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Abstract In this paper a n-person network game theoretical model of emis-
sion reduction is considered. Each player has its own evolution of the stock of
accumulated pollution. Dynamics of player i, i = 1, ..., n depends on emis-
sions of players k ∈ Ki, where Ki is the set of players which are connected by
arcs with player i. Nash Equilibrium is constructed. The cooperative game is
considered. As optimal imputation the ES-value is supposed. The restriction
on network structure to realization the irrational behavior proof condition
is deduced.
Keywords: network game, Nash equilibrium, ES-value, imputation destri-
bution procedure, irrational behavior proof condition.

1. Introduction

The public interest in environmental problems increases recently. It leads to special
intergovermental agreements for reducing emissions. There may be disagreement
among different parties as to the problem of allocation of costs of reducing emissions
or pollution accumulations. Considerable attention is devoted to the principles of
formation of agreements aimed to reduce the level of pollution, including conflict of
interest parties to the agreement, as well as game-theoretic models in the field of
environmental protection. One example of such models is a game-theoretic model
of pollution cost reduction.

The model of pollution cost reduction is proposed in (Petrosjan and Zaccour,
2003). There is two types of costs in the model: the emission reduction cost when
limiting emission to the specified level and damage cost. The players aim is to reduce
their total costs.

In this paper the network game of emission reduction is considered. This model
is based on the model considered in (Petrosjan and Zaccour, 2003).

2. Problem statement

Let consider network differential game G = (P, L), where P is finite set of vertexes;
L is the set of pairs (i, j), which is named the set of arcs, where i ∈ P, j ∈ P . Let
call p ∈ P — vertexes of network, and the pair (p, y) ∈ P — arc, which connect
vertexes p and y.

Consider network game of emission reduction Γ (I, L), where
I is the set of players involved in the network game, I = {1, 2, . . . , n}.

Players of the set I are vertexes of network.
L — the set of arcs (i, j) ∈ L, i ∈ I, j ∈ I.
Denote the emission of player i, i = 1, 2, . . . , n at time t, t ∈ [t0,∞) as ui(t).
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Denote by:
Ki is the set of players, which influence the evolution of the stock of accumulated
pollution of player i; in this model Ki is the set of players, which are connected
with player i with arc,
Mi is the set of players, on which the player i influences, i.e. the set of players,
which have the connection with player i,
mj — the number of players, which have the evolution of the stock of accumulated
pollution, which depends on player j emissions, uj, |Mj | = mj , Mj �= ∅, j ∈ I.

Let xi(t) be the stock of accumulated pollution of player i by time t. The evo-
lution of the stock of accumulated pollution of player i is governed by the following
differential equation:

ẋi(t) =
∑
j∈Ki

(uj
1

2mj
) +

ui
2
− δxi(t), mj �= 0,

ẋi(t) =
ui
2
− δxi(t), Ki = ∅, (1)

xi(t0) = x0
i , i = 1, ..., n,

where δ denotes the natural rate of pollution absorption.
The arc (i, j) ∈ L in network game of emission reduction, if the evolution of

the stock of accumulated pollution of player i depends on the emissions of player
j. Network is oriented, i. e. if the arc (i, j) ∈ L, then it doesn’t follow that the arc
(j, i) ∈ L.

Each player has its own evolution stock of accumulated pollution in the network
game of emission reduction, as opposed to the model in Petrosjan and Zaccour, 2003.
The evolution stock of accumulated pollution of player i can depend not only of the
player i emissions, but of other players emissions, which have the connections with
player i.

The game begins at time t0 with initial state x0 = (x0
1, x

0
2, ..., x

0
n).

Denote by Ci(ui) the emission reduction cost incurred by country i when limiting
its emission to level ui:

Ci(ui(t)) =
γ

2
(ui(t)− ūi)

2,

0 ≤ ui(t) ≤ ūi, γ > 0.

Suppose that the following condition is hold:

ūi ≥
π

γ(ρ+ δ)
.

Di(xi) denotes its damage cost.

Di(xi) = πxi(t), π > 0.
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Both functions are continuously differentiable and convex, with and C′
i(ui) < 0

and D′
i(x) > 0. Each player seeks to minimize its total cost. The payoff function of

the player i is defined as:

Ki(x
0
i , t0) =

∞∫
t0

e−ρ(t−t0) (Ci(ui(t)) +Di(xi(t))) dt,

where ρ is the common social discount rate.

Example 1. Consider the example, which demonstrates the rule of constructing of
evolution the stock of accumulated pollution of player i.

Four players participate in the game I = {1, 2, 3, 4}.

Player 1 influences on the player 2 only. That is the evolutions the stock of
accumulated pollution of players 1 and 2 depend of emissions of player 1. First
player holds a half of its own emissions and the second half it gives to player 2.

Player 2 influences on the player 3 only.
Player 3 influences on the players 2 and 4. Player 3 holds a half of its own

emissions, first quarter it gives to player 2, second quarter it gives to player 4.
Player 4 influences on the players 1 and 3.
Thus we obtain the following evolutions of the stock of accumulated pollution:

ẋ1(t) =
u1

2
+

u4

4
− δx1(t),

ẋ2(t) =
u1

2
+

u2

2
+

u3

4
− δx2(t),

ẋ3(t) =
u2

2
+

u3

2
+

u4

4
− δx3(t),

ẋ4(t) =
u3

4
+

u4

2
− δx4(t),

xi(t0) = x0
i , i = 1, ..., 4.

3. Solution of the problem

In subsection 3.1 we calculate a feedback Nash equilibrium. Then in subsection
3.2 we minimize the total cost of grand coalition. The solution of the game in
the form of ES-value is considered in 3.3. In subsection 3.4 the time-consistent
ES-value distribution procedure is calculated. In the last subsection the irrational
behavior proof condition is verified for the network game of emission reduction,
when the time-consistent ES-value distribution procedure is used. The restriction
on the network structure necessary for the realization the irrational behavior proof
condition is deduced in the subsection 3.5.

3.1. Computation of feedback Nash equilibrium.

On the first step we compute a Nash equilibrium. To obtain a feedback Nash equi-
librium, assuming differentiability of the value function, the system of Hamilton-
Jacobi-Bellman equations must be satisfied. Denote by Fi(x) the Bellman function
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of this problem. Above mentioned system is given by the following formula:

ρFi(x) = min
ui

{γ

2
(ui − ūi)

2 + πxi +

+
∂Fi(x)

∂xi

(∑
j∈Ki

(uj
1

2mj
) +

ui
2
− δxi

)}
, i ∈ I, (2)

where x = (x1, x2, ..., xn) — is situation in the game;.
Costs of player i in any fixed situation x = (x1, x2, ..., xn) depend on the stock

of accumulated pollution of player i only, and it doesn’t depend on the stocks of
accumulated pollution of another players. So we will seek the Bellman function
Fi(x) in the following form:

Fi(x) = aixi + bi. (3)

Differentiating the right hand side of formulas (2) with respect to ui and equating
to zero leads to:

uNi = ūi −
1

2γ

∂Fi(x)

∂xi
. (4)

Substituting uNi (4) and the Bellman function Fi(x) (3) in Hamilton-Jacobi-
Bellman equation (2) we get:

ρaixi + ρbi =
1

8γ

[∂(aixi + bi)

∂xi

]2
+ πxi +

[∑
j∈Ki

(ūj
1

2mj
) +

1

2
ūi −

− 1

2γ

∑
j∈Ki

(ai
1

2mj
)− 1

4γ

∂(aixi + bi)

∂xi

]∂(aixi + bi)

∂xi
− ∂(aixi + bi)

∂xi
δxi. (5)

Simplifying the right hand side of (5) leads to:

ρaixi + ρbi =
1

8γ
a2i + πxi + UN

i ai − aiδxi,

where

UN
i =

∑
j∈Ki

(ūj
1

2mj
) +

1

2
ūi −

1

2γ

∑
j∈Ki

(ai
1

2mj
)− 1

4γ
ai.

Rewrite the Nash strategies (4) in the following form:

uNi = ūi −
1

2γ
ai. (6)

Let calculate the coefficients ai and bi:

ai =
π

ρ+ δ
= a;

bi =
π2

8ργ(ρ+ δ)2
+

π

ρ(ρ+ δ)
UN
i ,
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where

UN
i =

∑
j∈Ki

(ūj
1

2mj
) +

1

2
ūi −

π

4γ(ρ+ δ)

∑
j∈Ki

(
1

mj
)− π

4γ(ρ+ δ)
.

Substitute the coefficient ai in the equation (6):

uNi = ūi −
π

2γ(ρ+ δ)
. (7)

Cost of player i in the Nash equilibrium:

Fi(x
N
i ) =

π

ρ(ρ + δ)

( π

8γ(ρ+ δ)
+ UN

i + ρxNi

)
,

where xNi — noncooperative trajectory of player i.
Substituting the Nash equilibrium strategies uNi (7) into the differential equation

(1) with initial state xi(t0) = x0
i , we obtain the following noncooperative trajectory:

xNi = e−δ(t−t0)x0
i +

1

δ
UN
i

(
1− e−δ(t−t0)

)
, i = 1, 2, ..., n.

3.2. Minimization the total cost of grand coalition
Minimize the total cost of the grand coalition I = {1, 2, ..., n}. We have following
system of optimization problems:

min
u1,u2,...,un

∑
i∈I

Ki(x
0
i , t0) =

∑
i∈I

∞∫
t0

e−ρ(t−t0) (Ci(ui(t)) + πxi(t)) dt, (8)

subject to equation dynamics:

ẋi(t) =
∑
j∈Ki

(uj
1

2mj
) +

ui
2
− δxi(t),

xi(t0) = x0
i , i = 1, ..., n.

Rewrite the system for dynamic programming problem (8) in the following view:

min
u1,u2,...,un

∑
i∈I

Ki(x
0
i , t0) =

∞∫
t0

e−ρ(t−t0)
(∑
i∈I

(Ci(ui(t))) + π
∑
i∈I

xi(t)

)
dt. (9)

Denote by:

x̄ =
∑
i∈I

xi.

The minimizing functional in the right side of (9) depends only on x̄ and it
doesn’t depend on xi, i = 1, ..., n. So the minimal costs of grand coalition I
depends on x̄ and don’t depend on x1, x2, ..., xn. Therefore we can consider the
Bellman function as the function which depends only on

∑
i∈I xi = x̄.
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The solution of the problem (9) is equivalent to the solution of the following
Hamilton-Jacobi-Bellman equation:

ρF (I, x1, x2, ..., xn) = min
u1,u2,...,un

{ n∑
i=1

(γ
2
(ui − ūi)

2 + πxi
)
+

+

n∑
i=1

∂F (I, x̄)

∂xi

(
Ui − δxi

)}
, (10)

where F (I, x1, x2, ..., xn) is the Bellman function.
Differentiating the right hand side of expression (10) subject to ui, we get the

strategies uIi :

uIi = ūi −
1

2γ

(∑
j∈Mi

1

mi

∂F (I, x1, x2, ..., xn)

∂xj
+

∂F (I, x1, x2, ..., xn)

∂xi

)
. (11)

It can be shown in the usual way that the linear function F (I, x1, x2, ..., xn)

F (I, x1, x2, ..., xn) = a

n∑
i=1

xi + b = ax̄+ b, (12)

satisfies the equation (10). The Bellman function depends only on
∑

i∈I xi.
By assumption,

F (I, x1, x2, ..., xn) = F (I, x̄).

Substitute the strategies uIi (11) and the Bellman function (12) in the Hamilton-
Jacobi-Bellman equation:

ρa

n∑
i=1

xi + ρb =

n∑
i=1

a2

2γ
+ π

n∑
i=1

xi +

+a
n∑
i=1

(∑
j∈Ki

(uIj
1

2mj
) +

1

2
uIi
)
− aδ

n∑
i=1

xi. (13)

Solving the equation (13) leads to the following expression for coefficients a and
b:

a =
π

ρ + δ
; (14)

b =
π

ρ(ρ+ δ)

( n∑
i=1

ūi −
nπ

2γ(ρ+ δ)

)
. (15)

Taking into account (14), we get the optimal strategies of the grand coalition:

uIi = ūi −
π

γ(ρ + δ)
. (16)
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Substituting coefficients (14) and (15) into the formula (12) we get the minimal
cost of the grand coalition as follows:

F (I, x̄) =
π

ρ(ρ + δ)

( n∑
i=1

ūi −
nπ

2γ(ρ+ δ)
+ ρ

n∑
i=1

xIi

)
, (17)

where xIi is the optimal cooperative trajectory of player i ∈ I.
Substituting the optimal strategies of the grand coalition uIi (16) and solving

equation of dynamics (1) with initial state xi(t0) = x0
i we obtain the optimal coop-

erative trajectory of player i ∈ I:

xIi = e−δ(t−t0)x0
i +

1

δ
U I
i

(
1− e−δ(t−t0)

)
, i = 1, 2, ..., n,

where

U I
i =

∑
j∈Ki

(ūj
1

2mj
) +

1

2
ūi −

π

γ(ρ+ δ)

(∑
j∈Ki

1

2mj
+

1

2

)
.

The sum of Nash emissions of all players is equal to:∑
i∈I

uNi =
∑
i∈I

ūi −
nπ

2γ(ρ+ δ)
, ∀i ∈ I.

The sum of optimal emissions of players involved in grand coalition I is equal
to: ∑

i∈I
uIi =

∑
i∈I

ūi −
nπ

γ(ρ+ δ)
, ∀i ∈ I.

Thus the sum of emissions of all players in noncooperative case is greater than
the the sum of emissions of all players in cooperative case. The more players are
involved in the game the more emissions will be reduced in cooperative case as
compared with noncooperative case.

3.3. The ES-value.
Definition 1. The vector

ξ(t) = [ξ1(t), ξ2(t), . . . , ξn(t)],

is a ES-value (Driessen and Funaki, 1991), if the component of ES-value ξi(t) is
given by

ξi(t) = Fi(x
N
i ) +

F (I, x̄)−
∑
i∈I

Fi(x
N
i )

n
, i ∈ I, (18)

where Fi(x
N
i ) is the costs of player i in the Nash equilibrium;

F (I, x̄) is the the minimal cost of the grand coalition.

Let calculate ES-value in network game of emission reduction. Substitute the
costs of player i in the Nash equilibrium Fi(x

N
i ) and minimal cooperative costs
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F (I, x̄) (17) in the equation (18). The first summand in right hand side of the
equation (18) is given by:∑

i∈I
Fi(x

N
i ) =

π

ρ(ρ + δ)

(∑
i∈I

ūi −
3nπ

8γ(ρ+ δ)
+ ρ
∑
i∈I

xNi

)
.

The second summand in right hand side of the equation (18):

F (I, x̄)−
∑
i∈I

Fi(x
N
i )

n
=

= − π

ρ(ρ+ δ)

( π

8γ(ρ+ δ)
+ ρ

π

2γδ(ρ+ δ)

(
1− e−δ(t−t0)

))
.

Therefore the component of ES-value for the player i, i ∈ I for the network
emission reduction game is equal to:

ξi(t) =
π

ρ(ρ + δ)

(
UN
i + ρ

(
e−δ(t−t0)x0

i +
1

δ

(∑
j∈Ki

(ūj
1

2mj
) +

+
1

2
ūi −

π

4γ(ρ+ δ)

∑
j∈Ki

1

mj
− 3π

4γ(ρ+ δ)

)(
1− e−δ(t−t0)

)))
. (19)

3.4. Time-consistency
Time-consistency means that if one renegotiates the agreement at any intermedi-
ate instant of time, assuming that coalitional agreement has prevailed from initial
date till that instant, then one would obtain the same outcome. The notion of
time-consistency was introduced by Petrosjan, 1993 and was used in problems of
environmental management (Petrosjan and Zaccour, 2003).

Definition 2. The vector β(t) = (β1(t), β2(t), . . . , βn(t)) is a ES-value distribution
procedure (ESDP) (see Petrosjan, 1993) if

ξi(x0, t0) =

∞∫
t0

e−ρ(t−t0)βi(t)dt, i ∈ I.

Definition 3. The vector β(t) = (β1(t), β2(t), . . . , βn(t)) is a time-consistent ESDP
(Petrosjan, 1993) if at (xI(t), t) at any t ∈ [t0,∞) the following condition holds

βi(t) = ρξi(x
I
i (t), t)−

d

dt
ξi(x

I
i (t), t), i ∈ I.

Consider ES-value (19) that was computed in the section 3.3.
Straightforward calculations give us the following view for the time-consistent

ESDP in the network game of emission reduction:

βi(t) = π
(
e−δ(t−t0)x0

i +
1

δ

(∑
j∈Ki

(ūj
1

2mj
) +

1

2
ūi −

π

4γ(ρ+ δ)

∑
j∈Ki

1

mj
−

− 3π

4γ(ρ+ δ)

)(
1− e−δ(t−t0)

))
+

π2

2γ(ρ+ δ)2
, i ∈ I. (20)
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3.5. The irrational behavior proof condition

Consider the case where the cooperative scheme has proceeded up to time t ∈
[t0,+∞) and some players behave irrationally leading to the dissolution of the
scheme. A condition under which even if irrational behaviors appear later in the
game the concerned player would still be performing better under the cooperative
scheme is the irrational behavior proof condition (Yeung, 2006), which also is called
the D.W.K. Yeung condition.

Consider the solution of the game in the form of ES-value. The irrational behav-
ior proof condition for the problem of emission reduction is described as follows:

Fi(x
0
i ) ≥

t∫
t0

e−ρ(τ−t0)βi(τ)dτ + e−ρ(t−t0)Fi(xI(t)), i ∈ I, (21)

where Fi(x
I(t)) — costs of player i in the Nash equilibrium with initial state xI(t)

on the optimal cooperative trajectory;
βi(τ) — time-consistent ES-value distribution procedure.

Verify the realization of the irrational behavior proof condition. The left hand
side of the inequality (21) is written as follows:

Fi(x
0
i ) =

=
π

ρ(ρ+ δ)

⎛⎝ π

8γ(ρ+ δ)
+Ai −

π

4γ(ρ+ δ)

∑
j∈Ki

(
1

mj
)− π

4γ(ρ+ δ)
+ ρx0

i

⎞⎠ . (22)

where

Ai =
∑
j∈Ki

(ūj
1

2mj
) +

1

2
ūi.

Consider the integral in the right hand side of inequality (21). The substitution
of βi(t) (20) leads to the following integral:

t∫
t0

e−ρ(τ−t0)βi(τ)dτ = e−ρ(t−t0)π
(
− π

2ργ(ρ+ δ)2
− e−δ(t−t0)x0

ρ + δ
−

−

⎛⎝Ai −
π

γ(ρ+ δ)

(∑
j∈Ki

(
1

4mj
) +

3

4

)⎞⎠ 1

ρδ
+

+

⎛⎝Ai −
π

γ(ρ+ δ)

(∑
j∈Ki

(
1

4mj
) +

3

4

)⎞⎠ e−δ(t−t0)

δ(ρ + δ)

)
+

π2

2ργ(ρ+ δ)2
+

+
πx0

ρ+ δ
+

⎛⎝Ai −
π

γ(ρ + δ)

(∑
j∈Ki

(
1

4mj
) +

3

4

)⎞⎠ π

ρ(ρ + δ)
. (23)
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The second summand in the right hand side of inequality (21) can be calculated:

e−ρ(t−t0)Fi(xI(t)) = e−ρ(t−t0)
π

ρ(ρ + δ)

{ π

8γ(ρ+ δ)
+Ai −

− π

4γ(ρ+ δ)

∑
j∈Ki

(
1

mj
)− π

4γ(ρ+ δ)
+

+ρ
(
e−δ(t−t0)x0

i +
1

δ

(
Ai −

π

γ(ρ+ δ)

(∑
j∈Ki

(
1

2mj
) +

1

2

))(
1− e−δ(t−t0)

))}
. (24)

The substitution of integral (23) and value of e−ρ(t−t0)Fi(xI(t)), which is defined
by the formula (24) into the inequality (21) leads to:

t∫
t0

e−ρ(τ−t0)βi(τ)dτ + e−ρ(t−t0)Fi(xI(t)) =

= e−ρ(t−t0)

⎛⎝ π2

8ργ(ρ+ δ)2
+

π2

4δγ(ρ+ δ)2
− π2

4δγ(ρ+ δ)2

∑
j∈Ki

1

mj

⎞⎠+

+
π2

2ργ(ρ+ δ)2
+

⎛⎝Ai −
π

γ(ρ + δ)

(∑
j∈Ki

(
1

4mj
) +

3

4

)⎞⎠ π

ρ(ρ+ δ)
+ x0

π

ρ+ δ
. (25)

Compare the right side (25) and the left side (22) of the formula (21). It can be
shown that the inequality (21) is equivalent to the following inequality:

δ
(
e−ρ(t−t0) − 1

)
+ 2ρe−ρ(t−t0)

⎛⎝1−
∑
j∈Ki

1

mj

⎞⎠ ≤ 0. (26)

The inequality (26) get the following form at the moment t = t0:

2ρ

⎛⎝1−
∑
j∈Ki

1

mj

⎞⎠ ≤ 0. (27)

If the sum
∑

j∈Ki

1
mj

satisfies the following inequality:

∑
j∈Ki

1

mj
≥ 1, (28)

the inequality (27) is satisfied. Hence the inequality (26) is satisfied at time t = t0.
The first summand in the right hand side of the inequality (26) is nonpositive

for all t ∈ [t0,+∞). If (28) is satisfied, than the second summand in the right hand
side of the inequality (26) will be nonpositive for all t ∈ [t0,+∞). Therefore the
inequality (26) is satisfied for all t ∈ [t0,+∞), if the (28) is satisfied. It means that
the following theorem is proved.



34 Anna Belitskaia

Theorem 1. The irrational behavior proof condition is realized in the network game
of emission reduction for time-consistent ES-value distribution procedure if the fol-
lowing restriction to the network structure is satisfied:∑

j∈Ki

1

mj
≥ 1.
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