the sequence of values Vn(p) of the games Gn(p) is
bounded from above.

Theorem 6.2. For p such that D[Cp] < ∞, the values Vn(p) are bounded from
above by a continuous, concave, and piecewise linear function H(p). Its domains of
linearity are

L(k) = {p : E[p] ∈ [k, k + 1]}, k = 0, 1, . . . .

Its domains of non-smoothness are

Θ(k) = {p : E[p] = k}.

The equality holds
H(p) = (D[p]− α(p)(1 − α(p)))/2, (6.1)

where α(p) = E[p]− ent[E[p]] and ent[x], x ∈ R1 is the integer part of x.

The result is provided by a ”reasonable” strategy of Player 2. The strategy is
analogous to his optimal strategy for two-states game Gm

n (p) (see section 2): at the
first move Player 2 posts ent[E[p]] and then his moves depend on the last observed
pair of actions only.

6.2. Solutions for games G∞(p) with arbitrary p

As the sequence Vn(p) is bounded from above, it is reasonable to consider the games
G∞(p) with infinite number of steps. We show that the value V∞(p) is equal to
H(p). We get solutions for these games in the explicit form.

The optimal strategy of Player 2 is his ”reasonable” strategy mentioned above.
We construct the optimal strategy of Player 1 for the game G∞(p) with an arbitrary
distribution having an integer expectation on the base of the solutions for the games
with two-point distributions obtained in section 2. The result is due to the symmetric
representation of distributions over the one-dimensional integer lattice with fixed
integer mean values as convex combinations (probability mixture) of distributions
with two-point supports and with the same mean values (see, e.g. Obloy, 2004).
Symmetric representation of distributions over the one-dimensional in-
teger lattice. Let p be a probability distribution over the set of integers ZZ1 with
mean value equal to an integer r. Then

p = pr · δr +
∞∑
k=1

∞∑
l=1

k + l∑∞
t=1 t · pr+t

pr−lpr+k · prr+k,r−l, (6.2)

where prr+k,r−l is the probability distribution with the two-point support r − l, r + k
and with mean value equal to r.

We treat coefficients

Pp(p
r
r+k,r−l) =

k + l∑∞
t=1 t · pr+t

pr−lpr+k

of decomposition (6.2) as probabilities of corresponding distributions with two-point
supports (r + k), (r − l) in this probability mixture.
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Given one point z (equal to r + k or to r − l) in the support of two-point
distribution, the conditional probability of complementary point (r − l or r + k)
may be calculated

Pp(r + k|r − l) =
k · pr+k∑∞
t=1 t · pr+t

, Pp(r − l|r + k) =
l · pr−l∑∞
t=1 t · pr+t

. (6.3)

Player 1’ optimal strategy σ∗.We construct Player 1’ optimal strategy σ∗ for the
game G∞(p) making use of the obtained decomposition for the initial distribution
p with mean value equal to an integer r (the prior expectation of share price is r).
a) If the state chosen by chance move is r, then Player 1 stops the game (Player 1’
informational advantage disappears).
b) If chance move chooses z = r + k (or z = r − l), where k, l are integer positive
numbers, then Player 1 chooses a point z2 = r − l (or z2 = r + k) by means of
lottery with probabilities (6.3) and plays his optimal strategy for the state z in the
two-point game G(prr+k,r−l) (see section 2).

The described optimal strategy of Player 1 generates a symmetric random walk
of posterior mathematical expectations of liquidation price with absorption. The
absorption may occur at any stage if the posterior expectation of share price at
this stage coincides with its prior expectation. If the liquidation price chosen by the
chance move coincides with its prior expectation, then the absorption occurs at the
first stage. Note that it is impossible for two-point support distributions.

The expected duration of this random walk is equal to the initial variance of
liquidation price. The guaranteed total gain of Player 1 (the value of the game) is
equal to this expected duration multiplied with the fixed gain per step.

7. Repeated games with asymmetric information modeling financial
markets with two risky assets

In this section we consider multistage bidding models where two types of risky
assets are traded. Two players with opposite interests have money and two types
of shares. The liquidation prices of both share types may take any integer values x
and y. At stage 0 a chance move determines the ”state of nature” s and therefore
the liquidation prices of shares (s1, s2) for the whole period of bidding n according
to the probability distribution p over the two-dimensional integer lattice known to
both Players. Player 1 is informed about the result of chance move z, Player 2 is
not. Player 2 knows that Player 1 is an insider.

At each step of bidding both players simultaneously make their integer bids,
i.e. they post their prices for each type of shares. The player who posts the larger
price for a share of a given type buys one share of this type from his opponent at
this price. Any integer bids are admissible. Players aim to maximize the values of
their final portfolios, calculated as money plus obtained shares evaluated by their
liquidation prices.

The described model of n-stage bidding is reduced to the zero-sum repeated
game Gn(p) with lack of information on one side and with two-dimensional one-
step actions with components corresponding to bids for each type of assets. The
countable state space is S = ZZ2 and the countable action spaces are I = ZZ2

and J = ZZ2. The one-step gain a(s, i, j) of Player 1 corresponding to the state
s = (s1, s2) and the actions i = (i1, i2) and j = (j1, j2) is given with the sum
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e=1 ae(se, ie, je), where

ae(se, ie, je) =

⎧⎨⎩ je − se, for ie < je;
0, for ie = je;
−ie + se, for ie > je.

At the end of the game Player 2 pays to Player 1 the sum

n∑
t=1

a(s, it, jt),

where s is the result of a chance move. This description is a common knowledge of
both Players.

It is easy to show that if the expectations of share prices are finite, then the
value of such n-stage bidding game does not exceed the sum of values of games
modeling the bidding with one-type shares. This means that simultaneous bidding
of two types of risky assets is less profitable for the insider than separate bidding of
one-type shares. This is explained by the fact that the simultaneous bidding leads to
revealing more insider information, because the bids for shares of each type provide
information on shares of the other type.

We show that, if liquidation prices of both shares have finite variances, then the
value Vn(p) of n-stage bidding games does not exceed the function H(p) which is
the smallest piecewise linear function equal to the one half of the sum of share price
variances for distributions with integer expectations of both share prices.

This makes it reasonable to consider the bidding of unlimited duration that is
reduced to the infinite game G∞(p). We give the solutions for these games with ar-
bitrary probability distributions over the two-dimensional integer lattice with finite
component variances.

Both players have optimal strategies. The optimal strategy for Player 2 is a
direct combination of his optimal strategies for the games with one-type of risky
asset (see section 6).

We begin with constructing Player 1’ optimal strategies for games G∞(p) with
distributions p having two- and three-point supports – elementary games. Next, us-
ing symmetric representations of probability distributions over the two-dimensional
plane with given mean values as convex combinations of distributions with supports
containing not more than three points and with the same mean values (Domansky,
2013), we build the optimal strategies of Player 1 for bidding games G∞(p) with
arbitrary distributions p as convex combinations of his optimal strategies for ele-
mentary games.

The optimal strategy of Player 1 generates a random walk of transaction prices.
But unlike the case of one-type assets, the symmetry of this random walk is broken
at the final stages of the game.

We show that this game terminates naturally when the posterior expectations
of both liquidation prices come close enough to their real values. We demonstrate
that the value V∞(p) coincides with H(p). So it is equal to the sum of values of
corresponding games with one-type risky asset. Thus, the profit that Player 2 gets
under simultaneous n-step bidding in comparison with separate bidding for each
type of shares disappears in a game of unbounded duration.
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7.1. Solutions for games G∞(p) with p having two-point supports
For games G∞(p) with the support of distribution p containing two states, we show
that the value V∞(p) is equal to H(p).

To construct optimal strategies σ∗ of Player 1 for games G∞(p) with two states
we use the results for games with one-type assets and with two states. But the
fastest optimal strategy of Player 1 described in section 2 is not sufficient for this
purpose. We use Player 1’ slower optimal strategies.

Without loss of generality we assume that one of support points is (0, 0). Thus
there are two states 0 = (0, 0) and z = (x, y), where x and y are integers and x > 0.
The distribution p can be depicted with a scalar parameter p ∈ [0, 1] being the
probability of state z. For definiteness set y > 0.

The strategy σ∗ of Player 1 generates an asymmetric random walk of posterior
probabilities by adjacent points of the irregular lattice

Lat(x, y) = {k/x, k = 0, . . . , x} ∪ {l/y, l = 0, . . . , y}

formed with those probabilities where at least one of the price expectations has
an integer value. The probabilities of jumps provide martingale characteristics of
posterior probabilities and with absorption at extreme points 0 and 1.

7.2. Solutions for games G∞(p) with p having three-point supports
We construct optimal strategies σ∗ of Player 1 that ensure H(p) for games G∞(p)
with three states z1, z2, z3 ∈ Z2.

Denote �(z1, z2, z3) the triangle spanned across the support points of distri-
bution. A distribution p with the support z1, z2, z3 is uniquely determined with a
vector w = (u, v) ∈ �(z1, z2, z3) of expectations of coordinates (the barycenter of
distribution p). Denote it pwz1,z2,z3 .

For pwz1,z2,z3 the first step of optimal strategy σ∗ may efficiently use the actions
(u−1, v−1), (u, v−1), (u−1, v) and (u, v). With the help of these actions Player 1 can
perform moves such that the modulus of difference between posterior expectations
of each coordinate and its initial expectation is not more than one.

There are several types of optimal first moves of Player 1, in particular, the
first moves σNE−SW

1 (north-east – south-west), σNW−SE
1 , and their probabilistic

mixtures. Denote e = (1, 1), ē = (1,−1). The first move σNE−SW
1 exploits only two

actions w−e and w with posterior expectations w−b ·e and w+a ·e. The first move
σNW−SE
1 makes use of actions (u− 1, v) and (u, v − 1) with posterior expectations

w − bē and w + aē.
The martingale of posterior expectations generated by the optimal strategy of

Player 1 for the game G∞(pwz1,z2,z3) represents a symmetric random walk over points
of integer lattice lying within the triangle �(z1, z2, z3).

The symmetry is broken at the moment that the walk hits the triangle boundary.
From this moment, the game turns into one of games with distributions having two-
point supports.

7.3. Solutions for games G∞(p) with arbitrary p

We construct Player 1’s optimal strategy for the game G∞(p) with an arbitrary
distribution p having an integer expectation vector (k, l), as a convex combination
(a probability mixture) of his optimal strategies for games with distributions having
not more than three-point supports and the same expectation vector (k, l).



110 Victor Domansky, Victoria Kreps, Marina Sandomirskaia

To realize the idea we use symmetric representations of probability distributions
over the two-dimensional plane with given mean values as convex combinations of
elementary distributions – distributions with supports containing not more than
three points and with the same mean values (Domansky, 2013).

This decomposition is a generalization of the analogous decomposition of one-
dimensional distributions into a convex combination of distributions with no more
than two-point supports and with the same expectation that was used in section 6
for constructing solutions for bidding games with a one-type risky asset.

The coefficient at an elementary distribution may be regarded as its probability
in this probability mixture. Given one point z in the support of elementary distri-
bution, the conditional probability of any elementary distribution having z in its
support may be calculated. Then we obtain the conditional probabilityPp(2|z) of el-
ementary two-point support distributions and the conditional probabilityPp(3|z) of
elementary three-point support distributions. For constructing the optimal Player 1’
strategy we use also conditional probabilities Pp(z2|z, 2) of a complementary point
z2 for the two-point support (z, z2) and conditional probabilities Pp(z2, z3|z, 3) of
complementary points z2, z3 for the three-point support (z, z2, z3).

The optimal strategy of Player 1 is given by the following algorithm:
1. If the state z = (x, y) chosen by chance move coincides with the price expec-

tation vector, (x, y) = (k, l), then Player 1 stops the game. In this case he cannot
receive any profit from his informational advantage.

2. If not, z = (x, y) �= (k, l), then Player 1’ optimal strategy is constructed with
help of a two-stage lottery.

a) To choose between two-point and three-point distributions Player 1 realizes
the Bernoulli trial with probabilities Pp(2|z) and Pp(3|z).

b) If two-point distributions are chosen, then Player 1 plays his optimal strategy
in a game with two-point support (z, z2) choosing a complementary point z2 by
means of the lottery with conditional probabilities Pp(z2|z, 2).

If three-point distributions are chosen, then Player 1 plays his optimal strategy
in a game with three-point support (z, z2, z3) choosing two complementary points
by means of the lottery with conditional probabilities Pp(z2, z3|z, 3).

8. Bidding models with non-zero bid-ask spread

We generalize bidding models with one-type risky assets investigated in the previous
sections where players proposed only one price for a share at each step, i.e. bid and
ask prices coincide. Here we drop this restriction. We assume that at each step of
bidding both players simultaneously propose their bid and ask prices for one share.
The bid-ask spread s is fixed by rules of bidding. Transaction occurs from seller
to buyer by bid price. The simplified model (sections 2-7) corresponds to the case
s = 0 what is equivalent to s = 1 due to the price discreteness.

The model is reduced to a repeated game with incomplete information. De-
pending on bid-ask spread s one-step payoff matrices for these games have more
complicated structure to compare with the case s = 1.

As for the zero bid-ask spread models we start with the case of two possible
states of nature (two possible values for a share price). We generalize the results of
section 2 for multistage games: we construct the upper and lower bounds for the
values of n-stage games as n →∞. The bounds coincide for s = 1.
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We generalize the developed in section 3 recursive approach to solutions of one-
stage bidding games (see Sandomirskaya, 2012). The spectrum structure of optimal
strategies becomes more complicated as lacunas longer than in the case s = 1 ap-
pear. The idea of equalizing insider’s spectrum and obtaining recurrent relations on
weights in the Player 2’s optimal strategy remain applicable, however the difficulties
concerned with explicit weight representation increase enormously.

Here we go to the case of two-point state of nature and generalize the results
of sections 2 for bidding games with bid-ask spread. After this we make necessary
comment on how to extend results for two-point state of nature to the case of
countable one.

8.1. The model of bidding with two possible values for a share price
As for the zero bid-ask case we start with bidding games with two states of nature:
the state m (integer positive) with probability p and the state 0 with probability
1 − p. In this model any integer bids are admissible. For the sake of simplicity
we assume that mmods = 0. A chance move and an information structure of its
outcome are the same as for models with zero bid-ask spread.

At each subsequent stage t = 1, . . . , n of bidding both players simultaneously
propose their integer bid prices and integer ask prices for one share. The bid-ask
spread s is fixed by rules of bidding. It is the same for both players. Denote it a bid
price for Player 1 at stage t and jt a bid price for Player 2 at stage t. Then it + s
and jt + s are ask prices for Player 1 and for Player 2 at stage t.

At stage t transaction of one share occurs if and only if an ask price of one player
does not exceed a bid price of his opponent, i.e. either it + s ≤ jt, or jt + s ≤ it.
If so, then a player-buyer gets one share from his opponent-seller according to his
(buyer) bid price.: if it+ s ≤ jt, then at stage t Player 2 buys one share from Player
1 for the price jt; if jt+ s ≤ it, then at stage t Player 1 buys one share from Player
2 for the price it. Thus, at stage t there is no transactions if and only if |it− jt| < s.

This n-stage model with the bid-ask spread equal to s is described by a zero-sum
repeated game Gm,s

n (p) with incomplete information of Player 2 and with countable
state and action spaces. The corresponding games Gm,s

n (p) are given by the two
matrices of one-step payoffs.

aL,m,s(i, j) =

⎧⎨⎩−i, if i ≥ j + s,
0, if |i− j| < s,
j, if j ≥ x+ s,

aH,m,s(i, j) =

⎧⎨⎩
m− i, if i ≥ j + s,
0, if |i− j| < s,

−m+ j, if j ≥ i+ s.

For s = 0, zero elements of the matrices appear at the principal diagonal only.
For s > 1, zero elements fill a ”band of s-range” along the principal diagonal. For
s > 1 the more complicated structure of payoff matrices makes an analysis of games
Gm,s
n (p) more difficult.

8.2. Upper and lower bounds for the game value V m,s
n (p)

Following the guideline of section 2 we get upper and lower bounds for for value
function V m,s

n (p) provided by a ”reasonable” strategy of Player 2 and a ”reasonable”
strategy of Player 1.
Upper bound for V m,s

n (p).
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Theorem 8.1. For any number of steps n functions V m,s
n are bounded from above

by a function Hm,s that is continuous, concave, and piecewise linear with m/s lin-
earity domains [sk/m, s(k+1)/m], k = 0, 1, . . . ,m/s−1. The function Hm,s is com-
pletely determined with the values at its peak points pk = sk/m, k = 0, 1, . . . ,m/s:

Hm,s(pk) =
m2

2s
pk(1− pk). (8.1)

To prove the theorem we construct the following ”reasonable” strategy τm,s of
Player 2 that is an analogue of his optimal strategy in the game of infinite duration
with s = 1 (see section 2).

For the initial probability p ∈
[
sk
m , s(k+1)

m

)
the first move of Player 2 strategy

τm,s is to propose the bid price sk. Then at step t, t = 2, 3, . . ., Player 2 shifts his
bid price by s upwards or downwards depending on the insider’s bid at the previous
step:

τm,st (it−1, jt−1) =

⎧⎨⎩ jt−1 − s, if it−1 ≤ jt−1 − s;
jt−1, if |it−1 − jt−1| < s

jt−1 + s, if it−1 ≥ jt−1 + s;

As the values V m,s
n are bounded from above as n → ∞, the consideration of

games with infinite number of steps becomes reasonable.
Lower bound for V∞(p).

Theorem 8.2. The function V m,s
∞ is bounded from below by a function Lm,s that is

continuous, concave, and piecewise linear with m/s linearity domains [sk/m, s(k+
1)/m], k = 0, 1, . . . ,m/s−1. The function Lm,s has the following values at the peak
points pk = sk/m, k = 0, 1, . . . ,m/s:

Lm,s(pk) = V1(s)
m2

s2
pk(1− pk). (8.2)

Value V1(s) is a guaranteed insider’s gain per step, explicit formula will be given a
few below.

Remark 8.1. The obtained upper and lower bounds have the same form.

Sketch of the proof for Theorem 8.2. As for the case s = 1 the Player 1’ optimal
strategy in the game of infinite duration generates the simple random walk (SRW)
on the lattice of posterior probabilities of share prices, for the case s > 1 it is
natural to investigate the class ΣSRW of strategies with SRW-property on the lattice{
sk
m | k = 0, ..m/s

}
corresponding to the case s > 1.

Below we construct the best strategy in the class ΣSRW and show that this
strategy provides the result of Theorem 8.2.

To determine this strategy we use the following notation,

g(d) =
1

s
+

1

s− 1
+ . . .+

1

s− d
,

d∗ = max{d | g(d) ≤ 1},

ε∗ = 1− g(d∗).
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For probability pk = sk/m the first move of insider’s strategy σk,m,s is to mix
bid prices {sk − 2s} and {sk, sk + 1, . . . , sk + d∗, sk + d∗ + 1} in accordance with
total probabilities

σk,m,s1 (sk − 2s|H) = 1
2 ,

σk,m,s1 (sk + d|H) = 1
2(s−d) , d = 0, 1, . . . , d∗,

σk,m,s1 (sk + d∗ + 1|H) = 1
2ε

∗.

Conditional probabilities of these bids are calculated so that corresponding pos-
terior probabilities of high share price will be the following

p(i = sk − 2s) = s(k − 1)/m = pk−1,

p(i = sk + d) = s(k + 1)/m = pk+1, d = 0, 1, . . . , d∗, d∗ + 1.

At the next step insider must apply the same strategy, but for the posterior
probability calculated at the previous step.

This strategy generates the simple random walk over the lattice sk/m with
absorption at extreme points, insider’s profit per step being equal to V (1) given by

V1(s) =
1

2
(d∗ + 1 + ε∗(s− d∗ − 1)) . (8.3)

It is the best strategy in the class ΣSRW .

Remark 8.2. For the minimal nontrivial case s = 2 the constructed ”reasonable”
strategy of insider is not his optimal strategy for the game of infinite duration.

Therefore, we conclude that the insider’s optimal strategy does not generate
simple random walk of price expectations and leads apparently to non-symmetric
price fluctuations.
Relationships between upper and lower bounds. For the case s = 1, the
obtained upper and lower bounds coincide and give the value function of bidding
game of unlimited duration at its peak points pk = k/m:

Hm,1(pk) = Lm,1(pk) =
m2

2
pk(1 − pk) = V m,1

∞ (pk).

For the case of minimal nontrivial bid-ask spread s = 2 the following equality
holds at the points pk = 2k/m,

Lm,2(pk) = 3/4Hm,2(pk).

As s →∞ the ratio between L and H decreases and in the limit yields

Lm,s(pk) ≈ 0, 63 ·Hm,s(pk).

As shown above, bid-ask spread plays a role of regulator for transaction activity
on stock market. As bid-ask spread increases transactions occur less frequently and
expected insider’s profit falls at least by s times to compare with the model without
spread.
Generalization of the model with non-zero bid-ask spread to the case
of countable set of possible values for a share price The results above are
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generalized to the case of countable set of possible values for a share price. We
analyze the model where this price can take values on the lattice sk, k ∈ ZZ by
analogy with section 6. The principal idea is to represent distributions on the integer
lattice with given first moment as convex combinations (probability mixtures) of
two-point distributions with the same first moments. It is shown that upper and
lower bounds obtained above preserve their form with replacement of the term
sk(m − sk) by the variance D(p) for distributions with mean values E(p) = sk,
k ∈ ZZ. We construct the insider’s strategies for these games as probability mixtures
of strategies for two-point games implementing a preliminary additional lottery for
the choice of two-point distribution.
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