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Abstract The provision of public goods constitutes a classic case of market
failure which calls for cooperative optimization. However, cooperation can-
not be sustainable unless there is guarantee that the agreed-upon optimality
principle can be maintained throughout the planning duration. This paper
derives subgame consistent cooperative solutions for public goods provision
by asymmetric agents with transferable payoffs in a stochastic discrete-time
dynamic game framework. This is the first time that dynamic cooperative
game in public goods provision is analysed.
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1. Introduction

Public goods, which are non-rival and non-excludable in consumption, are not un-
common in today’s economy. Examples of public goods include clean environment,
national security, scientific knowledge, accessible public capital, technical know-how
and public information. The non-exclusiveness and positive externalities of public
goods constitutes major factors for market failure in their provision. In many con-
texts, the provision and use of public goods are carried out in an intertemporal
discrete time-period framework under uncertainty. Cooperation suggests the possi-
bility of socially optimal solutions in public goods provision problem. A discrete-time
game framework is developed for theoretical analysis and practical applications.
Problems concerning private provision of public goods are studied in Bergstrom
(1986). Static analysis on provision of public goods are found in Chamberlin (1974),
McGuire (1974) and Gradstein and Nitzan (1989). In many contexts, the provision
and use of public goods are carried out in an intertemporal framework. Fershtman
and Nitzan (1991) and Wirl (1996) considered differential games of public goods
provision with symmetric agents. Wang and Ewald (2010) introduced stochastic el-
ements into these games. Dockner et al. (2000) presented a game model with two
asymmetric agents in which knowledge is a public good. These studies on dynamic
game analysis focus on the noncooperative equilibria and the collusive solution that
maximizes the joint payoffs of all agents.

In dynamic cooperation, the solution scheme would offer a long-term solu-
tion only if there is guarantee that participants will always be better off through-
out the entire cooperation duration and the agreed-upon optimality principle be
⋆ This research was supported by the HKSYU Research Grant.
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maintained from the beginning to the end. To enable a cooperation scheme to be
sustainable throughout the agreement period, a stringent condition is needed – that
of subgame consistency. This condition requires that the optimality principle agreed
upon at the outset must remain effective in any subgame starting at a later starting
time with a realizable state brought about by prior optimal behaviour. Hence the
players do not possess incentives to deviate from the cooperative scheme throughout
the cooperative duration. The notion of subgame consistency in stochastic cooper-
ative differential games was originated in Yeung and Petrosyan (2004) in which a
generalized theorem for the derivation of an analytically tractable "payoff distri-
bution procedure" (PDP) leading to subgame-consistent solutions has been devel-
oped. A discrete time version of the analysis is provided in Yeung and Petrosyan
(2010). Yeung and Petrosyan (2013) presented subgame consistent cooperative so-
lutions for public goods provision by asymmetric agents with transferable payoffs
in a continuous-time stochastic differential game framework.

In this paper, an analytical framework entailing the essential features of
public goods provision in a discrete-time stochastic dynamic paradigm is set up.
The noncooperative game outcome is characterized and dynamic cooperation is
considered. Group optimal strategies are derived and subgame consistent solutions
are characterized. A ?payoff distribution procedure? leading to subgame-consistent
solutions is derived. Illustrative examples are presented to demonstrate the deriva-
tion of subgame consistent solution for public goods provision game.

The paper is organized as follows. Section 2 provides the analytical frame-
work and the non-cooperative outcome of public goods provision in a discrete-time
stochastic dynamic framework. Details of a subgame consistent cooperative scheme
are presented in Section 3. Illustrative examples are given in Section 4. Section 6
concludes the paper.

2. Analytical Framework and Non-cooperative Outcome

Consider the case of the provision of a public good in which a group of n agents carry
out a project by making continuous contributions of some inputs or investments to
build up a productive stock of a public good. The game horizon consists of T stages.
We use Kt denote the level of the productive stock and Iit denote the contribution
to the public capital or investment by agent i at stage t ∈ {1, 2, · · · , T }. The stock
accumulation dynamics is then

Kt+1 =

n∑

j=1

Ijt − δKt + ϑt,K1 = K0, for t ∈ {1, 2, · · · , T }, (2.1)

where ϑt is a sequence of statistically independent random variables and δ is the
depreciation rate.

The payoff of agent i at stage t is

Ri(Kt)− Ci(Iit ), i ∈ {1, 2, · · · , n} = N, (2.2)

where Ri(Kt) is the revenue/payoff to agent i, Ci(Iit ) is the cost of investing Iit ∈ X i.
The objective of agent i ∈ N is to maximize its expected net revenue over the

planning horizon, that is

Eϑ1,ϑ2,··· ,ϑT

{ T∑

s=1

[Ri(Ks)− Ci(Iis)](1 + r)−(s−1) + qi(KT+1)(1 + r)−T
}

(2.3)
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subject to the stock accumulation dynamics (2.1),
where r is the discount rate, and qi(KT+1) > 0 is an amount conditional on the

productive stock that agent i would received at stage T .
Acting for individual interests, the agents are involved in a stochastic dynamic

game. In such a framework, a feedback Nash equilibrium has to be sought. Let
{φis(K)∈ Iis, for i ∈ N and s ∈ {1, 2, · · · , T }} denote a set of feedback strategies
that brings about a feedback Nash equilibrium of the game (2.1) and (2.3). Invoking
the standard techniques for solving stochastic dynamic games, a feedback solution
to the problem (2.1) and (2.3) can characterized by the following set of discrete-
time Hamilton-Jacobi-Bellman equations (see Basar and Olsder 1995; Yeung and
Petrosyan 2012):

V i(t,K) = max
Ii
t

Eϑt

{
[Ri(K)− Ci(Iit )](1 + r)−(t−1)

+V i
[
t+ 1,

n∑

j = 1
j 6= i

φjt (K) + Iit − δK + ϑt
] }

, for t ∈ {1, 2, · · · , T }, (2.4)

V i(T + 1,K) = qi(KT+1)(1 + r)−T , for i ∈ N. (2.5)

A Nash equilibrium non-cooperative outcome of public goods provision by
the n agents is characterized by the solution of the system of equations (2.4)−(2.5).

3. Subgame Consistent Cooperative Scheme

It is well-known problem that noncooperative provision of goods with externali-
ties, in general, would lead to dynamic inefficiency. Cooperative games suggest the
possibility of socially optimal and group efficient solutions to decision problems in-
volving strategic action. Now consider the case when the agents agree to cooperate
and extract gains from cooperation. In particular, they act cooperatively and agree
to distribute the joint payoff among themselves according to an optimality prin-
ciple. If any agent disagrees and deviates from the cooperation scheme, all agents
will revert to the noncooperative framework to counteract the free-rider problem in
public goods provision. In particular, free-riding would lead to a lower future payoff
due to the loss of cooperative gains. Thus a credible threat is in place. In particular,
group optimality, individual rationality and subgame consistency are three crucial
properties that sustainable cooperative scheme has to satisfy.

3.1. Pareto Optimal Provision and Individual Rationality

To fulfill group optimality the agents would seek to maximize their expected joint
payoff. To maximize their expected joint payoff the agents have to solve the stochas-
tic dynamic programming problem

max
{Ij

s for j∈N}
Eϑ1,ϑ2,··· ,ϑT

{ n∑

j=1

T∑

s=1

[Rj(Ks)− Ci(Ijs )](1 + r)−(s−1)

+

n∑

j=1

qj(KT+1)(1 + r)−T
}

(3.1)
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subject to the stock dynamics (2.1).
Invoking the standard stochastic dynamic programming technique an optimal

solution to the stochastic control problem (2.1) and (3.1) can characterized by the
following set of equations (see Basar and Olsder (1995) and Yeung and petrosyan
(2012)):

W (t,K) = max
{Ij

t for j∈N,}
Eϑt

{ n∑

j=1

[Rj(K)− Ci(Ijt )](1 + r)−(t−1)

+W
[
t+ 1,

n∑

j=1

Ijt − δK + ϑt
] }

, for t ∈ {1, 2, · · · , T }, (3.2)

W (T + 1,K) =
n∑

j=1

qj(KT+1)(1 + r)−T . (3.3)

Let ψ∗
s (K) ={ψ1∗

s (K),ψ2∗
s (K), · · · , ψn∗

s (K)}, for s ∈ {1, 2, · · · , T } denote a set
of strategies that brings about an optimal cooperative solution. A group optimal
solution of public goods provision by the n agents is characterized by the solution
of the equation (3.2)-(3.3).

The optimal cooperative path can be derived as:

Kt+1 =

n∑

j=1

ψj∗
t (Kt)− δKt + ϑt,K1 = K0, for t ∈ {1, 2, · · · , T }, (3.4)

We use X∗
s to denote the set of realizable values of Ks generated by (3.4) at

stage s and use K∗
s ∈ X∗

s to denote an element in the optimal set.
Let ξ(·, ·) denote the agreed-upon imputation vector guiding the distribution of

the total cooperative payoff under the agreed-upon optimality principle along the
cooperative trajectory {K∗

s }Ts=1. At stage s and if the productive stock is K∗
s , the

imputation vector according to ξ(·, ·) is

ξ(s,K∗
s ) = [ξ1(s,K∗

s ), ξ
2(s,K∗

s ), · · · , ξn(s,K∗
s )], for s ∈ {1, 2, · · · , T }. (3.5)

A variety of examples of imputations ξ(s,K∗
s ) can be found in Yeung and Pet-

rosyan (2006 and 2012). For individual rationality to be maintained throughout all
stages, it is required that:

ξi(s,K∗
s ) ≥ V i(s,K∗

s ), for i ∈ N and s ∈ {1, 2, · · · , T }.

To satisfy group optimality, the imputation vector has to satisfy

W (s,K∗
s ) =

n∑

j=1

ξi(s,K∗
s ), for s ∈ {1, 2, · · · , T }.
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3.2. Subgame Consistent Solutions and Payoff Distribution Procedure

Under a subgame consistent situation, an extension of the solution policy to a sub-
game starting at a later stage with a state brought about by previous optimal
behaviour would remain optimal. For subgame consistency to be satisfied, the im-
putation ξ(·, ·) according to the original agreed-upon optimality principle in (3.5)

has to be maintained along the cooperative trajectory {K∗
s }Ts=1.

Following the analysis of Yeung and Petrosyan (2010 and 2012), we formulate
a Payoff Distribution Procedure so that the agreed-upon imputations (3.5) can be
realized.

Let Bi
k(K

∗
k) denote the payment that agent i will received at stage k under the

cooperative agreement if K∗
k is realized at stage k ∈ {1, 2, · · · , T }.

The payment scheme involving Bi
k(K

∗
k) constitutes a PDP in the sense that if

K∗
k is realized at stage kthe imputation to agent i over the stages from k to T can

be expressed as:

ξi(k,K∗
k) = Bi

k(K
∗
k)

(
1

1 + r

)k−1

+Eθk+1,θk+2,··· ,θζ
{ T∑

ζ=k+1

Bi
ζ(K

∗
ζ )

(
1

1 + r

)ζ−1

+ qi(KT+1)(1 + r)−T
}
, (3.6)

for i ∈ N and k ∈ κ.
Using (3.6) one can obtain

ξi(k + 1,K∗
k+1) = Bi

k+1(K
∗
k+1)

(
1

1 + r

)k

+Eθk+2,θk+3,··· ,θζ
{ T∑

ζ=k+2

Bi
ζ(K

∗
ζ )

(
1

1 + r

)ζ−1

+ qi(KT+1)(1 + r)−T
}
. (3.7)

Upon substituting (3.7) into (3.6) yields

ξi(k,K∗
k) = Bi

k(K
∗
k)

(
1

1 + r

)k−1

+Eθk

(
ξi[k + 1,

n∑

j=1

ψj∗
t (K∗

k)− δK∗
k + ϑk]

)
, (3.8)

for i ∈ N and k ∈ κ.
Theorem 3.1. Given that the public capital stock is K∗

k in stage k a payment
equalling

Bi
k(K

∗
k) = (1 + r)k−1 { ξi(K,x∗k)

−Eθk

(
ξi[k + 1,

n∑

j=1

ψj∗
t (K∗

k)− δK∗
k + ϑk]

) }
, (3.9)

for i ∈ N , be paid to agent i at stage k ∈ {1, 2, · · · , T } would lead to the realization
of the imputation {ξ(k,K∗

k), for k ∈ {1, 2, · · · , T }}.
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Proof. From (3.8), one can readily obtain (3.9). Theorem 4.1 can also be verified
alternatively by showing that from (3.6)

ξi(k,K∗
k) = Bi

k(K
∗
k)

(
1

1 + r

)k−1

+Eθk+1,θk+2,··· ,θζ
{ T∑

ζ=k+1

Bi
ζ(K

∗
ζ )

(
1

1 + r

)ζ−1

+ qi(KT+1)(1 + r)−T
}

=
{
ξi(k,K∗

k)− Eθk

(
ξi[k + 1,

n∑

j=1

ψj∗
t (K∗

k)− δK∗
k + ϑk]

) }

+

T∑

ζ=k+1

Eθk+1,θk+2,··· ,θζ
{
ξi(ζ,K∗

ζ )−Eθζ

(
ξi[ζ + 1,

n∑

j=1

ψj∗
t (K∗

k)− δK∗
k + ϑk]

) }

= ξi(k,K∗
k);

given that ξi(T + 1,K∗
T+1) =q

i(KT+1)(1 + r)−T . ⊓⊔

Note that the payoff distribution procedure in Theorem 3.1 would give rise to
the agreed-upon imputation in (3.5) and therefore subgame consistency is satisfied.

When all agents are using the cooperative strategies, the payoff that agent i will
directly receive at stage s is

Ri(K∗
s )− Ci[ψi∗

s (K∗
s )].

However, according to the agreed upon imputation, agent i is supposed to receive
Bi

s(K
∗
s ). Therefore a transfer payment (which could be positive or negative)

̟i(s,K∗
s ) = Bi

s(K
∗
s )− {Ri(K∗

s )− Ci[ψi∗
s (K∗

s )]} (3.10)

will be allotted to agent i ∈ N at stage s to yield the cooperative imputation
ξi(k,K∗

k).

4. An Illustration

In this section, we provide an illustration with an application in the build-up of
public capital by multiple asymmetric agents which is a discrete time counter-part
of example in Yeung and Petrosyan (2013). Consider an economic region with n
asymmetric agents. These agents receive benefits from an existing public capital
stock K(s). The accumulation dynamics of the public capital stock is governed by

Kt+1 =

n∑

j=1

Ijt − δKt + ϑt,K1 = K0, for t ∈ {1, 2, · · · , T }, (4.1)

where δ is the depreciation rate of the public capital, Iit is the investment made
by the ith agent in the public capital in stage t, and ϑt is an independent random
variable with non-negative range {ϑ1t , ϑ2t , · · · , ϑωt

t } and corresponding probabilities
{λ1t , λ2t , · · · , λωt

t }. Moreover
∑ωt

h=1 λ
h
t ϑ

h
t = ϑ̄t > 0.
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Each agent gains from the existing level of public capital and the ith agent seeks
to maximize its expected stream of monetary gains:

Eϑ1,ϑ2,··· ,ϑT

{ T∑

s=1

[αiKs− ci(Iis)2](1+ r)−(s−1)+(qi1KT+1+ qi2)(1+ r)−T
}
, (4.2)

subject to (4.1);
where αi, ci, qi1 and qi2 are positive constants.
In particular, αi gives the gain that agent i derives from the public capital,

ci(Iis(s))
2 is the cost of investing Iis in the public capital, and (qi1KT+1 + qi2) is the

terminal valuation of the public capital at stage T + 1. The noncooperative market
outcome of the industry will be explored in the next subsection.

4.1. Noncooperative Market Outcome

Invoking the analysis in (2.1)-(2.5) in section 2 we obtain the corresponding Hamilton-
Jacobi-Bellman equations

V i(t,K) = max
Ii
t

Eϑt

{
[αiK − ci(Iit )2](1 + r)−(t−1)

+V i
[
t+ 1,

n∑

j = 1
j 6= i

φjt (K) + Iit − δK + ϑt
] }

, for t ∈ {1, 2, · · · , T }, (4.3)

V i(T + 1,K) = (qi1KT+1 + qi2)(1 + r)−T , for i ∈ N. (4.4)

Performing the maximization operator in (4.3) yields:

φit(K) =

ωt∑

h=1

λht
1

2ci
V i
Kt+1

[ t+1,

n∑

j=1

φjt (K)− δK +ϑht ] (1+ r)(t−1), for i ∈ N. (4.5)

To solve the game (4.1)-(4.2) we first obtain the value functions as follows.
Proposition 4.1. The value function of agent i can be obtained as:

V i(t,K) = (Ai
tK + Ci

t)(1 + r)−(t−1), (4.6)

for t ∈ {1, 2, · · · , T + 1} and i ∈ N ;
where Ai

T+1= qi1 and Ci
T+1= qi2,

Ai
t= (αi −Ai

t+1δ) and Ci
t= −

(Ai
t+1)

2

4ci +Ai
t+1

( ∑n
j=1

Aj
t+1

2cj +ϑ̄ht

)
+Ci

t+1,

for t ∈ {1, 2, · · · , T }.

Proof. See Appendix A. ⊓⊔

Using Proposition 4.1 and (4.5) the game equilibrium strategies can be obtained
to characterize the market equilibrium. The asymmetry of agents brings about dif-
ferent payoffs and investment levels in public capital investments.
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4.2. Cooperative Provision of Public Capital

Now we consider the case when the agents agree to act cooperatively and seek
higher gains. They agree to maximize their expected joint gain and distribute the
cooperative gain proportional to their non-cooperative expected gains. To maximize
their expected joint gains the agents maximize

Eϑ1,ϑ2,··· ,ϑT

{ n∑

j=1

T∑

s=1

[αjKs − cj(Ijs )2](1 + r)−(s−1)

+

n∑

j=1

(qj1KT+1 + qj2)(1 + r)−T
}
, (4.7)

subject to dynamics (4.1).
Following the analysis in (3.2)-(3.3) in Section 3, the corresponding stochastic dy-
namic programming equation can be obtained as:

W (t,K) = max
{Ij

t for j∈N}
Eϑt

{ n∑

j=1

[αjK − cj(Ijt )2](1 + r)−(t−1)

+W
[
t+ 1,

n∑

ℓ=1

Iℓt − δK + ϑt
] }

, for t ∈ {1, 2, · · · , T }, (4.8)

W (T + 1,K) =

n∑

j=1

(qj1KT+1 + qj2)(1 + r)−T . (4.9)

Performing the maximization operator in (4.8) yields:

ψi
t(K) =

ωt∑

h=1

λht
1

2ci
WKt+1

[ t+1,

n∑

j=1

ψj
t (K)−δK+ϑht ] (1+r)(t−1), for i ∈ N. (4.10)

Proposition 4.2. The value function W (t,K) can be obtained as

W (t,K) = (AtK + Ct)(1 + r)−(t−1), (4.11)

for t ∈ {1, 2, · · · , T + 1};
where AT+1=

∑n
j=1 q

j
1 and CT+1=

∑n
j=1 q

j
2,

At=
∑n

j=1 α
j − At+1δand Ct =

∑n
j=1

(At+1)
2

4cj +At+1ϑ̄
h
t +Ct+1,

for t ∈ {1, 2, · · · , T }.

Proof. Follow the proof of Proposition 4.1. ⊓⊔

Using (4.10) and Proposition 4.2 the optimal investment strategy of public cap-
ital stock can be obtained as:

ψi
t(K) =

At+1

2ci
, for i ∈ N and t ∈ {1, 2, · · · , T }. (4.12)

Using (4.1) and (4.12) the optimal trajectory of public capital stock can be
expressed as:
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Kt+1 =
[ n∑

j=1

At+1

2cj
− δKt

]
+ ϑt,K1 = K0, for t ∈ {1, 2, · · · , T }, (4.13)

We use X∗
s to denote the set of realizable values of Ks generated by (4.13) at

stage s. The term K∗
s ∈ X∗

s is used to denote and element in X∗
s .

4.3. Subgame Consistent Payoff Distribution

Next, we will derive the payoff distribution procedure that leads to a subgame
consistent solution. With the agents agreeing to distribute their gains proportional
to their non-cooperative gains, the imputation vector becomes

ξi(s,K∗
s ) =

V i(s,K∗
s )∑n

j=1 V
j(s,K∗

s )
W (s,K∗

s )

=
Ai

sK
∗
s + Ci

s∑n
j=1(A

j
sK∗

s + Cj
s )
(AsK

∗
s + Cs)(1 + r)−(s−1), (4.14)

for i ∈ N and s ∈ {1, 2, · · · , T } if the public capital stock is K∗
s ∈ X∗

s .
To guarantee dynamical stability in a dynamic cooperation scheme, the solution

has to satisfy the property of subgame consistency which requires the satisfaction
of (4.14) at all stages s ∈ {1, 2, · · · , T }. Invoking Theorem 3.1 we can obtain:
Proposition 4.3. A PDP which would lead to the realization of the imputation
ξ(s,K∗

s ) in (4.14) includes a terminal payment (qi1K
∗
T+1 + qi2) to agent i ∈ N at

stage T + 1 and an payment at stage s ∈ {1, 2, · · · , T }:

Bi
s(K

∗
s ) =

Ai
sK

∗
s + Ci

s∑n
j=1(A

j
sK∗

s + Cj
s )

(AsK
∗
s + Cs)

−
ωs∑

h=1

λhs
Ai

s+1K
∗
s+1(ϑ

h
s ) + Ci

s+1∑n
j=1[A

j
s+1K

∗
s+1(ϑ

h
s ) + Cj

s+1]
[As+1K

∗
s+1(ϑ

h
s ) + Cs+1](1 + r)−1, for i ∈ N,

(4.15)
where K∗

s+1(ϑ
h
s ) =

[ ∑n
j=1

As+1

2cj − δK∗
s

]
+ϑhs . ⊓⊔

Finally, when all agents are using the cooperative strategies, the payoff that
agent i will directly receive at stage s is

αjK∗
s −

(AS+1)
2

4cj
.

However, according to the agreed upon imputation, agent i is to receive Bi
s(K

∗
s ) in

Proposition 4.3. Therefore a transfer payment (which can be positive or negative)
equalling

̟i
i(s,K

∗
s ) = Bi

s(K
∗
s )−

[
αjK∗

s −
(AS+1)

2

4cj

]
(4.16)

will be imputed to agent i ∈ N at stage s ∈ {1, 2, · · · , T }.
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5. Concluding Remarks

This paper presented subgame consistent cooperative solutions for stochastic discrete-
time dynamic games in public goods provision. The solution scheme guarantees
that the agreed-upon optimality principle can be maintained in any subgame and
provides the basis for sustainable cooperation. A "payoff distribution procedure"
(PDP) leading to subgame-consistent solutions is developed. Illustrative examples
are presented to demonstrate the derivation of subgame consistent solution for pub-
lic goods provision game. This is the first time that subgame consistent cooperative
provision of public goods is analysed in discrete time. Various further research and
applications, especially in the field of operations research, are expected.

Appendix A. Proof of Proposition 4.1.
Using the value functions in Proposition 4.1 the optimal strategies in (4.5) be-

comes:

φit(K) =
Ai

t+1

2ci
, for i ∈ N and t ∈ {1, 2, · · · , T }. (A.1)

Using (A.1) the Hamilton-Jacobi-Bellman equations (4.4)-(4.5) reduces to:

Ai
tK + Ci

t = αiK − (Ai
t+1)

2

4ci
+

ωt∑

h=1

λht
[
Ai

t+1

( n∑

j=1

Aj
t+1

2cj
− δK + ϑht

)
+ Ci

t+1

]
,

(A.2)
for i ∈ N and t ∈ {1, 2, · · · , T },

Ai
T+1K + Ci

T+1 = qi1K + qi2, for i ∈ N. (A.3)

For (A.3) to hold it requires

Ai
T+1 = qi1 and Ci

T+1 = qi2. (A.4)

Re-arranging terms in (A.2) yields:

Ai
tK + Ci

t = (αi −Ai
t+1δ)K −

(Ai
t+1)

2

4ci
+Ai

t+1

( n∑

j=1

Aj
t+1

2cj
+ ϑ̄ht

)
+ Ci

t+1, (A.5)

for i ∈ N and t ∈ {1, 2, · · · , T }.
For (A.5) to hold it requires

Ai
t = (αi −Ai

t+1δ) and Ci
t = −

(Ai
t+1)

2

4ci
+Ai

t+1

( n∑

j=1

Aj
t+1

2cj
+ ϑ̄ht

)
+ Ci

t+1. (A.6)

Note that Ai
t and Ci

t depend on the model parameters and the succeeding values
of Ai

t+1 andCi
t+1. Using (A.4) all Ai

t and Ci
t , for i ∈ N and t ∈ {1, 2, · · · , T }, are

explicitly obtained.
Hence Proposition 4.1 follows. Q.E.D.
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