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1. Introduction

In many practical situations some of participants have the identical power (prestige,
influence, resources, capitals). They are substitutes in associated cooperative game.
Moreover, non-symmetric in the underlying problem agents may become substitutes
in corresponding game. Player’s status can also changes in the zero-normalization
of a game. It seems reasonable to require that symmetric players should receive the
same payoff. However, almost no set-valued solution concepts (including the core,
core-based solutions, von Neumann-Morgenstern stable sets, the bargaining set)
that satisfy the equal treatment property. It is not difficult to provide the examples
of cooperative games, where the core allocations assign to symmetric players vastly
different payoffs. Even multi-solutions based on a concept of egalitarianism cannot
satisfy the equal treatment property (see for instance (Dutta and Ray, 1989)).

The symmetric core is a subset of core satisfying the equal treatment property.
This notion has been introduced in (Norde et al., 2002) for TU games with special
structure: the airport game, generalized airport game, maintenance cost game, in-
frastructure cost game. The symmetric core was used to get a minimal collection of
conditions that are equivalent to balancedness. In (Hougaard et al., 2001) the sym-
metric core was used for calculation of Lorenz-solution of a production economy
with a landowner and peasants. To the best of our knowledge, the symmetric core
was not yet discussed for general TU game.

Next section recalls some definitions and notations. The core and the symmetric
core properties are compared in section 3. It will be shown that symmetric core sat-
isfies the most core axioms. The last section is devoted to the problem of symmetric
core existence.

2. Preliminaries

A cooperative game with transferable utility (TU game) is given as GT = (N, ν),
where N = {1, ..., n}, n > 2, ν : 2N → R, ν(∅) = 0. So-called discrete game GD

differs fromGT that ν is integer-valued function and players payoffs must be integers
(Azamkhuzhaev, 1991). In economic settings, the integer requirement reflects some
forms of indivisibility. Both games summarizes the possible outcomes to a coalition
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by one number, i.e. side payments are allowed. GT and GD can be also described
as a games with nontransferable utility (NTU games). Let GNT and GND be the
sets of n-person TU and discrete games respectively, GN = GNT ∪ GND . Denote by
Ω = 2N \ {N,⊘} the family of proper coalitions. Given x ∈ RN and ∅ 6= K ⊆ N :
x(K) =

∑
i∈K xi, x(∅) = 0. The cardinality of coalition ∅ 6= K ⊆ N is denoted by

|K|. When there is no ambiguity, we write ν(i), K \ i instead of ν({i}), K \ {i} and
so on.

Two players i, j ∈ N are called symmetric (substitutes, interchangeable) in a
game G ∈ GN if

ν(K ∪ i) = ν(K ∪ j) for every K ∈ N \ {i, j}. (1)

Player i ∈ N is veto player in a game G ∈ GN if ν(K) = 0 for all K 6∋ i. Denote
by veto(G) the set of veto players of G ∈ GN . A game GT is called convex if
ν(K) + ν(H) 6 ν(K ∪ H) + ν(K ∩ H) for K,H ⊆ N . A game GT is integer if
ν : 2N → Z, where Z denotes the set of integer numbers. The operator Ψ : GND → GNT
will be used to compare TU and discrete game solutions, i.e. Ψ(GD) is an integer
TU game corresponding to GD.

The set of feasible payoff vectors X∗(GT ) and pre-imputation set X(GT ) of TU
game GT are defined by

X∗(GT ) = {x ∈ RN |x(N) 6 ν(N)}, X(GT ) = {x ∈ RN |x(N) = ν(N)}.
The related sets of discrete game GD are

X∗(GD) = X∗(Ψ(GD)) ∩ ZN , X(GD) = X(Ψ(GD)) ∩ ZN .

For any set G̃N ⊆ GN a set-valued solution (or multisolution) on G̃N is a mapping
ϕ : G̃N →→ RN which assigns to every G ∈ G̃N a set of payoff vectors ϕ(G) ⊆
X∗(G). Notice that the solution set ϕ(G) is allowed to be empty. A value of game
G is a function f : G̃N → X(G). The core of TU game and core of discrete game
are the sets

C(GT ) = {x ∈ X(GT )|x(K) > ν(K),K ∈ Ω}, C(GD) = C(Ψ(GD)) ∩ ZN .

The formulas to obtain the CIS-value, ENSC-value, Shapey value and equal division
solution of a game GT are

CISi(GT ) = ν(i) +
ν(N)−∑j∈N ν(j)

n
,

ENSCi(GT ) = ν∗(i) +
ν(N)−∑j∈N ν∗(j)

n
,

Shi(GT ) =
∑

K 6∋i

|K|!(n− |K| − 1)!

n!
(ν(K ∪ i)− ν(K)), EDi(GT ) =

ν(N)

n
,

where i ∈ N , ν∗(K) = ν(N) − ν(N \ K), K ⊆ N . The CIS-value is also called
the equal surplus division solution. Notice that CIS-value, ENSC-value and equal
division solution assign to every player some initial payoff and distribute the re-
mainder of ν(N) equally among all players. For CIS-value (the center of gravity
of imputation set I(GT ) = {x ∈ X(GT )|xi > ν(i), i ∈ N}) initial payoff to player
i ∈ N is equal to its individual worth ν(i). For ED-value and ENSC-value the initial
payoffs are equal to zero and player’s marginal contribution ν∗(i) to grand coalition
N , respectively. Thus, the ENSC-value assigns to any game GT the CIS-value of
dual game (N, ν∗).
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3. Symmetric core properties

For a game G ∈ GN denote by ℑ(G) the family of coalitions each of which contains
only symmetric players

ℑ(G) = {K ∈ 2N ||K| > 2, every i, j ∈ K, i 6= j, are symmetric in G}.

Definition 1. A game G ∈ GN is called semi-symmetric if at least two players
are symmetric in G, i.e. ℑ(G) 6= ∅. A game G ∈ GN is (totally) symmetric if
ℑ(G) = {{N}}. A game G ∈ GN is non-symmetric if ℑ(G) = ∅.
Let SGN = SGNT ∪ SGND be the set of semi-symmetric games G ∈ GN .

Definition 2. The symmetric core SC(G) of a game G ∈ GN is the set of core
allocations for which the payoffs of symmetric players are equal

SC(G) = {x ∈ C(G)|xi = xj for all i, j ∈ K, i 6= j, K ∈ ℑ(G)}.

Example 1. Let UH = (N, uH) be n-person (n > 3) unanimity game for a coalition
H ∈ Ω: uH(K) = 1 for K ⊇ H , uH(K) = 0 otherwise. Since

ℑ(UH) =




{H} if |H | = n− 1,
{N \H} if |H | = 1,
{H,N \H} else,

then the game UH is semi-symmetric. Well known that any unanimity game is
convex and C(UH) = {x ∈ RN |xi = 0, i ∈ N \ H, x(H) = 1}. Therefore, the
symmetric core SC(UH) consists of one point which is the Shapey value: SC(UH) =
{Sh(UH)}, where Shi(UH) = 1

|H| for i ∈ H , Shi(UH) = 0 otherwise.

Example 2. Consider situation with four investors having the endowments 80, 60,
50, 50 units of money (m.u. for short). Assume the following investment projects
are available: a bank deposit that yields 10 interest rate whatever the outlay, two
production processes that require an initial investment of 100 ore 200 m.u. and
yields 15 ore 20 rate of return, respectively. The related four-person investment
game (de Waegenaere et al., 2005) GT ∈ GNT is given by

N = {1, 2, 3, 4}, ν(N) = 284,
ν(1) = 88, ν(2) = 66, ν(3) = ν(4) = 55,
ν(1, 2) = 159, ν(1, 3) = ν(1, 4) = 148,
ν(2, 3) = ν(2, 4) = 126, ν(3, 4) = 115,
ν(1, 2, 3) = ν(1, 2, 4) = 214, ν(1, 3, 4) = 203, ν(2, 3, 4) = 181.





We obtain non-convex (ν(2, 4)+ν(3, 4) > ν(4)+ν(2, 3, 4)) balanced semi-symmetric
game with symmetric players 3 and 4, ℑ(GT ) = {{3, 4}}. The core of game GT has
16 extreme points whereas symmetric core is the convex hull of 4 points

SC(GT ) = co{x1, x2, x3, x4},

x1 = (100
1

2
, 68

1

2
, 57

1

2
, 57

1

2
), x2 = (90

1

2
, 78

1

2
, 57

1

2
, 57

1

2
),

x3 = (98, 66, 60, 60), x4 = (88, 76, 60, 60).
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Denote by G0
T = (N, ν0), where

ν0(K) =





5 if |K| ∈ {2, 3},
20 if K = N,
0 else,

the zero-normalization of game GT . All players are substitutes in G0
T , ℑ(G0

T ) =
{{1, 2, 3, 4}}. The symmetric core of game G0

T consists of one point

SC(G0
T ) = {x0}, x0 = (5, 5, 5, 5) = Sh(G0

T ) = CIS(G0
T ) = ENSC(G0

T ) = ED(G0
T ).

The payoff vector x0 corresponds to symmetric core allocation x6 = (93, 71, 60, 60)

of original game GT . Notice, that x6 = x3+x4

2 , it is equal the Shapey value Sh(GT )
of original game, but does not coincide with the barycenter (94 1

4 , 72
1
4 , 58

3
4 , 58

3
4 ) of

the symmetric core of game GT .

In game theory literature there exist two (equivalent) versions of TU game bal-
ancedness: a game GT ∈ GNT is called balanced if it has a nonempty core ore if it
satisfies the Bondareva-Shapley condition

∑

K∈Ω

λKν(K) 6 ν(N), λ : Ω → R+,
∑

K∈Ω, K∋i

λK = 1, i ∈ N, (2)

see (Bondareva, 1963) and (Shapley, 1967). Since (2) is necessary but not sufficient
condition for the nonemptiness of core of discrete game, the unified definition is
required.

Definition 3. A game G ∈ GN with nonempty core is called balanced.

We need the following axiom to be satisfied by solution ϕ.

Axiom 3.1 (equal treatment). For all G ∈ G̃N , all x ∈ ϕ(G) and every symmetric
players i, j in G: xi = xj .

Known that Sh(GT ), CIS(GT ), ENSC(GT ) and ED(GT ) satisfy equal treatment.
From above definitions it straightforwardly follows that:
• the symmetric core of a game G ∈ GN may be empty;
• the symmetric core of TU game GT is a convex subset of its core;
• the symmetric core of non-symmetric game G ∈ GN coincides with its core,

therefore, apart from their different definitions the real difference is exposed for
semi-symmetric balanced games;
• the symmetric core of balanced symmetric TU game consists of one point

which is the equal division solution SC(GT ) = {ED(GT )};
• the symmetric core of balanced semi-symmetric TU game contains all core se-

lectors satisfying equal treatment, in particular, the nucleolus that realizes a fairness
principle based on lexicographic minimization of maximum excess for all coalitions;
• if the Shapley value of semi-symmetric TU game satisfies the core inequalities

then it belongs to symmetric core, the Shapley value is always symmetric core
allocation on the domain of convex TU games;
• the CIS-value, the ENSC-value, the equal division solution which "have some

egalitarian flavour" (Brink and Funaki, 2009) and any convex combination of these
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solutions cannot belong to symmetric core of balanced semi-symmetric TU game.

A nonempty core of NTU game (even 3-person) may contains no equal treatment
outcomes (Aumann, 1987). The following two propositions show that balancedness
of TU game is the necessary and sufficient condition for nonemptiness of its sym-
metric core, but the same is not true for balanced discrete game.

Proposition 1. Let GT ∈ SGNT . Then SC(GT ) 6= ∅ iff C(GT ) 6= ∅.
Proof. If SC(GT ) 6= ∅ then C(GT ) 6= ∅ by inclusion SC(GT ) ⊆ C(GT ). Assume
now that C(GT ) 6= ∅ and take x1 ∈ C(GT ). If x1 ∈ SC(GT ) then SC(GT ) 6= ∅.
Otherwise, there exist a coalition K ∈ ℑ(GT ) and players i, j ∈ K such that
x1i < x1j . Construct x2 ∈ RN as follows: x2i = x1j , x

2
j = x1i , x

2
l = x1l for l ∈ N \{i, j}.

Using (1) we see that x2 ∈ C(GT ). By core convexity, x3 = x1+x2

2 ∈ C(GT ). So,
we get the core allocation x3 satisfying x3i = x3j , x

3
l = x1l for l ∈ N \ {i, j}. If

x3 /∈ SC(GT ) then by repeated application of above procedure one obtains the
payoff vector belonging to SC(GT ). ⊓⊔
Proposition 2. There exist discrete games GD ∈ SGND such that C(GD) 6= ∅ but
SC(GD) = ∅.
Proof. Consider discrete games Gs

D, defined by set function νs onN : νs(K) ∈ {0, 1}
for K ⊂ N and νs(N) = 1. The associated TU game Ψ(Gs

D) = (N, νs) is simple.
Assume |veto(Ψ(Gs

D))| > 2. Then C(Ψ(Gs
D)) = co{ei ∈ ZN |i ∈ veto(Ψ(Gs

D))} and
C(Gs

D) = {ei ∈ ZN |i ∈ veto(Ψ(Gs
D)), where eij = 0 for i 6= j, eii = 1. Obviously, veto

players are substitutes in games Ψ(Gs
D) and Gs

D. However xi 6= xj for all x ∈ C(Gs
D)

and every (i, j) ∈ veto(Gs
D). Thus SC(Gs

D) = ∅. ⊓⊔
The core of TU game has been intensely studied and axiomatized. We shall for-

mulate some convenient properties of a solution concept ϕ on G̃N ⊆ GN which has
been employed in the well-known core axiomatizations. The axiomatic characteri-
zations of discrete game solutions are not yet provided.

Axiom 3.2 (efficiency). x(N) = ν(N) for all x ∈ ϕ(G) and all G ∈ G̃N .

Axiom 3.3 (symmetry). For all G ∈ G̃N and every symmetric players i, j in G: if
x ∈ ϕ(G) then there exists y ∈ ϕ(G) such that xi = yj, xj = yi and xp = yp for
p ∈ N \ {i, j}.

Axiom 3.4 (modularity). For any modular game G ∈ G̃N generated by the vector
x ∈ RN : ϕ(G) = {x} .

Axiom 3.5 (antimonotonicity). For any pair of games G1, G2 ∈ G̃N defined by set
functions ν1, ν2 on N such that ν1(N) = ν2(N) and ν1(K) 6 ν2(K) for all K ⊂ N ,
it holds that ϕ(G2) ⊆ ϕ(G1).

Axiom 3.6 (reasonableness (from above)). For all G ∈ G̃N , all x ∈ ϕ(G) and every
i ∈ N : xi 6 max

K⊆N\i
{ν(K ∪ i)− ν(K)}.

Axiom 3.7 (covariance). For any pair of games G1, G2 ∈ G̃N defined by set func-
tions ν1, ν2 such that ν2 = αν1 + β for some α >0 and some β ∈ RN it holds that
ϕ(G2) = αϕ(G1) + β.
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Axiom 3.8 (projection consistency (or reduced game property)). Let G ∈ G̃N , ∅ 6=
H ⊂ N and x ∈ ϕ(G), then RH

x = (H, rHx ) ∈ G̃H and xH ∈ ϕ(RH
x ), where xH =

(xi)i∈H ∈ RH and

rHx (K) =





0 if K = ∅,
ν(K) if ∅ 6= K ⊂ H,
ν(N)− x(N \H) if K = H,

is the projected reduced game with respect to H and x.

Known (Llerena and Carles, 2005) that the core is the only solution on GNT sat-
isfying projection consistency, reasonableness (from above), antimonotonicity and
modularity. Notice that projection consistency is one of the fundamental principle
used in this field. By summarizing the statements formulated above we can say
that the symmetric core of balanced semi-symmetric TU and discrete games satis-
fies equal treatment, efficiency, symmetry, modularity, reasonableness (from above)
and many other core axioms based on only the original game. Theorem 1 (below)
shows that for the class of balanced semi-symmetric games the symmetric core is
in conflict with antimonotonicity, covariance and projection consistency. All these
properties involve the pairs of games.

Lemma 1. Let G ∈ SGN is a balanced game and G0 is its zero-normalization.
Then G0 ∈ SGN , SC(G0) ⊆ SC(G) and there exist games G ∈ SGN such that
SC(G0) 6= SC(G).

Proof. The zero-normalization G0 of any game G ∈ GN is uniquely determined by
set function ν0 on N , where

ν0(K) = ν(K)−
∑

l∈K

ν(l), ∅ 6= K ⊆ N. (3)

Obviously, G0 ∈ SGN . Let i, j ∈ N , i 6= j, are symmetric players in G. The formulas
(1) and (3) imply that ν0(K∪i) = ν0(K∪j) for all K ⊆ N \{i, j}. Thus, symmetric
players in G remain symmetric in G0. Example 2 shows that non-symmetric in G
players can become symmetric in G0. If G = GT then a linear system defining
SC(G0

T ) contains the one for SC(GT ) and, perhaps, additional equality constraints.
So SC(G0

T ) ⊆ SC(GT ). In view of Example 2 this inclusion can be strict. For
discrete game G = GD the final part of lemma is proved analogously. ⊓⊔

Theorem 1. Let G ∈ SGN is a balanced game. Then SC(G) does not satisfy
(i) Axiom 3.5;
(ii) Axiom 3.7 even for α = 1 and β = (ν(1), ..., ν(n));
(iii) Axiom 3.8.

Proof. (i) Consider two balanced four-person TU games G1
T , G

2
T defined by set

functions ν1, ν2 such that

ν1(K) =





2 |K| = 2,
4 |K| = 3,
6 K = N,
0 else,

ν2(K) =

{
ν1(K) + 1 = 5, K = {1, 3, 4},
ν1(K), else.
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The games G1
T and G2

T are symmetric and semi-symmetric, respectively. ℑ(G1
T ) =

{{1, 2, 3, 4}},ℑ(G2
T ) = {{3, 4}}, ν1(N) = ν2(N) and ν1(K) 6 ν2(K) for all K ⊂ N .

It holds that

SC(G2
T ) = co{(2, 1, 11

2
, 1

1

2
), (2, 0, 2, 2), (1, 1, 2, 2)} 6⊂ SC(G1

T ) = {(1
1

2
, 1

1

2
, 1

1

2
, 1

1

2
)}.

Consider now discrete games G1
D, G2

D corresponding to given TU games. We have

SC(G2
D) = {(2, 0, 2, 2), (1, 1, 2, 2)} 6⊂ SC(G1

T ) = ∅.

Thus, antimonotonicity is violated by SC(G).
(ii) This statement follows from lemma 1.
(iii) In four-person TU game GT defined by

N = {1, 2, 3, 4}, ν(N) = 8, ν(i) = 0, i ∈ N,
ν(1, 2) = ν(1, 3) = ν(1, 4) = ν(2, 3) = ν(2, 4) = 2, ν(3, 4) = 3,
ν(1, 2, 3) = ν(1, 2, 4) = 6, ν(1, 3, 4) = 5, ν(2, 3, 4) = 4





players 3 and 4 are symmetric, ℑ(GT ) = {{3, 4}}. The symmetric core is the
convex hull of four points SC(GT ) = co{x1, x2, x3, x4}, where x1 = (4, 0, 2, 2),
x2 = (4, 1, 1 1

2 , 1
1
2 ), x

3 = (1, 3, 2, 2) and x4 = (2, 3, 1 1
2 , 1

1
2 ). The projected reduced

game RH
x2 = (H, rHx2) relative to H = {1, 2, 3} at x2 is defined by:

rHx2(1, 2, 3) = 6 1
2 , rHx2(i) = 0, i ∈ H, rHx2(1, 2) = rHx2(1, 3) = rHx2(2, 3) = 2.

The reduced game is symmetric. Its symmetric core consists of one point (2 1
6 , 2

1
6 , 2

1
6 ).

The restriction of x2 to H , x2H = (4, 1, 1 1
2 ), does not belong to the symmetric core

of reduced game. For discrete game GD corresponding to last TU game GT we have
SC(GD) = {x1, x3, x5, x6}, where x5 = (3, 1, 2, 2), x6 = (2, 2, 2, 2). The projected
reduced game RH

x1 relative to H = {1, 2, 3} at x1 is defined by:
rHx1(1, 2, 3) = 6, rHx1(i) = 0, i ∈ H, rHx1(1, 2) = rHx1(1, 3) = rHx1(2, 3) = 2.

Since the reduced game is symmetric SC(RH
x1) = {(2, 2, 2)}. The restriction of x1

to H , x1H = (4, 0, 2), does not belong to SC(RH
x1). So SC(G) does not provide

projection consistency. ⊓⊔
It has been interesting to study the interrelation between the symmetric core of

a game G ∈ SGN and strongly egalitarian core allocations.

Definition 4. Let G ∈ GN , x ∈ C(G) and x ∈ RN is obtained from x by permuting
its coordinates in a non-decreasing order: x1 6 x2 6 ... 6 xn. A core allocation x
is Lorenz allocation (Lorenz maximal, strongly egalitarian ) iff it is undominated in
the sense of Lorenz, i.e. there does not exist y ∈ C(G) such that

∑p
i=1 yi >

∑p
i=1 xi

for all p ∈ {1, ..., n− 1} with at least one strict inequality.

For a game G ∈ GN denote by LA(G) the set of its Lorenz allocations.

Example 3. Consider balanced four-player TU game GT defined by

ν(K) =





7 if (K = {1, 2}) ∨ (K = {1, 3}),
12 if K = N,
0 else.

In was proved (Arin et al., 2008) that the set of Lorenz allocations is of the form

LA(GT ) = {x ∈ C(GT )| x = (7− µ, µ, µ, 5− µ), 21
2
6 µ 6 3

1)

2
}.
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Taking µ = 3 1
2 , µ = 2 1

2 and µ = 3 yield the lexmax solution Lmax(GT ) =
(3 1

2 , 3
1
2 , 3

1
2 , 1

1
2 ), the lexmin solution Lmin(GT ) = (4 1

2 , 2
1
2 , 2

1
2 , 2

1
2 ) and least squares

solution LS(GT ) = (4, 3, 3, 2), respectively ((Arin et al., 2008, p.571)). By the for-
mulas in section 2 one obtains Sh(GT ) = (4 1

6 , 3, 3, 1
5
6 ) 6∈ LA(GT ), CIS(GT ) =

ENSC(GT ) = ED(GT ) = (3, 3, 3, 3) 6∈ LA(GT ).

The next theorem states that the symmetric core of balanced semi-symmetric TU
game contains all Lorenz allocations. Besides, SC(GT ) is externally stabile with
respect to Lorenz domination, but internal stability does not hold.

Theorem 2. Let GT ∈ SGNT is a balanced game. Then
(i) LA(GT ) ⊆ SC(GT ) and the inclusion can be strict;
(ii) SC(GT ) Lorenz dominates every other core allocation.

Proof. (i) LA(GT ) satisfies equal treatment and LA(GT ) ⊆ C(GT ). Therefore,
LA(GT ) ⊆ SC(GT ). The four-person TU game in Example 3 is semi-symmetric
ℑ(GT ) = {{2, 3}},

LA(GT ) = co{(31
2
, 3

1

2
, 3

1

2
, 1

1

2
), (4

1

2
, 2

1

2
, 2

1

2
, 2

1

2
)}

⊂ SC(GT ) = co{(2, 5, 5, 0), (7, 0, 0, 5), (12, 0, 0, 0)}.
(ii) If C(GT ) = SC(GT ) then the statement is straightforward. Let C(GT ) 6=
SC(GT ) and take x0 ∈ C(GT )\SC(GT ). Then there existsK ∈ ℑ(GT ) and i, j ∈ K
such that x0j > x0i . By symmetry there is y ∈ C(GT ) with yi = x0j , yj = x0i , yl = x0l

for l ∈ N \ {i, j}. Consider x1 = x0+y
2 . By core convexity x1 ∈ C(GT ). Vector x1

Lorenz dominates x0 (x1 ≻L x0) since x1j = x1i = x0j − δ = x0i + δ, x1l = x0l for
l ∈ N \{i, j}, δ > 0. Repetition of this procedure gets the sequence x0, x1, ..., xp core
allocations, where xk ≻L xk−1 for all k ∈ {1, ..., p}, x0 6∈ SC(GT ), xp ∈ SC(GT ).
The transitive property of Lorenz domination completes the proof. ⊓⊔

4. Existence conditions

The balancedness condition (2) is derived by means of dual linear programming
problems associated with a game GT ∈ GNT

f(x) =
∑

i∈N

xi → min,
∑

i∈K

xi > ν(K), K ∈ Ω, (4)

g(λ) =
∑

K∈Ω

ν(K)λK → max,
∑

K∈Ω,i∈K

λK = 1, i ∈ N, λ ∈ R2n−2
+ . (5)

The condition (2) can be as well written as
∑

K∈Ω

λKν(K) 6 ν(N), λ ∈ ext(Mn),

where ext(Mn) is the set of extreme points of problem (5) constraint set Mn. The
number of extreme points and their explicit representation known only for small n

|ext(M3)| = 5, |ext(M4)| = 41, |ext(M5)| = 1291, |ext(M6)| = 200213.

We concentrate now on n-person non-negative semi-symmetric TU games in zero-
normal form (SGNT )0+. The following example illustrates how the problem (4) is
modified by replacing the core by symmetric core.
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Example 4. Consider two four-person games (G0
T )

1, (G0
T )

2 ∈ (SGNT )0+ with two and
three symmetric players, ℑ((G0

T )
1) = {{3, 4}}, ℑ((G0

T )
2) = {{2, 3, 4}}. The explicit

representations of (4) and modified problems given in table 1. It is remarkable that
the number of extreme points of modified dual problems constraint sets M4

s , where
s is the number of symmetric players, decreases as s increases: |ext(M4

2 )| = 21,
|ext(M4

3 )| = 6.

Table 1.

Original problem Modified problem 1, Modified problem 2,
ℑ((G0

T )
1) = {{3, 4}} ℑ((G0

T )
2) = {{2, 3, 4}}

f(x) = x1 + x2 + x3 + x4 → min f(x) = x1 + x2 + 2x3 → min f(x) = x1 + 3x2 → min
xi > 0, i ∈ {1, 2, 3, 4} xi > 0, i ∈ {1, 2, 3} xi > 0, i ∈ {1, 2}
x1 + x2 > ν(1, 2) x1 + x2 > ν(1, 2) x1 + x2 > ν(1, 2)
x1 + x3 > ν(1, 3) x1 + x3 > ν(1, 3)
x1 + x4 > ν(1, 4)

x2 + x3 > ν(2, 3) x2 + x3 > ν(2, 3) 2x2 > ν(2, 3)
x2 + x4 > ν(2, 4)

x3 + x4 > ν(3, 4) 2x3 > ν(3, 4)
x1 + x2 + x3 > ν(1, 2, 3) x1 + x2 + x3 > ν(1, 2, 3) x1 + 2x2 > ν(1, 2, 3)
x1 + x2 + x4 > ν(1, 2, 4)
x1 + x3 + x4 > ν(1, 3, 4) x1 + 2x3 > ν(1, 3, 4)

x2 + x3 + x4 > ν(2, 3, 4) x2 + 2x3 > ν(2, 3, 4) 3x2 > ν(2, 3, 4)

The symmetry of all players makes a game especially easy to handle. The crite-
rion for existence of its core (and, by Proposition 1, for symmetric core too) contains
(n− 1) inequalities only

ν(K)

|K| 6
ν(N)

n
for all K ∈ Ω.

It is then natural to focus the attention on games with (n− 1) symmetric players.
Notice that any such game is determined by 2(n− 2) numbers ν(K), K ∈ Ω1 ∪Ω2,
where

Ω1 = {{2, 3}, {2, 3, 4}, ..., {2, ..., n}}, Ω2 = {{1, 2}, {1, 2, 3}, ..., {1, ..., n− 1}}.

A few of their applications:
• market with one seller and symmetric buyers;
• games with a landlord and landless workers;
• weighted majority game with one large party and (n− 1) equal sized smaller

parties;
• patent licensing game with the firms each producing an identical commodity

and a licensor of a patented technology (Watanabe and Muto, 2008);
• subclass of games related information collecting situations under uncertainty

(Branzei et al., 2000) where an action taker can obtain more information from other
agents;
• big boss games (Muto et al.,1988) with symmetric powerless players.

The characterization of such games and the sufficient conditions under which
the symmetric core is a singleton have been provided in (Zinchenko, 2012). Let
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G0
T ∈ (SGNT )0+, ℑ(G0

T ) = {{2, ..., n}} and n > 3. The symmetric core of game G0
T is

nonempty iff the system

ν0(T ) +
n− |T |
|H | ν0(H) 6 ν0(N),

n− 1

|H | ν
0(H) 6 ν0(N), H ∈ Ω1, T ∈ Ω2

is consistent. Notice that system consists of (n − 1)(n − 2) inequalities. If G0
T ∈

(SGNT )0+ is a balanced game, ℑ(G0
T ) = {{2, ..., n}}, n > 4 and ν0 satisfies at least

one of three equalities

n− 1

n− 2
ν0(N \ {1, n}) = ν0(N),

n− 2

n− 1
ν0(N \ 1) + ν0(1, 2) = ν0(N),

ν0(N \ 1)
n− 1

+ ν0(N \ n) = ν0(N)

then SC(G0
T ) consists of a unique allocation.
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