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Abstract Despite robust behavioral research that shows a widespread bias
towards overconfidence in competitive scenarios, e.g., underestimating the
competitor’s skill level, there is little research on the long term costs as-
sociated with this bias. We develop a theoretical framework that allows us
to explore systematic long-term ramifications of opponent skill estimation
bias across different competitive contexts relevant to managers. We capture
these contexts with dynamic branching games that are parametrized by four
features. We use Monte Carlo estimation methods to test how the expected
game outcomes compare under different types biases. The results suggest
that bias in evaluating an opponent’s skill level is less harmful when the
opponent is more skilled, and when there is greater first-mover advantage.
Furthermore, they suggest that if there is any effort cost associated with
making a decision, then a bias towards overestimating the opponent’s skill
is never advantageous, while a bias towards underestimating can be advan-
tageous in many contexts.
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1. Introduction

Many firms invest heavily in competitive analysis, and proverbial advice such as
“never underestimate the competition" abounds in the popular business literature.
Yet, little has been done to formally test this stylized wisdom from a cost-benefit
perspective. There is a prevailing intuition that being caught off guard by a com-
petitor who is more skilled than expected has negative consequences— but what
are the relative consequences of the opposite mistake? How much potential surplus
would be lost by routinely assuming the competition to be more skilled than it
actually is? We build a framework for exploring bounded rationality in dynamic
branching games and use it to compare the relative payoff ramifications of different
types of biases across different competitive contexts relevant to managers.

2. Background

Traditional game theory models have generally assumed that all players are fully
rational. Recent research streams have adapted models of decision making to fit
the more realistic assumptions of bounded rationality, where players act rationally
within the bounds of their constraints on information processing (see Narasimhan
et. al., 2005).
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Two primary characteristics found in bounded rationality models are that play-
ers have different skill levels (which can lead to uncertainty about the skill levels of
their opponents) and that the effort of optimizing decisions is costly. Researchers
have used paradigms such as level-k and cognitive hierarchy models to incorpo-
rate heterogeneous reasoning levels into game theoretic models for some time (e.g.,
Camerer et al., 2004; Stahl and Wilson, 1995). These models both help explain ob-
served non-equilibrium behavior in games and estimate empirical distributions of
reasoning abilities and beliefs about others’ abilities. We take a different approach:
knowing that error is possible (and likely unavoidable) when boundedly rational
managers form beliefs about the skill levels of the opponents they encounter, we ex-
plore, from a theoretical standpoint, the payoff ramifications associated with such
errors, including relative cost of effort. How much does a manager stand to lose by
repeatedly overestimating or underestimating the skill levels of the different oppo-
nents he encounters? Which features of games make one type of error better than
another?

Our approach is similar to that of researchers such who have compared av-
erage outcomes produced by different strategy heuristics for individual decision
makers when time or effort is costly or limited (e.g., Gabaix and Laibson, 2000;
Johnson and Payne, 1985; and Payne et al., 1996). These researchers employed
Monte Carlo simulation techniques to approximate the mean outcomes of differ-
ent heuristic strategies when applied over a large set of normal or extensive form
payoff arrangements that were generated in part using random number generation
to capture the inherent variation in real-world situations. In all these studies, it was
concluded that simplifying heuristics can perform better than rote optimization
when the decision makers are subject to some elements of bounded rationality. We
build on similar conceptual and methodological foundations, but add the complexity
of a second strategic player and bias surrounding comparative skill.

3. Model Framework

3.1. Game Structure
Our first goal is to define a highly generalizable game structure that captures the
critical features of strategic competitive interactions faced routinely by boundedly
rational managers in a variety of settings without overfitting to a particular cir-
cumstance. As such, we look for general game characteristics rather than a unique
example.

We observe that when navigating complex long-term competitive relationships,
managers are often faced with decisions that have not only immediate payoff rami-
fications, but also affect the choices (and associated payoffs) that will be available
in the future. For example, a firm may be deciding between releasing a newly devel-
oped product into the market at a low price to encourage trial, or at high price in
order to obtain surplus from enthusiastic early adopters (e.g., Apple releasing the
initial Ipod). There are immediate profits to be gained from the decision (in terms of
profits generated from initial sales) but these different moves may also have longer-
term strategic consequences, based in part on the actions taken by the firm’s major
competitor. For example, this competitor might be developing a competing product
(e.g., Microsoft releasing the Zune), and after observing how the first firm priced
its product, the competitor will decide whether to release its product at a regular
or a substantially discounted price. When this happens, there will be an immediate
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shift in profits for both firms, and also set up the first firm for a counter-response
in terms of adjusting prices or promotions or investing in new development efforts.
If the first firm is myopic, then it will release its product at whatever price initially
maximizes sales, without considering what the competition will do in response. If
the firm is more sophisticated, it will consider possible competitive responses, its
own counter-response, and so on, and make its initial decision with those down-
stream implications in mind. Of course, there is a limit on how far out even the
most sophisticated manager can think, especially when the competitive horizon is
long or complex.

We use a branching tree structure to represent such real world strategic decision
situations where managers repeatedly make moves and counter moves. Thus, the
players alternate making decisions over time, and each node in the tree has a payoff
associated with it (which represents the value of the state of affairs at that moment
in time, e.g., current market share or profits). To capture different skill levels, we
let players vary in the time horizon over which they can optimize from any given
moment in the game.

This leads us to assume two-player alternating-move finite-horizon games of per-
fect and complete (within one’s foresight horizon1) information, where for parsimony
we limit our attention to constant-sum payoffs. This structure has appeal for many
reasons. Dynamic games allow foresight horizon to be used as a precise measure of
skill, capturing varying degrees of myopia that managers employ within their long-
term competitive landscapes. Games in which information is perfect and complete
(within a player’s foresight window) provide an excellent platform for studying the
research question at hand, because variation in outcome is caused solely by varia-
tion in skill and beliefs. Finite horizon games apply to situations in which managers
are competing over a set term (for example, sales over a holiday season, perfor-
mance bonuses over a fiscal year) or when players make several moves that lead to
a long-term stabilization of market shares. Many competitive marketing situations
are inherently constant sum (for example, employees competing over a fixed bonus
pool, firms competing for market share in an inelastic market). Even if the games
are not constant sum they can be re-framed as such if the payoffs are normalized to
reflect relative competitive advantage. For convenience, we restrict all payoffs to the
range of 0 to 1, which corresponds nicely (but not restrictively) to market share. By
convention, P1 always seeks to maximize payoffs, and P2 seeks to minimize payoffs
(i.e., P2 seeks to maximize one minus the payoff).

We note that our game structure assumes state values (interim payoffs) at each
non-terminal node. Though ubiquitous in computer science (e.g., see Hsu, 2002 and
Russell and Norvig, 2003), which as a field is inherently concerned with bounded
rationality, this notion of pre-terminal state values is not widely used in the eco-
nomics and management game literature. Instead, the games studied previously are
generally defined in term of the final (terminal) payoffs, a paradigm appropriate for
managers with unconstrained reasoning abilities. We break from this literature since
we believe interim payoffs capture real-world phenomenon applicable to boundedly
rational managers. Intuitively, if a manager’s forsight constraint precludes him from
anticipating payoffs all the way out to the end of the game, he must use something
observable in the interim to guide his behavior. For example, employees competing
for a year-end bonus allotment may use quarterly performance reviews as a means of

1 i.e., players can see all payoffs that fall within their foresight horizons perfectly
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evaluating standing along the way. Or, politicians campaigning for an elected office
may use opinion polls as a measure of vote market share at various intervals before
the election takes place. Thus, the interim payoff values we preserve in our game
structure can be considered to be imperfect assessments of the strategic advantage
of a state in the game (i.e., of the final outcome to which the state will lead). Of
course, there are numerous ways to evaluate the worth of such interim states, and
devising a sophisticated method of doing so is a skill in itself. Our correlation pa-
rameter, ρ, which will be discussed in the next section, controls the reliability of
these signals in our model.

Many well-known strategy games fit this structure, including Go and Chess,
which are both renowned for their strategic complexity and played in highly com-
petitive international tournaments. Like all games of complete and perfect informa-
tion, the process of solving Go or Chess is theoretically trivial—but the branching
game trees are so complex that not even the best computers in the world can model
the full game tree. Artificially intelligent players instead must be forward-looking
to build a game tree that extends as many rounds into the future as they are ca-
pable of, and then optimize play over that limited horizon. Final scoring rules or
other evaluation functions are applied to transient states of the board as a way of
assessing the value of the board, even though only the configuration present when
the game ends is used to tabulate final score (see Russell and Norvig, 2003).

By following in this tradition, we are able to explore player navigation in a
class of games that has real-world relevence for manager but for which the curse
of dimensionality precludes calculation of classically rational behavior in all but
the simplest of cases. Strategic decision making under constrained foresight can be
modeled in even the most complex of games, as it removes the link between game
complexity and calculation complexity.

3.2. Game Parametrization
As we are interested in looking at a variety of different games that might be en-
countered by players in the real world, we abstract away the labels of the actions
that define the circumstances of any particular game, reducing each game to a
pattern of branches and payoffs (this is similar in method to the generalized deci-
sion structures used by Gabaix and Laibson, 2000; Johnson and Payne, 1985; and
Payne et al., 1996) that can be populated by any number of possible payoff ar-
rangements. Of course, real world games vary in the patterns they create: one game
will have one arrangement of payoffs (based on its set of actions) and another game
will have quite a different set of payoffs. Thus we create sets of games that include
all possible games a player could encounter that fit certain useful pattern definitions.
By showing the effects of bias conditions over entire game sets, we attempt to model
the overall effects of such biased beliefs applied consistently over many situations
with many different opponents. We allow the number of periods in the game tree
to vary by length (L). For simplicity, we restrict L to even integers, so that both
players have an equal number of moves. In this initial analysis, all decision nodes
contain a choice between exactly two actions. However, the model can be extended
in future work to allow such complexity descriptions to vary.

The payoff correlation parameter ρ is used to define the relationship between
early interim payoff signals and their downstream consequences. We begin by al-
lowing the initial period interim payoffs to be drawn randomly from some defined
distribution. In our case, we use the uniform distribution U(0, 1), but this can easily
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be modified within our framework. This initial distribution is used to capture the
inherent variation of possible circumstances. The values of subsequent nodes are
determined such that vt = ρvt−1 + (1− ρ)εt where vt is the value associated with a
node at period t, vt−1 is the value of the preceding node on the same path (parent
node), εt is a draw from U(0, 1), and 0 ≤ ρ ≤ 1. In this way, ρ captures the strength
of the signal interim payoffs provide for future payoffs.

3.3. Player Parametrization
Behavioral research has shown that managers engage in a process of limited-horizon
reasoning when engaging in dynamic strategic behavior (e.g., Camerer and Johnson,
2004; Johnson et al., 2002; Stahl and Wilson, 1995). Rather than performing full
backward induction, players look forward a certain number of periods, and optimize
only over that window, as if the game truncated there. Players vary in the number
of future periods they can think though. These empirical finding drive the inclusion
of such behavior in our model.

In line with extant level of thinking models, we use the parameter ki to represent
player i’s skill, and specifically define ki as foresight horizon: the number of periods
out into the future he can think through, including the present period. Players also
have beliefs about their opponent’s skill level: we define parameter bij as player i’s
belief about kj . A player’s skill ki and belief bij map to a player type that chooses
his action at each period by considering only the subgame that starts at the current
period and ends ki periods later (even if the true game length extends beyond that
horizon). In other words, at each period in which he makes a decision, player i
(Pi) creates a truncated version of the game tree that starts at the current node
(period t) and ends after ki periods. From Pi’s point of view, he cannot think beyond
period t+ki−1 and thus this player’s objective is to optimize his outcome in period
t+ ki− 1 (effectively acting as if the game ends at that point, or, equivalently, that
all future states that exist beyond this period have the same payoff as the their
preceding state)2. Our motivation in this type definition is to capture the heuristic-
like behavior of players under cognitive constraints.

To describe the decision rule in more detail, we break beliefs into two categories:
bij ≥ ki−1 (i.e., Pi believes his opponent can see out at least as far in the game as he
himself can at any particular period3) and bij < ki − 1 (Pi believes his opponent is
more than one level less skilled than he himself is). When bij ≥ ki−1, Pi determines
his move based on full backward induction over this truncated game. This is because
at each period within this truncated game, Pi believes that the player in control
can see through the entire truncated game. Note that all beliefs bij that are greater
than or equal to ki− 1 map to the same decision algorithm for Pi. This is because a
player constrained by his own foresight horizon cannot anticipate what his opponent
would do outside that window, even if he believes his opponent to be looking farther
(and behavioral research supports that people do behave as if the game ends at the

2 Pi optimizes for period t + ki − 1, rather than period t + ki, as we have defined ki to
include the current period.

3 The reason ki − 1 rather than ki is the critical value is due to the sequential nature of
the game. If Pi is making a decision in period 1, and is a level 4 thinker, then he can
“see through" to period 4, and nothing beyond that. Since his opponent Pj will not be
making a move until the next period, Pj can be allotted a maximum of 3 levels from
Pi’s perspective (thus reaching period 4) before P ′

i s own constraint prevents him from
seeing father, even through Pj ’s eyes.
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limit of their foresight horizon, even if they are aware that it doesn’t and that other
players might be thinking farther, e.g., Johnson et al., 2002). Thus, as long at as
the more limited skill player knows his opponent has a greater skill level than he
does (or, more precisely, not more than one level less), fine-tuning his estimate of his
opponent’s skill will not change his behavior. However, the higher skill level player
needs to make a more precise estimate of the less skilled player’s skill level.

On the other hand, when bij < ki − 1, Pi must first consider the even smaller
subgames he believes his opponent (Pj) will be optimizing over at each of the periods
Pj controls that fall within Pi’s horizon. Pi must do this first, since he believes Pj
will be using different critera than the final period values of Pi’s truncated game.
Only then can Pi backward induct over his full foresight horizon to determine his
own optimal move, given his beliefs about Pj ’s less sophisticated decisions. More
specifically, for each state that could occur in period t+1 (as a result of Pi’s choice
in period t), Pi creates a subgame that commences with that state and extends
to a length of bij . He backward inducts over each of these subgames to determine
what Pj will choose if found in that state in the second period. Then for each of
the potential states that could exist in period t + 1, Pi can prune off the rejected
options, as well as all the downstream branches of the tree that stem from these
rejected second period options. Pi then repeats this process for each period that Pj
controls within his foresight window, further pruning the tree each time. When he
has determined what Pj will decide at all decision sets in the foresight window, he
can backward induct over the pruned tree, and arrive at his optimal choice for the
current period.

For simplicity, we define P1 to always be the more skilled player, such that
k1 > k2. Furthermore, we do not consider cases in which Pi’s beliefs about Pj ’s
beliefs about Pi (i.e. Pi’s belief about bji) vary enough to change the decision al-
gorithm described above. For example, if Pi has belief bij = 3, then the optimal
backward induction process Pi uses over the subgames of length bij (to determine
what Pj will choose at a given decision set) would change if Pi believed that Pj
believed that Pi was a level 1 thinker vs. a level 2 thinker (note, however, that as
per the above reasoning, all beliefs of this nature that are greater than or equal
to 2 map to the same full backward induction over the subgame—so it is only
when bij ≥ 3 that these higher order beliefs could affect decision processes). For
simplicity, we do not consider variation in higher order beliefs, and assume that,
for any opponent skill belief bij , Pi performs a full backward induction when hy-
pothetically selecting moves from Pj ’s perspective.4 We do this because there is
limited room for such variation within shorter foresight horizons and experimental
work suggests that people generally have quite limited levels of thinking (see, for
example, Camerer et al., 2004 and Stahl and Wilson, 1995).

For simplicity, we assume that each player holds a single value for bij and ap-
plies it with certainty (i.e., instead of specifying a distribution of possible oppo-
nent beliefs, or updating beliefs over time). This assumption is in line with be-
havioral work that finds individuals show overconfidence about their judgments
(e.g., Hoffrage, 2004), and is further justified by the limited opportunity for learn-
ing within the scope of the model. Players are not engaging in long, repeated games
with familiar opponents, but rather engaging in a large variety of short, novel one-

4 However, preliminary findings suggest that relaxing this assumption only strengthens
the results found in this paper.
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time games with novel opponents and only stochastic feedback. Empirical findings
show that people are slow to update existing beliefs, especially amid noisy signals,
and that when they do, they overweight prior beliefs (e.g., Boulding et al., 1999;
Camerer and Lovallo, 1999). Furthermore, the first move, which must occur before
any learning is possible, has the most influence on the game, especially when ρ > 0.
Thus we believe our assumed model captures the general belief conditions found in
many sequential games.

We also note that we use foresight horizon as our singular measure of player
skill. There are, of course, many dimensions to skill when playing games in real life.
For example, players may differ on their ability to accurately assess payoffs or to
correctly apply backward induction. For parsimony in our manipulation, we create
a level playing field on all dimensions except foresight horizon. This follows in the
tradition of many analytic and level-k models, and allows a clean manipulation of
skill levels. However, the model can be extended in future research to account for
other such dimensions of skill—for example, by allowing players to “see" only a
variably imperfect correlate of the true payoff for any given state.

Finally, we add for clarification that we assume that players do not alter their
decision rules based on the value of ρ. This is because we are attempting to cap-
ture the overall effect of different bias conditions applied heuristically by managers
repeatedly over many different contexts and against many different opponents. The
value of ρ in a real-world setting would be difficult to observe precisely, especially
under constrained reasoning. Furthermore, knowledge of ρ would only potentially
change players’ decision rules if players were endogenously concerned with minimiz-
ing effort cost. We assume that this is not the case and will explain our reasons for
this in Section 3.5..

3.4. Bias Conditions

We begin our theoretical experiment by creating three bias conditions (B) that
correspond to three “worlds" in which players all exhibit one of three types of bias
in estimating their opponent’s skill level, and are unaware that the bias is present.5
We first consider the accurate (B = A) opponent skill estimation condition, where
bij = kj , to model a condition of no bias. This scenario is most similar to traditional
game theoretic methods. Players have exogenously defined skill levels (where k1 >
k2), and we assume that these skill levels are common knowledge.

We next consider an opponent underestimation (B = U) condition, correspond-
ing to overconfidence bias. To model a slight population-wide opponent underesti-
mation bias, we set bij = kj − 1, such that each player believes his opponent to be
exactly one level less skilled than is actually the case. Guided by the observation
that people are often unaware of bias, we initially assume that both players think
their beliefs map to true values that are common knowledge. P1 thinks that k1 and
k2 − 1 are the common knowledge skill levels for P1 and P2, while P2 thinks that
k1 − 1 and k2 are the levels for P1 and P2 that are common knowledge. However,
we soon show in Lemma 2 that this assumption can be relaxed.

Finally, we test a condition in which players exhibit a bias towards overestimat-
ing opponent skill (B = O). Though such “underconfidence" does not appear to be
prevalent in nature, this test provides a useful theoretical tool for understanding

5 We later show that neither awareness of the bias nor asymmetric bias will affect player
decisions or game outcome.
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overconfidence. This condition is defined similarly to the U condition, except that
now both players believe their opponent to be exactly one level more skilled than
is actually the case (bij = kj + 1). P1 thinks that k1 and k2 + 1 are the skill levels
for P1 and P2 that are common knowledge, while P2 thinks that k1 + 1 and k2 are
the skill levels for P1 and P2 that are common knowledge.

A logical implication of this framework that simplifies our analyses is that, since
P2’s actions are the same for all beliefs b21 ≥ k2−1, and since k1 > k2, then the two
bias conditions in which players misestimate opponents skill level (O and U) have no
effect on P2’s decision process compared to the accurate estimation condition (A).
Even if P1 is only one level more skilled than P2, an underestimation bias on the
part of P2 will yield b21 = k1− 1 = k2, which maps to the same decision in all cases
as accurate estimation (b21 = k1 = k2+1) and overestimation (b21 = k1+1 = k2+2).
It is only when the more skilled player has biased beliefs that the game outcome is
potentially changed. This is because only the more skilled player has the opportunity
(capacity) to think further out than his opponent and this foresight can result in
changes in his decision process. This leads to the following lemma.

Lemma 1. The weaker player’s bias condition has no effect on game outcome

Thus, throughout our analysis, we focus on the implications of opponent esti-
mation error from P1’s perspective. All results will hold whether or not the weaker
player exhibits bias.

Lemma 1 implies that P2’s bias doesn’t affect his own behavior. Consequently,
P1’s awareness of P2’s bias does not change P1’s behavior, since P2 will behave the
same in all conditions. Nor will P2’s awareness of P1’s bias change P2’s behavior.
To see this, note that when P2 is looking hypothetically through P1’s eyes over his
truncated subgames, trying to anticipate what P1 will do, he only has k2−1 periods
to work with—which leaves only k2− 2 periods in which he can anticipate what P1
thinks about P2. In other words, all of P2’s beliefs about what P1 believes about
P2 that are ≥ k2 − 2 map to the same decision process and the same outcome. In
bias conditions U , A, and O, respectively, P1 believes k2 to be k2−1, k2, and k2+1.
All of these values are ≥ k2 − 2, and thus even if P2 is aware of P1’s bias, it does
not change his behavior, due to the limitations of his own cognitive constraints.

Lemma 2. The outcome of the game is the same whether or not players are aware
of the other player’s bias.

Note that Lemmas 1 and 2 hold in our model because we are looking as small
errors in opponent estimation, or slight biases. If we explored conditions in which
players underestimate each others’ skill to large degrees (specifically, with an un-
derestimation bias that is > 1 + k1 − k2) then player decisions would potentially
be affected. Together, these lemmas show that our model holds under assumptions
that are less restrictive than we initially laid out. For logical equivalence, we need
only assume that P1 is more skilled than P2 (i.e., k1 > k2)6, that P2 believes P1
can see out at least as far as he can (i.e., b21 ≥ k2 − 1), that P1 will not underes-
timate P2 by more than three levels7, and that both players are aware of all these
6 To allow “room" for P1 to effectively overestimate P2, we focus on cases in which k1 >
k2 + 1.

7 This is the minimum lower bound over all conditions for which P2’s beliefs about P1’s
beliefs about P2 might change P2’s decision behavior.
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things. In addition, to test out bias conditions, we further assume that P1 exhibits
the following condition-dependent beliefs. For B = U , P1 underestimates P2’s skill
level such that b12 = k2 − 1. For B = A, P1 accurately estimates P2’s skill level
such that b12 = k2. And for B = O, P1 overestimates P2’s skill level such that
b12 = k2 + 1.

3.5. Effort Cost

Under boundedly rational paradigms, it is generally accepted that there is some
cost of information acquisition and processing, whether it be opportunity cost, er-
ror introduction, or sheer disutility of effort (e.g., see Shugan, 1980). With this
noted, there is no consensus among researchers on how to precisely define such a
cost function for decision making. Moreover, in real life these costs are likely to be
highly variable across persons and contexts. Consequently, to maintain greatest ex-
ternal validity, we refrain from defining any specific cost functions, and assume only
that such effort cost strictly increases with the amount of information processed,
which can be represented through the number of game tree nodes a player gener-
ates when making a decision. This is consistent with behavioral traditions that use
elementary information processes as a measure of the cost of cognitive effort (see
Newell and Simon, 1972 and Payne et al., 1995). We use C(B) as the cost of effort
exerted by P1 under bias condition B for a set k1 and k2 where the cost is some
increasing function of nodes examined during the first move.

We also assume that players do not account for any effort cost when making
decisions. Rather, players’ decision rules are driven by their skill levels and beliefs,
and we compute comparative effort costs post-hoc, to show the relative long-term
advantages of different heuristics applied by decision makers automatically (e.g.,
see Stahl, 1993). This assumption is perhaps unusual in the game theory literature,
especially when costs are considered purely search costs, rather than optimization
costs. However, we follow in the tradition of bounded rationality paradigms and take
our players’ decision rules to be heuristic-like (based on empirical observation) rather
than strict optimization. Thus, the players within our model apply the same decision
rules (based on their own skill and their beliefs about their opponent’s skill) to each
decision they encounter, as a matter of course, without considering effort cost. This
approach is in line with empirical and theoretical work on heuristics and biases and
circumvents a general problem with optimization in bounded rationality paradigms
when decision effort itself costly: the act of cost-aware decision optimization becomes
impossible, as the decision of how to decide how to decide (and so forth) becomes
an infinite regress where each such higher order decision exacts its own cost (e.g.,
see Gigerenzer and Selten, 2001).

3.6. Net Expected Outcome

We define net expected outcome as the gross expected outcome for a given bias
condition and parameter set minus the cost of implementing the decision rule. We
use EN(B) to refer to the net expected outcome for bias B over a fixed game and
skill set, where EN(B) = E(B) − C(B). Of course, we cannot compute meaningful
numeric values for EN(B) without assigning a a shape and relative scale to the cost
function, which is outside the scope and motivation of this paper. However, with the
one assumption that cost is a strictly increasing function of information searched,
we can determine useful ordinal properties and trends. Thus, in our analysis we will
look for insights relating to the the relative net expected outcomes of the three bias
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conditions as a function of the game parameters L and ρ and the player parameters
k1 and k2. Figure 1 illustrates the structure of the model framework.

Fig. 1: Model Framework

4. Analysis

4.1. Estimating Expected Outcomes and Costs

For any specific game tree, the unique outcome of the game is entirely predictable
given k1, k2, and bias condition B. Unlike full rationality models, the players them-
selves may not accurately predict final outcomes while in early periods, and may
make mistakes (when foresight is incomplete or there is estimation error) that lead
the game into a state they did not anticipate. However, the outcome that will be
arrived at is deterministic from an outside perspective, i.e., by someone who can
see the entire game tree and knows k1, k2, and B, and can apply the appropriate
decision algorithms from the perspective of each player to arrive at the final out-
come. As the outcome for any single game is of little generalizable value, we focus on
estimating the expected values for the outcomes over infinite sets of possible game
trees that make up game sets defined by specific values of L and ρ with player skills
defined by k1 and k2. We use the notation E(B) as a shorthand for the expected
outcome under bias condition B ∈ {O,A,U} for a fixed parameter set.

We use Monte Carlo simulation to estimate the expected outcomes of each bias
condition over a range of parameter values that we believe are reasonable within
our general premise of bounded rationality. We test all parameter combinations that
meet the requirements of our model that fall within the range 2 ≤ k2 ≤ k1 − 2 ≤
k1 ≤ L ≤ 10 and ρ in 0.1 increments from 0 to 1 (i.e., ρ = {0, .1, .2, .3, ..., 1}).

We use the Visual Basic environment in Microsoft Excel to write a program
that builds sample game trees of any specified L and ρ, where the payoffs in the
first period (v1) are drawn randomly from U(0, 1) using Excel’s random number
generator, and each child node’s payoff is equal to its parent node’s value plus error
weighted by ρ such that vt = ρvt−1 + (1 − ρ)εt, where εt is a draw from U(0, 1).
The decision rules described in Section 3.3. are programmatically applied to find
the unique outcome for each generated game tree according to any specified k1, k2,
and B.

We generate two thousand game trees for each unique combination of game
parameters (L and ρ) included in the range defined above. For each tree generated,
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we record the outcome reached under each bias condition (B) for each combination
of player skill parameters (k1 and k2) included in the range defined above. The
mean outcome over all trials of a unique parameter set is used to approximate the
expected outcome for that parameter set. For simplicity, we average the results for
consecutive values of k2 to eliminate main effects of the parity of k2 which we do
no expect to be useful in terms of managerial insights. We also count the number
of nodes searched in the first turn of P1 to use as a basis for ordinal comparisons of
effort cost (which as defined in Section 3.5., is considered to be some (any) strictly
increasing function of information searched.

4.2. Results
Comparing the estimates for all combinations of parameter values in the range
tested, we find the following results.

Result 1. The expected outcome is greatest when P1 accurately estimates his op-
ponent’s skill level, followed by when he overestimates, followed by when he under-
estimates, for all otherwise fixed parameter values; E(A) > E(O) > E(U) for all
fixed k1, k2, L, and ρ.

Note that if the parameter range allowed k2 ≥ k1 then the inequalities would
become weak, as the search behavior (and thus outcomes) would be the same in all
three conditions from P1’s perspective.

Result 1 supports conventional wisdom and intuition. However, we expect that
the magnitude of disparity between the raw exceptions changes in different settings.
Thus, we next investigate the relationship between opponent skill and the differences
in E(B). We first note that an increase in k2 when k1 − k2 is held constant implies
that both players are getting more skilled, while the disparity between them stays
the same. On the other hand, an increase in k2 while k1 is held constant implies
that P2 is getting more skilled, while the disparity between the players diminishes.
In both cases, we find that increasing k2 decreases the differences in E(B).

Result 2. The expected outcomes of all bias conditions converge as both players
become more skilled together; differences in E(B) decrease with k2 for any fixed
k1 − k2, L, and ρ.

Result 3. The expected outcomes of all bias conditions converge as P2 becomes
more skilled relative to P1; differences in E(B) decrease with k2 for any fixed k1, L,
and ρ.

To explain the intuition for this result, we note that as P2 becomes more skilled,
P1 has less control over the outcome, regardless of bias condition. The longer the
horizon over which P2 has full foresight, the greater P2’s ability to influence the
outcome, which limits the range of possible outcomes available to P1. Thus the range
between the worst outcome and best outcome for P1 decreases when he is playing
against more skilled opponents. As a result, there is less relative payoff decrease to
P1 as a result of error. This is true both as P2 becomes more skilled in absolute
terms, as well as relative to P1. As P1’s skill advantage over P2 decreases (i.e., as
the players become more evenly matched, regardless of absolute skill level), there
are fewer periods over which P1 can use his advantage—and thus fewer periods in
which estimation error can detract from the potential outcome. As a result, the
differences in E(B) decrease whenever average opponent skill increases, regardless
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of whether both players are getting more skilled together, or whether the disparity
between them is decreasing.

As expected, we also find that the expected outcomes of each of the three bias
conditions converge as ρ increases.

Result 4. The difference between the expected outcomes of overestimation and un-
derestimation decrease with payoff correlation for any fixed game and skill set.

This is intuitive because increasing ρ increases the advantage generated by the
first move, thus decreasing the influence P2’s strategy will have on the outcome,
which thereby decreases the expected payoff loss associated with opponent estima-
tion errors.

In addition to having asymmetric effects on expected payoffs, we also fine that
different types of errors in estimating opponent skill also have asymmetric implica-
tions for effort cost. When underestimating his opponent, P1 can prune off much
of the game tree without ever having to generate of process the payoffs associated
with those states. This results in an effort cost savings. This is true to a less extent
with accurate estimation, and to an even less extent with over estimation.

Result 5. When a player’s own level of thinking is fixed, it costs him the most to
overestimate his opponent, less to accurately estimate, and least to underestimate;
C(O) > C(A) > C(U) for any fixed k1and k2.

Note that the strict inequality holds for the parameter range tested. If the the
range allowed k2 ≥ k1, then the inequalities would become weak, as the search
behavior (and thus costs) would be the same in all three conditions from P1’s
perspective.

From Results 1 and 5 we know that E(O) < E(A) and C(O) > C(A) for all
game and player sets that fit the requirements of our model. From here one can
directly conclude that E(O)−C(O) < E(A)−C(A). In other words, overestimation
always has a lower expected net (as well as gross) return than accurate estimation,
regardless of game or player parameters. In fact, the difference between the net
expected outcomes is necessarily larger than the difference between gross expected
outcomes. This leads us to Result 6.

Result 6. The expected net payoff for overestimation is always strictly less than
the expected net payoff of accurate estimation for any fixed parameter set: EN(O) <
EN(A).

There is no such strict dominance with underestimation. From Results 1 and 5,
we know E(U) < E(A) and C(U) < C(A), from which we cannot determine a
general ordinality for E(U)−C(U) versus E(A)−C(A). The difference in expected
net returns of under vs. accurate estimations will depend on the magnitudes of each
term, which are determined by the specific parameters of a game and player set, as
well as the specific cost functions used. It is not our goal in this paper to propose
valid cost functions. Still it is possible to gain additional insights by considering the
relationship of the parameters ρ and k2 on the differences in EN(B).

Considering first the minimum values for k2 and ρ, we note that, depending on
the cost function, EN(U) can take any of three positions: it can be less than EN(O),
it can be greater than EN(O) but less than EN(A), or it can be greater than EN(A).
However, as either k2 or ρ increases, the expectation disadvantage of U decreases
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relative to A and O. Regardless of where EN(U) begins relative to EN(O) and EN(A),
the slope differences will cause there to be some critical value of both k2 and ρ, above
which EN(U) is the best performing condition if the trend lines are extrapolated. As
we are not defining cost function scales, we cannot say if the critical value will occur
within the parameter limits imposed by a player’s own skill constraint. However,
we can say that this becomes more likely that the cost of information acquisition
and processing increases.

This brings us to Result 7.

Result 7. Underestimation can yield the greatest net expected outcome for a pa-
rameter set. This is more likely to occur when the opponent is highly skilled, when
the first mover advantage is strong, and/or when effort costs are high; EN(U) be-
comes more likely to to be higher than both EN(O) and EN(A) as k2, ρ, and effort
costs increase.

5. Discussion

The ultimate goal of this paper is to provide an initial exploration into the question
of if and when overconfidence can be beneficial to managers who make frequent
complex competitive business decisions. In order to do this we needed to develop
a new and general framework for analyzing boundedly rational players in “large
world" (Savage, 1954) complex games. Our framework uses a branching decision
tree with interim payoffs to represent a strategic game between two players where
players make sequential moves over time and have limited foresight. Because our
model includes a skill constraint for each player, we are able to explore branching
game structures that have real-world applicability but that can be quite difficult
to manage under traditional assumptions of rationality due to the curse of dimen-
sionality. Given our interest in generalizable conclusions, we build a Monte Carlo
simulation program to estimate the expected payoffs over a the distribution of pos-
sible payoff structures associated with any given game length, payoff correlation,
players’ skill levels, and players’ beliefs about their opponent’s skill level. We be-
lieve this framework could be useful to others interested in bounded rationality and
branching sequential games.

Our results suggest that bias in evaluating an opponent’s skill is less harmful to
expected payoff when the opponent is more skilled, and when there is greater first-
mover advantage. Furthermore, they suggest that if there is any effort cost associ-
ated with the making a decision, then a bias towards overestimating the opponent’s
skill is never advantageous, while a bias towards underestimating can be advanta-
geous in many contexts. Thus, the overconfidence bias behavioral researchers have
observed in the population may actually be helpful, rather than detrimental, as is
often suggested, and we provide initial insight into when this is more likely to be
the case.

Although these initial theoretical experiments begin to shed light on the rela-
tionships of interest, they have several limitations, and thus should be considered as
only a start to understanding the greater relationships between skill constraints, op-
ponent estimation errors, and outcomes. For example, the game contexts the model
framework covers in this initial exploration are limited, but could, in the future,
be extended to capture non-zero-sum games, games with greater complexity, and
state-dependency in the parameters. In terms of players, the extant model considers
only one dimension of skill (foresight horizon) and thus the results do not generalize
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to estimating other dimensions of competitive capabilities, such as sophistication
in estimating the interim payoffs (or resources of the competing firm). We believe
future research can build off this framework to address these and other limitations,
thereby providing deeper and broader insights to advise managers in their real-world
decisions.
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