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Abstract The purpose of paper is to investigate how the interplay of trade,
commuting and communication costs shapes economy at both inter-regional
and intra-urban level. Specifically, we study how trade affects the internal
structure of cities and how decentralizing the production and consumption
of goods in secondary employment centers allows firms located in a large
city to maintain their predominance. The feature of approach is using of
two-dimensional city pattern instead of the “long narrow city” model.
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1. Introduction

Spatial economics has acquired new life since publication of Krugman’s (1991) pi-
oneering paper. Combined increasing returns, imperfect competition, commodity
trade and the mobility of production factors Krugman has formed his now fa-
mous “core-periphery” model. Such a combination contradicts to the mainstream
paradigm of constant returns and perfect competition, which has dominated in
economic theory for a long time. Furthermore, to the trade-off between increasing
returns and transport costs Krugman (1980) has added a third factor: the size of
spatially separated markets. The main achievement of New Economic Geography
(NEG) was to show how market size interacts with scale economies internal to firms
and transport costs to shape the space-economy.

In NEG, the market outcome arises from the interplay between a dispersion
force and an agglomeration force operating within a general equilibrium model. In
Krugman (1991) and Fujita et al. (1999), the dispersion force ensures from the spa-
tial immobility of farmers. As for the agglomeration force, Krugman (1991, p.486)
noticed that circular causation a la Myrdal (1957) takes place because the following
two effects reinforce each other: “manufactures production will tend to concentrate
where there is a large market, but the market will be large where manufactures
production is concentrated.”

In this framework, however, the internal structure of regions was not accounted
for. In the present paper we consider NEG models which allows for the internal
structure of urban agglomerations through the introduction of a land market. To be
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precise, we start by focusing on the causes and consequences of the internal structure
of cities, because the way they are organized has a major impact of the well-being
of people. In particular, housing and commuting costs, which we call urban costs,
account for a large share of consumers’ expenditures. At this point we are agree
with Helpman (1998) for whom urban costs are the main dispersion force at work
in modern urbanized economies. In our setting, an agglomeration is structured as a
monocentric city in which firms gather in a central business district. Competition
for land among consumers gives rise to land rent and commuting costs that both
increase with population size. In other words, our approach endows regions with an
urban structure which is absent in standard NEG models.

As a result, the space-economy is the outcome of the interaction between two
types of mobility costs: the transport costs of commodities and the commuting costs
borne by workers. Evolution of commuting costs within cities, instead of transport
costs between cities, becomes the key-factor explaining how the space-economy is or-
ganized. Moreover, despite the many advantages provided by the inner city through
an easy access to highly specialized services, the significant fall in communication
costs has led firms or developers to form enterprise zones or edge cities (Henderson
and Mitra 1996). We then go one step further by allowing firms to form secondary
business centers. This analysis shows how polycentricity alleviates the urban of ur-
ban costs, which allows a big city to retain its dominant position by accommodating
a large share of activities.

Creation of subcenters within a city, i.e. the formation of a polycentric city,
appears to be a natural way to alleviate the burden of urban costs. It is, therefore,
no surprise that Anas et al. (1998) observe that “polycentricity is an increasingly
prominent feature of the landscape.” Thus, the escalation of urban costs in large
cities seems to prompt a redeployment of activities in a polycentric pattern, while
smaller cities retain their monocentric shape. However, for this to happen, firms set
up in the secondary centers must maintain a very good access to the main urban
center, which requires low communication costs.

Trying to explain the emergence of cities with various sizes, our framework, un-
like Helpman (1998), Tabuchi (1998) and others, allows cities to be polycentric.
Moreover, in contrast to Sullivan (1986), Wieand (1987), and (Helsley and Sulli-
van, 1991), in our treatment, there are no pre-specified locations or numbers of
subcenters, and our model is a fully closed general equilibrium spatial economy. As
mentioned above, emergence of additional job centers is based on the urge towards
decreasing of urban costs, rather than consumer’s “propensity to big malls”, as sug-
gested by Anas and Kim (1996). Our approach, that takes into account various
types of costs (trade, commuting, and communication) is similar to Cavailhès et al.
(2007) with one important exception. We drop very convenient (yet non-realistic)
assumption on “long narrow city.” Our analysis is extended to the two-dimension
because the geographical space in the real world is better approximated by a two-
dimensional space.

2. Model overview

2.1. Spatial structure

Consider an economy with G ≥ 1 regions, separated with physical distance, one
sector and two primary goods, labor and land. Each region can be urbanized by
accommodating firms and workers within a city, and is formally described by a two-
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dimensional space X = R2. Whenever a city exists, it has a central business district
(in short CBD) located at the origin 0 ∈ X .

Firms are free to locate in the CBD or to set up in the suburbs of the metro where
they form secondary business districts, SBD in short. Both the CBD and SBDs are
assumed to be dimensionless. In what follows, the superscript C is used to describe
variables related to the CBD, whereas S describes the variables associated with a
SBDs. We consider the case where the CBD of urbanized region g is surrounded by
mg ≥ 0 SBDs; mg = 0 corresponds to the case of monocentric city. Without loss of
generality, we focus on the only one of SBDs, because all SBDs are assumed to be
identical.

Even though firms consume services supplied in each SBD, the higher-order
functions (specific local public goods and non-tradable business-to-business ser-
vices such as marketing, banking, insurance) are still located in the CBDs. Hence,
for using such services, firms set up in a SBD must incur a communication cost,
K > 0. In paper of Cavailhès et al. (2007) more general communication cost function
K(xS) = K+ k · ||xS || was used, where k > 0, and ||xS || is a distance between CBD
and SBD. This generalization does not change the nature of our results, though
analytical calculation became more tedious. Both the CBD and the SBD are sur-
rounded by residential areas occupied by workers. There is no overlapping between
residence zones. Furthermore, as the distance between the CBD and SBD is small
compared to the intercity distance, we disregard the intra-urban transport cost of
goods. Note that using the more general type of communication cost with k > 0
leads to consequence that in equilibrium Central and any Secondary residence zones
should be adjacent to each other. This condition is non-necessary for fixed commu-
nication cost, although the real SBD can not be placed too far from City Center.

Under those various assumptions, the location, size and number of the SBDs
as well as the size of the CBD will be endogenously determined. In other words,
apart from the assumed existence of the CBD, the internal structure of each city is
endogenous.

2.2. Workers/Consumers

The economy is endowed with L workers, distributed across the regions, where

population of city g is lg, i.e.,
G∑

g=1

lg = L. In this paper our primary focus is on

the intra-city cost effects and on the trade, therefore the distribution of labor is
considered as exogenous. The welfare of a worker depends on her consumption of
the following three goods. The first good is unproduced and homogeneous. It is
assumed to be costlessly tradable and chosen as the numéraire. The second good is
produced as a continuum n of varieties of a horizontally differentiated good under
monopolistic competition and increasing returns, using labor as the only input. Any
variety of this good can be shipped from one city to the other at a unit cost of τ > 0
units of the numéraire. The third good is land; without loss of generality, we set the
opportunity cost of land to zero. Each worker living in city 1 ≤ g ≤ G consumes a
residential plot of fixed size chosen as the unit of area. The worker also chooses a
quantity q(i) of variety i ∈ [0, n], and a quantity q0 of the numéraire. She is endowed
with one unit of labor, which is supplied absolutely inelastically.
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Preferences over the differentiated product and the numéraire are identical across
workers and cities and represented by Ottaviano’s quasi-linear utility function

U(q0; q(i), i ∈ [0, n]) = α

n∫

0

q(i)di − β

2

n∫

0

[q(i)]2di − γ

2




n∫

0

q(i)di



2

+ q0 (1)

where α, β, γ > 0. Demand for these products (provided that job and location
are already chosen) is determined by maximizing of utility subject to the budget
constraint

n∫

0

p(i)q(i)di + q0 + Rg(x) + Tg(x) = wg(x) +
ALRg

lg
, (2)

where Rg(x) is the land rent prevailing at location x, Tg(x) is commuting cost,

wg(x) is the wage, and ARLg =

∫

x∈X

Rg(x)dx is an aggregated land rent in the city

g. This form of the budget constraint suggests that there are no landlords, who
appropriate the land rent, moving it out of city budget. In other words, land is in
a joint ownership of all citizen.

Each worker commutes to her employment center – without cross-commuting –
and bears a unit commuting cost given by t > 0, so that for the worker located at x
the commuting cost, Tg(x), is either t||x|| or t||x−xSg || according to the employment
center. Moreover, the wage wg(x) depends only on type of employment center and
takes one of two possible values: wage in CBD, wC

g , or wage in SBD, wS
g , which is

uniform across all SBDs. Thus, the budget constraint of an individual working in
the CBD is as follows

n∫

0

p(i)q(i)di + q0g +RC
g (x) + t||x|| = wC

g +
ALRg

lg
, (3)

while for individuals working in the SBD, located at xSg , it takes the form

n∫

0

p(i)q(i)di + q0g +RS
g (x) + t||x-xSg || = wS

g +
ALRg

lg
. (4)

2.3. Firms

Our basic assumption on the manufacturing technology is that producing q(i) units
of variety i requires a given number ϕ of labor units. One may assume that producing
one unit of variety i requires additionally c ≥ 0 units of numéraire. This is not
significant generalization, however, because this model is technically equivalent to
one with c = 0 (see Ottaviano et al., 2002).

There is no scope economy so that, due to increasing returns to scale, there is
a one-to-one relationship between firms and varieties. Thus, the total number of
firms is given by n = L/ϕ. Labor market clearing implies that the number of firms
located (or varieties produced) in city g is such that ng = λgn, where λg = lg/L
stands for the share of workers residing in g. Denote by ΠC

g (respectively ΠS
g ) the
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profit of a firm set up in the CBD of city g (respectively the SBD). When the firm
producing variety i is located in the CBD, its profit function is given by:

ΠC
g (i) = Ig(i)− ϕ · wC

g , (5)

where
Ig(i) = pgg(i) ·Qgg(i) +

∑

f 6=g

(pgf (i)− τ) ·Qgf (i)

stands for the firm’s revenue earned from local sales Qgg(i) and from exports Qgf (i)
from city g to various cities f . When the firm sets up in the SBD of the same city,
its profit function becomes:

ΠS
g (i) = Ig(i)− ϕ · wS

g −K. (6)

The firm’s revenue is the same as in the CBD because shipping varieties within the
city is costless, so that prices and outputs do not depend on firm’s location in the
city.

3. Urban Costs and Decentralization within a City

A city equilibrium is such that each individual maximizes her utility subject to her
budget constraint, each firm maximizes its profits, and markets clear. Individuals
choose their workplace (CBD or SBD) and their residential location with respect to
given wages and land rents. In each workplace, the equilibrium wages are determined
by a bidding process in which firms compete for workers by offering them higher
wages until no firm can profitably enter the market. Given such equilibrium wages
and the location of workers, firms choose to locate either in the CBD or in the SBD.
At the city equilibrium, no firm has an incentive to change place within the city. To
ease the burden of notation, we drop the subscript g.

3.1. Land rents and Wage wedge

Let ΨC(x) and ΨS(x) be the bid rent at x ∈ X of an individual working, respec-
tively, in the CBD and in the representative SBD. Land is allocated to the highest
bidder. An opportunity cost of land (e.g., for agricultural use) is assumed to be
zero. Urban costs (commuting and communication) increase with Euclidean dis-
tance, thus “efficient” shapes of both Central and Secondary residence zones are
circles. All locations with the same distance to the corresponding Business District
(Central or Secondary) are equivalent with respect to urban cots. Because there is
only one type of labor, at the city equilibrium it must be that the housing rent
R(x) = max

{
ΨC(x), ΨS(x), 0

}
. Within each city, a worker chooses her location so

as to maximize her utility U(q0, q(i); i ∈ [0, n]) under the corresponding budget
constraint, (3) or (4).

Because of the fixed lot size assumption, at the city equilibrium the value of the
equilibrium consumption of the nonspatial goods

n∫

0

p(i)q(i)di + q0 = E (7)

is the same regardless of the worker’s location:

wC+
ALR

l
−RC(x′)−t||x′|| = EC(x′) ≡ ES(x′′) = wS+

ALR

l
−RS(x′′)−t||x′′−xS ||
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for all x′, x′′, belonging to CBD and SBD residence zones, respectively. To ensure
this, we assume for now, that the share of firms located in the CBD, θ, is given,
then (1− θ)/m is the share of firms in each SBD.

Proposition 1. For any given city population l, SBD number m, and CBD share
of firms θ:

i) Central zone radius rC and SBD zone radius rS are as follows:

rC =

√
θl

π
, rS =

√
(1− θ)l
mπ

. (8)

ii) The following land rent function equalizes the disposable income E for all
central and suburb residence locations x:

R(x) = t · max
1≤k≤m

{
0,

√
θl

π
− ||x||,

√
(1− θ)l
mπ

− ||xSk − x||
}
, (9)

where
{
xSk
}m
k=1

is a set of all SBD locations.
iii) Redistributed aggregated land rent:

ALR

l
=

1

l

∫

X

R(x)dx =
t

3
·
√
l

π

[
θ3/2 +

(1 − θ)3/2√
m

]
. (10)

iv) In equilibrium there exists the positive wage wedge between CBD and SBD

wC − wS = t ·
(√

θl

π
−
√

(1− θ)l
mπ

)
(11)

which is non-negative for all θ ∈
[

1

1 +m
, 1

]
.

For analytical proof see Appendix. Figure 1 presents the plot of function R(x)
for m = 4.

3.2. Urban Costs

Let’s define urban cost function as a sum of rent and commuting costs minus the

individual share of aggregated land rent
ALR

l
.1 Due to (9) and (10) these urban

costs are as follows

CC
u = ΨC(x) + t||x|| − ALR

l
= t

√
θl

π
− t

3
·
√
l

π

[
θ3/2 +

(1 − θ)3/2√
m

]
,

CS
u = ΨS(x) + t||x− xS || − ALR

l
= t

√
(1− θ)l

π
− t

3
·
√
l

π

[
θ3/2 +

(1− θ)3/2√
m

]
.

(12)
The city equilibrium implies that the identity wC −CC

u = wS −CS
u holds. In these

terms, the wage wedge identity may be rewritten as a difference between urban costs
in CBD and SBD: wC − wS = CC

u − CS
u .

1 For technical reasons it is convenient to treat ALR
l

as some kind of rent compensation,
subtracting it from costs rather adding to wage.
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Fig. 1: Rent function R(x)

3.3. Equilibrium city structure

Regarding the labor markets, the equilibrium wages of workers are determined by
the zero-profit condition. In other words, operating profits are completely absorbed
by the wage bill. Hence, the equilibrium wage rates in the CBD and in the SBDs
must satisfy the conditions ΠC(wC∗) = 0 and ΠS(wS∗) = 0, respectively. Thus,
setting (5) (respectively (6)) equal to zero, solving for wC∗ (respectively wS∗), we
get:

wC∗ =
I

ϕ
, wS∗ =

I −K
ϕ

(13)

Hence wC∗ −wS∗ =
K

ϕ
> 0, due to (8). Comparing the previous formula with (11)

we obtain that CBD share of firms, θ satisfies the identity

ϕt
√
mθl = K

√
mπ + ϕt

√
(1− θ)l. (14)

Admissible solution θ∗ of equation (14) will be referred as equilibrium CBD share.

Proposition 2. i) Let l ≤ πK2

ϕ2t2
then the unique solution of equation (14) is θ∗ = 1

with m = 0, i.e. city is monocentric;

ii) Let l >
πK2

ϕ2t2
then for each m ≥ 1 equation (14) has unique solution θ∗ ∈

(
1

1 +m
, 1

)
, i.e. there exists a unique equilibrium SBD share of firms.

iii) The CBD share of firms θ∗ decreases with respect to population l, number of
SBDs m and commuting costs t. Moreover, θ∗ increases with respect to communi-
cation cost K and

lim
l→∞

θ∗ = lim
t→∞

θ∗ = lim
K→0

θ∗ =
1

1 +m
. (15)

For analytical proof see Appendix.
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Remark 1. Let rM (l) =

√
l

π
and note that it is in fact a radius of monocentric

city with population l. Inequality l <
πK2

ϕ2t2
holds if and only if ϕt · rM (l) > K. The

left-hand side of this inequality is total commuting costs of firm’s workers, residing at
periphery of monocentric city in case of firm’s location at CBD. To hire ϕ workers
from periphery, firm should compensate their commuting costs in wage. On the
other hand, locating the firm at the periphery causes the lesser communication cost
K. Thus, producing on periphery (in SBD) is more efficient for new firm entering
the industry. For any given K we obtain minimum polycentric city population:

lP =
πK2

ϕ2t2
. If city population l ≤ lP the corresponding central share θ∗ ≡ 1, i.e.

city pattern is monocentric. It is not surprising that increasing in commuting costs
t leads to lager dispersion of firms and workers. For very large magnitude of t,
communication costs K become negligible and the distribution of production across
all business centers is almost uniform.

Substituting equilibrium SBD share θ∗(m, l, t) into the urban cost function

CC
u = t

√
θl

π
− t

3
·
√
l

π

[
θ3/2 + (1− θ)

√
1− θ
m

]

and taking into account that
√

1− θ∗
m

=
√
θ∗ − K

√
π

ϕ · t
√
l
,

which follows from equation (14), we obtain that the urban cost function

CC
u (l,m, t) =

2t

3

√
θ∗(l,m, t) · l

π
+
K

3ϕ
· (1 − θ∗(l,m, t)). (16)

In particular,

CC
u (l, 0, t) =

2

3
t

√
l

π
for m = 0 and l ≥ 0

CC
u (l,m, t) =

2

3
t

√
l

π
for all m > 0 and l ≤ πK2

ϕ2t2
,

because in these cases θ∗ ≡ 1.

Proposition 3. Function CC
u (l,m, t) is continuous for all m ≥ 0, l ≥ 0, t ≥ 0 and

continuously differentiable function for m > 0, l > 0, t > 0. Moreover, CC
u (l,m, t)

strictly increases with respect to l and t, strictly decreases with respect to m for all
l > lP .

For analytical proof see Appendix. Figure 2 represents results of Proposition 3 in
visual way as simulation in Wolfram’s Mathematica 8.0.

Remark 2. Note that urban cost function Cu is concave with respect to l. It may
reflect the fact that the housing price at periphery of residence zone increases with
l sufficiently slow. The newcomers reside at the periphery, where the housing rent is
very small. Moreover, unlike the linear model, in two-dimensional case this periphery
enlarges as the city population grows. Though immigration increases competition
for housing, an increment of the per capita urban costs Cu is less than before.
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Fig. 2: Comparative statics of urban costs

4. Inter-City Equilibrium

Until now we studied equilibrium decentralization within the city, or Intra-City
equilibrium. Let’s turn to Inter-City equilibrium assuming that the city populations
lg and numbers of SBD mg are given for each city g. This paper focuses mainly on
trade aspects, putting aside labor migration, therefore this assumption is consistent.
Some considerations on endogenezation of SBD number are discussed at the end
of this Section. Equilibrium shares of firms, θ∗g , located at CBD, may be obtained
independently, as solutions of equation (14) for each city g. These shares, in turn,
allow to determine the urban costs Cug, which do not depend on inter-city trade
(and even on existence of other cities). On the contrary, wage

wC
g =

1

ϕ


pgg(i) ·Qgg(i) +

∑

f 6=g

(pgf (i)− τ) ·Qgf (i)


 ,

substantially depends on trade, as well as consumer’s utility U(q0; q(i), i ∈ [0, n]).
Moreover, if trade costs are too large, e.g., τ ≥ pgf (i), export is non-profitable and
firms choose the domestic sales only, which implies

wC
g =

pgg(i) ·Qgg(i)

ϕ
.

Now we split the study of equilibrium into two sub-cases: Equilibrium under
Autarchy and Equilibrium with Bilateral Trade.

4.1. Equilibrium under Autarchy

This case suggests that equilibrium is separately established for each city, hence we
may drop subscript g and consider the city with population l and SBD number m.
Moreover, assume that the number of firms n is given and condition wC − CC

u > 0
holds. What determines n and how to provide this consumers’ “surviving condition”
will be discussed at the end of this subsection.

Representative consumer maximizes utility

U(q0; q(i), i ∈ [0, n]) = α

n∫

0

q(i)di− β

2

n∫

0

[q(i)]2di− γ

2




n∫

0

q(i)di



2

+ q0
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subject to
n∫

0

p(i)q(i)di + q0 = wC − CC
u ,

First of all, recall some well-known results concerning consumer’s problem with this
form of utility.

Lemma 1. Consumer’s demand is linear function

q(i) =
α

β + γn
− 1

β
p(i) +

γ

(β + γn)β
· P,

where P =
n∫
0

p(i)di is price index. Equilibrium prices and demand of representative

are uniform by goods

p∗(i) ≡ p∗ =
αβ

2β + γn
, q∗(i) ≡ q∗ =

α

2β + γn
.

Consumer’s surplus at equilibrium is equal to

CS =
α2n(β + γn)

2(2β + γn)2
.

For analytical proof see Ottaviano et al. (2002). Using this lemma and taking into

account that n =
l

ϕ
we obtain the terms of equilibrium wage at CBD

wC∗ =
l · p∗ · q∗

ϕ
=

α2βϕl

(2βϕ+ γl)
2

and consumer’s surplus

CS =
α2(βϕ+ γl)l

2(2βϕ+ γl)2
,

which does not depend on consumer residence. Moreover sum of wage and consumer
surplus (urban gains, for short) is

GC
u = CS + wC∗ =

α2(3βϕ+ γl)l

2(2βϕ+ γl)2
.

Finally, consumer’s welfare in CBD is a difference of urban gains and urban costs

V C = CS + wC∗ − CC
u .

Similar to CBD we may calculate the corresponding SBD’s characteristics: wage

wS∗ =
α2βϕl

(2βϕ+ γl)
2 − t

(√
θ∗l

π
−
√

(1− θ∗)l
mπ

)
,

urban gains

GS
u = CS + wS∗ =

α2(3βϕ+ γl)l

2(2βϕ+ γl)
− t
(√

θ∗l

π
−
√

(1− θ∗)l
mπ

)
,

where θ∗ is solution of equation (14). Note that indirect utility

V S = CS + wS∗ − CS
u ≡ CS + wC∗ − CC

u = V C .
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Proposition 4. Wage function wC∗(l) strictly increases for all 0 ≤ l <
2βϕ

γ
and

strictly convex for l >
2βϕ

γ
. Moreover,

lim
l→+∞

wC∗(l) = 0, wC∗(0) = 0,
∂wC∗

∂l
(0) =

α2

2
< +∞.

Urban gains GC
u (l) strictly increase for all l ≥ 0,

lim
l→+∞

GC
u (l) =

α2

2γ
, GC

u (0) = 0.

Proof of this proposition is straightforward from the formulas of wC∗(l) and GC
u (l).

“Surviving” condition It is obvious that city equilibrium is consistent only if dis-
posable income wC∗(l)− CC

u (l,m, t) ≥ 0, which is called Surviving condition. Fea-
sibility of this condition depends on magnitude of commuting cost t: wage function
wC∗ is bounded and does not depend on t, while urban cost CC

u (l,m, t) increases
unrestrictedly with t. As result, very large commuting cost makes the city formation
impossible.

Proposition 5. Let inequality
K

ϕ
<

3α2

16γ
holds, then for any commuting cost t ∈

(
0,
K

ϕ

√
πγ

2βϕ

)
and any given SBD numberm ≥ 0 there exist numbers 0 < lmin(m, t) <

lmax(m, t) < ∞, such that inequality wC(l) − CC
u (l,m, t) ≥ 0 holds if and only if

lmin(m, t) ≤ l ≤ lmax(m, t). Moreover, if m′ > m, then lmin(m
′, t) ≡ lmin(m, t) <

lmax(m, t) ≤ lmax(m
′, t) and lP < l∗ ⇒ lmax(m, t) ≤ lmax(m

′, t).

For analytical proof see Appendix.

Remark 3. Note that inequality
K

ϕ
<

3α2

16γ
is equivalent to

α2

8γ
= max

l≥0
wC∗(l) > CC

u (lP ,m, t) =
2t

3

√
lP

π
≡ 2K

3ϕ
,

which implies that the maximum possible wage exceeds the urban costs in the city
with minimum polycentric city population lP . The lack of this condition means that
the production transfer to SBD is ineffective, because per employee communication

cost
K

ϕ
is too large.

Increasing of m broadens interval [lmin(m, t), lmax(m, t)] (to be more precise, lmin

is not affected by changes in SBD number, while lmax increases with respect to
m). Moreover, disposable income wC(l) − CC

u (l,m, t) and welfare V C = GC
u (l) −

CC
u (l,m, t) both increases with respect to m for all l > lP . Figure 3 illustrates the

equilibrium existence under autarchy and comparative statics of lmax with respect
to m using simulation in Wolfram’s Mathematica 8.0.

Remark 4. Previous considerations show that autarchy may be very restrictive
to the city sizes: city survives only if its size exceeds the lower threshold lmin > 0
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Fig. 3: Comparative statics of the population limits

and does not exceed the upper one lmax. It is not surprising, because self-sufficient
settlement of industrial type may exists only if its population is sufficiently large.
Moreover, unrestrictedly growing urban costs (in particular, commuting cost) even-
tually stop the city growth. Developing of the city infrastructure (i.e. increasing in
m) shifts up the upper bound lmax, but cannot affect the lower critical point lmin.

4.2. Endogenous SBD number

The concluding remark concerns the question: How to endogenize SBD number?
There is no simple and unambiguous answer, because in practice it depends on many
factors. One of the main questions is “Who can afford the building of additional
suburb?” If answer is “None”, we find ourself in setting with predefined number of
SBDs (like model of Cavailhès et al., 2007). Otherwise, we assume that decision is
up to ‘City Developer’, who takes into account the social welfare considerations.
For example, when city population reaches the upper bound lmax, an increasing the
number of subcenters is urgently needed. Let’s determine the following “compelled”
SBD number for given population l and commuting cost t:

m∗(l, t) = min {m | l ≤ lmax(m, t)} .
Proposition 6. SBD number m∗ is non-decreasing function with respect to the
city population l and commuting costs t, i.e., for all l′ > l, t′ > t the following
inequalities hold:

m∗(l′, t) ≥ m∗(l, t), m∗(l, t′) ≥ m∗(l, t).

Proof. The statement concerning city population l is obvious: city is monocen-
tric (m∗ = 0) until population l exceeds lmax(0, t). By Proposition 5 upper bound
lmax(1, t) > lmax(0, t), thus while l ≤ lmax(1,m) the current SBD number m∗ = 1,
until l exceeds this upper bound, e.t.c. Increasing in commuting cost leads to
decreasing of lmax(m, t) = sup

{
l | wC∗(l) ≥ CC

u (l,m, t)
}
, because CC

u (l,m, t) in-
creases with respect to t by Proposition 3. Therefore, if l > lmax(m, t

′) for t′ > t then
to recover surviving condition we need to increase SBD number until lmax(m

′, t′) ≥ l.
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Remark 5. Although this mechanism of endogenezation is not perfect, that theo-
retical comparative statics is fully supported by empirical evidences (see MacMillen
and Smith, 2003). Anyway, it determines rather the endogenous minimum of SBD,
which may be increased by some another reason, for example, to increase social
welfare, i.e., total indirect utility of the city population.

Fig. 4: Disposable income and Welfare

Parametric Example Consider the numerical example of how may change the
inner structure of city under increasing of population size. Parameter values are
chosen as follows: ϕ = 5, K = 4, t = 1, α = 6, β = 4, γ = 1. Under these
assumptions the lower bound of the city population lmin ≈ 0.75 is very small and
once the city is grounded it starts to attract people, e.g., from rural neighborhood.
Moreover, disposable income w−Cu increases very quickly with respect to city size
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l at early stage, then it reaches the maximum and go down to zero when population
size is close to upper population bound lmax(m). Its magnitude depends on city
structure, i.e., number of SBD. For example, monicentric city reaches its maximum
at lmax(0) ≈ 97.5, while for m = 3 the upper bound (or city capacity) is much larger,
lmax(3) ≈ 156.5. The plots of disposable income for m = 0, 1, 2, 3 are presented at
Figure 4a.

However, taking into account Consumer’s Surplus along with Disposable In-
come we obtain that the resulting Consumer’s Welfare (i.e., Indirect utility) V =
CS +w −Cu tends to grow further with respect to population size. It implies that
there is a strong incentive for City Developer to increase the SBD number m, which
in turn raises the city capacity. Of course, this expansion could be done “in advance”,
i.e., before the population size reaches the maximum. It is not so easy to predict,
however, when it happens, thus the “cautious strategy” of City Developer is pre-
sented at Figure 4b by bold line, i.e., an additional SBD appears only if capacity of
the city is exhausted. Moreover, we have assumed that the building of new SBD is
costless, but this is not the case in real world. Thus, the expansion m→ m+1 will
be well-grounded when per capita effect (welfare gap) reaches the maximum, i.e., at
current lmax(m). It can be easily observed that this welfare leap quickly decreases
with any next expansion of city structure, which eventually stops the increasing of
the city population.

4.3. Bilateral Trade Equilibrium

The current subsection tell us what changes if trade comes to the place. To simplify
description, assume that there are two cities, Home and Foreign. Let λ be the share
of workers residing in Home city, then populations of both cities are lH = λL
and lF = (1 − λ)L, respectively. Moreover, the equilibrium masses of firms are
nH = lH/ϕ = λ ·n, nF = lF /ϕ = (1−λ) ·n, where n = L/ϕ is a total mass of firms
in the world. Demands of Home representative consumer for domestic and imported
differentiated goods, qHH(i) and qFH(i) respectively, are determined as solution of
consumer problem

maxU(q0; q(i), i ∈ [0, nH + nF ])

subject to

nH∫

0

pHH(i)qHH(i)di +

nH+nF∫

nH

pFH(i)qFH(i)di + q0 = EH = wC
H − CC

H . (17)

Similarly demands of Foreign representative consumer, qFF (i) and qHF (i), are de-
termined as solution of

maxU(q0; q(i), i ∈ [0, nH + nF ])

subject to

nF∫

0

pFF (i)qFF (i)di+

nH+nF∫

nF

pHF (i)qHF (i)di+ q0 = EF = wC
F − CC

F . (18)

Facing these demands, firms maximize profits

IH(i) = λL · pHH(i) · qHH(i) + (1− λ)L · [pHF (i)− τ ] · qHF (i)
IF (i) = (1 − λ)L · pFF (i) · qFF (i) + λL · [pFH(i)− τ ] · qFH(i)
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and obtain optimal (equilibrium) prices and quantities. Zero-profit condition (13)
determines equilibrium wages. It should be mentioned that bilateral trade is prof-
itable only if trade costs τ are sufficiently small: pHF (i) > τ and pFH(i) > τ . The
following results are well-known, see, for example, original papers of Ottaviano et
al. (2002) and Cavailhès et al. (2007).

Lemma 2. Trade equilibrium prices are uniform by goods

p∗HH(i) ≡ p∗HH =
2αβ + τγnF

2(2β + γn)
, p∗FF (i) ≡ p∗FF =

2αβ + τγnH

2(2β + γn)
,

p∗HF = p∗FF +
τ

2
, p∗FH = p∗HH +

τ

2
,

as well as equilibrium demands

q∗HH(i) ≡ q∗HH =
1

β + γn

[
α− p∗HH +

τγ

2β
nF

]
, q∗FH = q∗HH −

τ

2β

q∗FF (i) ≡ q∗FF =
1

β + γn

[
α− p∗FF +

τγ

2β
nH

]
, q∗HF = q∗FF −

τ

2β

Consumer’s surplus

CSH =
α2n

2(β + γn)
− α

β + γn
· [p∗HH · nH + p∗FH · nF ]+

+
1

2β
·
[
(p∗HH)

2 · nH + (p∗FH)
2 · nF

]
− γ

2β · (β + γn)
· [p∗HH · nH + p∗FH · nF ]

2

Bilateral trade is profitable if τ < τtrade =
2αβ

2β + γn
.

For analytical proof see Appendix.

Substituting
λL

ϕ
for nH ,

(1− λ)L
ϕ

for nF and
L

ϕ
for n we obtain the equilibrium

prices and quantities for the Bilateral Trade Equilibrium. We focus on the Home
city only, considerations for Foreign city are similar, mutatis mutandis. Without
loss of generality, we may assume that L ≤ lmax(mH), which implies, in particular,
wC∗

H (1) ≥ CC
u (1). It allow us to consider the whole unit interval (0, 1) as a set of

admissible values for λ instead of truncation (0, lmax(mH)/L).
Bilateral trade changes magnitudes of wage, consumer’s surplus and indirect

utility in comparison to autarchy case. To discriminate these cases, we add τ to
notions of values, which are affected by trade. Recall that urban costs Cu(λ) does
not depend on τ . The following results are well-known (see, for example, Ottaviano
et al. (2002) and Cavailhès et al. (2007)).

Lemma 3. Home Equilibrium wage

wC∗
H (λ, τ) =

βϕL

(2βϕ+ γL)2

[(
α+

τγL

2βϕ
(1− λ)

)2

· λ+

(
(α− τ)− τγL

2βϕ
(1− λ)

)2

· (1− λ)
]

(19)
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is strictly concave function, increasing at λ = 0.
Home Consumer’s Surplus

CSH(λ, τ) =
α2L

2(βϕ+ γL)
− αL

βϕ+ γL
· [p∗HH · λ+ p∗FH · (1− λ)] +

+
L

2βϕ
·
[
(p∗HH)

2 · λ+ (p∗FH)
2 · (1− λ)

]
− γL2

2βϕ · (βϕ+ γL)
·[p∗HH · λ+ p∗FH · (1− λ)]2

(20)
is strictly increasing and concave function of λ.

Proof is straightforward (though tedious) from Lemma 2.

Proposition 7. i) There exists 0 < τ∗ < τtrade such that for all τ ∈ (0, τ∗) in-
equality wC∗(λ) > Cu(λ) holds for all λ ∈ (0, 1).

ii) There exists 0 < τ∗∗ < τtrade such that for all τ ∈ (0, τ∗∗) indirect utility
with trade

VH(λ, τ) = CSH(λ, τ) + wC∗
H (λ, τ) − CC

uH(λ)

exceeds the corresponding utility under autarchy VH(λ) = CSH(λ) + wC∗
H (λ) −

CC
uH(λ) for all λ ∈ (0, 1).

For analytical proof see Appendix. Typical results of simulation are presented at
Figure 5.

Fig. 5: Autarchy and Trade

Remark 6. Proposition 7(i) implies that sufficiently free trade cancels the lower
bound of city size lmin, i.e. small cities could survive, trading with the larger ones.
It looks like small city became quasi-SBD for large one, replacing communication
cost with trade cost. On the other hand, trade cannot cancel the upper bound,
or maximum city capacity. Thus, all considerations endogenous SBD number from
subsection 3.2 are still valid. This proposition cannot be generalized for all τ ∈
(0, τtrade). Computer simulations show that for τ sufficiently close to τtrade both
statements, (i) and (ii), are violated.
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5. Conclusion

Paradigm of linear city is well suited for both actual “long narrow cities” and mono-
centric “two-dimensional”, because in this case location may be characterized by
scalar value – distance from Central Business District. In case of polycentricity –
especially, with multiple Secondary Business Districts – linear model can’t include
all range of possibilities, being limited at most by two SBDs. Two-dimensional
polycentric model, presented in this paper, lacks this disadvantage, while it is still
tractable and intuitive. The results obtained in presented paper are of two kinds:
some of them are common for both linear and two-dimensional models, while other
are specific for two-dimensional model with several Secondary Business Districts.
We discuss here these results, focusing on the specific ones.

Proposition 2 on Existence and Uniqueness of equilibrium CBD share implies
that polycentric structure may exists only if population of city exceeds the certain
threshold, i.e., too small city cannot bear the burden of polycentricity. This natural
result is not 2D specific, nevertheless, it contains the statement that city with popu-
lation beyond this threshold, could have any number of SBDs. Moreover, increasing
in this number implies that per capita urban costs strictly decrease (see Proposition
3). It results in increasing (ceteris paribus) of disposable income and indirect utility
of the city residents, therefore, developing of the inner city structure may be an
important policy instrument.

It is obvious, that positiveness of disposable income is necessary condition for city
residents. One of results obtained in this paper is that disposable income is positive
if and only if city population is not less than strictly positive lower threshold a do
not exceeds the finite upper bound (see Proposition 5). It means that the effective
production (with increasing return to scale) cannot be developed on the base of too
small settlement, and, vice versa, very large city cannot survive because of too heavy
burden of urban costs. Increasing in SBD number shifts up the upper threshold (i.e.,
increases city capacity), therefore, extensive development of the city structure can
be an effective policy instrument for sufficiently large cities (see Proposition 5). It
cannot help, however, small cities to survive as industrial settlements.

Changes in city structure is mainly an instrument of inner policy, while change
in trade openness may results outwards. Moreover, sufficiently high level of trade
openness (i.e., sufficiently small trade costs) shifts down to zero the lower thresh-
old of city population (see Proposition 6). It means that under condition of almost
free trade, small cities could survive as satellites of large ones. Another benefit
of sufficiently free trade is that real wage (indirect utility) increases for residents
in all cities, not depending on their sizes (see Proposition 6), although this effect
is more significant for small cities. It increases the relative attractiveness for the
labor inflow. This inflow may result in overpopulation of city with given number
of SBDs. To avoid this overpopulation, City Developer may increase the current
SBD number, which increases city capacity. Mechanism of determining of endoge-
nous minimum SBD number was suggested in Section 3.3, which is consistent with
empirical evidences (see Proposition 7).
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APPENDIX

Proof of Proposition 1

The land supply in equilibrium should equalize (inelastic) land demand

π ·
(
rC
)2

+m · π ·
(
rS
)2

= l · 1,

where rC is radius of central zone, rS is radius of single suburb. On the other hand,
for given CBD’s share of firms, θ, the labor market clearing in CBD (without cross-
commuting) implies π ·

(
rC
)2

= θl. Therefore,

y = rC =

√
θl

π
, rS =

√
(1− θ)l
mπ

, ||xS || = rC + rS =

√
θl

π
+

√
(1 − θ)l
mπ

.

The budget constraint of an individual residing at point x and working in the CBD
implies that

EC(x) = wC +
ALR

l
− ΨC(x)− t||x||,

whereas the budget constraint of an individual working in the SBD is

ES(x) = wS +
ALR

l
− ΨS(x) − t||x− xS ||.

Note that equalizing condition EC(x) ≡ ES(x) ≡ const implies ΨC(x) = A1− t||x||,
ΨS(x) = A2 − t||x − xS ||, where A1, A2 do not depend on x. On the other hand,
worker living at the border of the CBD residential area (i.e., at the point y = rC

of the SBD residential area closest to CBD, see Figure 1b) is indifferent to the
decisions of working in the CBD or in the SBD. Moreover, for the border location
y an identities ΨC(y) = ΨS(y) = 0 hold, because there is no difference for landlord
where to rent out this plot of land: to Central city, to Suburb or for agricultural
use. Therefore,

A1 = ty = t

√
θl

π
, A2 = t · (xS − y) = t

√
(1 − θ)l
mπ

.

As result, we obtain

ALR

l
=

1

l

∫

X

R(x)dx =
t

3
·
√
l

π

[
θ3/2 +

(1 − θ)3/2√
m

]
.

Note that no need to integrate actually this function. We may simply apply the

well-known formula of the cone volume V =
1

3
πh · r2, where h is a hight and r is a

radius of the base of cone.
Moreover, an identity EC(y) − ES(y) = 0 implies wC − wS = A1 − A2 =

t ·
(√

θl

π
−
√

(1− θ)l
mπ

)
. It means that the difference in the wages paid in the

CBD and in the SBD compensates exactly the worker for the difference in the
corresponding commuting costs. The wage wedge wC − wS is positive as long as

θ >
1

1 +m
, thus implying that the size of the CBD exceeds the size of each SBD.
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Proof of Proposition 2

There is one-to-one correspondence between θ ∈ [0, 1] and α ∈ [0,
π

2
] given by

θ = cos2 α. Substituting it into equation

ϕt

√
θl

π
= K + ϕt

√
(1 − θ)l
mπ

we obtain, after simple transformations, the following one

F (α, l,m, t) := cosα− sinα√
m
− K

√
π

ϕt
√
l
= 0. (21)

Note that,
K
√
π

ϕt
√
l
< 1 ⇐⇒ l > lP =

πK2

ϕ2t2

and
∂F

∂α
= − sinα− cosα√

m
< 0.

Consider three possible cases:
i) l < lP then F (α, l,m, t) < (cosα − 1) − sinα√

m
< 0 and equation (21) has no

roots.
ii) l = lP then F (α, l,m, t) = (cosα − 1) − sinα√

m
= 0 if and only if cosα = 1,

which implies θ∗ = 1.

iii) l > lP then F (0, l,m, t) = 1−0−K
√
π

ϕt
√
l
> 0 and F (

π

2
,m, l) = 0− 1√

m
− K

√
π

ϕt
√
l
<

0. Thus there exists unique root α∗ ∈
[
0, π2

]
of equation(21) and θ∗ = cos2 α∗.

Accordingly to Theorem on Implicit Function Derivative, we obtain

∂α∗

∂l
= − ∂F/∂l

∂F/∂α
=

K
√
π · l− 3

2

2ϕt(sinα+ cosα√
m

)
> 0.

It implies that θ∗(l) = cos2 (α∗(l)) is decreasing function. Similarly,

∂α∗

∂m
= −

∂F
∂m
∂F
∂α

=
sinα ·m− 3

2

2(sinα+ cosα√
m

)
> 0,

thus θ∗(m) = cos2 (α∗(m)) is also decreasing function. Furthermore,

∂α∗

∂t
= − ∂F/∂t

∂F/∂α
=

K
√
π · l− 1

2

ϕt2
(
sinα+ cosα√

m

) > 0,

thus θ∗(t) = cos2 (α∗(t)) is also decreasing function with respect to t. Finally,

∂α∗

∂K
= − ∂F/∂t

∂F/∂α
= −

√
π

ϕt
√
l ·
(
sinα+ cosα√

m

) < 0,

thus θ∗(t) = cos2 (α∗(t)) increases with respect to t.
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To obtain the limit value of θ∗ is sufficient to note that equation (21) for l →∞,
t→∞, K → 0 transforms into

cosα− sinα√
m

= 0

which is equivalent to

m · cos2 α = sin2 α = 1− cos2 α,

implying θ∗ = cos2 α∗ =
1

1 +m
. On the other hand, K → ∞ implies lP → ∞,

therefore m = 0 and θ∗ = 1 is a unique outcome.

Proof of Proposition 3

Let y(l) = θ∗(l) · l, then y is an implicit function defined by equation

G(y, l) =
√
y − 1√

m

√
l − y − K

√
π

ϕt
= 0

which is equivalent to equation (15). Thus

∂(θ∗(l) · l)
∂l

= −
(
∂G

∂l

/
∂G

∂y

)
=

√
y√

m(l − y) +√y
> 0,

moreover
∂θ∗

∂l
< 0 by Proposition 2. It implies that function

CC
u (l,m, t) =

2t

3

√
θ∗(l,m, t) · l

π
+
K

3ϕ
· (1 − θ∗(l,m, t)).

increases with respect to l. Let’s prove that CC
u (l) is continuously differentiable at

l = lP =
πK2

ϕ2t2
. Indeed, for all l < lP the urban cost function CC

u (l) =
2t

3

√
l

π
, hence

∂CC
u

∂l
(lP − 0) =

ϕt2

3πK
.

Note that θ∗(lP ) = 1 and

∂(θ∗(l) · l)
∂l

(lP + 0) =

√
lP√

m(lP − lP ) +
√
lP

= 1,

on the other hand,

∂(θ∗(l) · l)
∂l

(lP + 0) = lP
∂θ∗

∂l
(lP + 0) + θ∗(lP ).

It implies that
∂θ∗

∂l
(lP + 0) = 0, therefore

∂CC
u

∂l
(lP + 0) =

2t

3
·
∂

(√
θl

π

)

∂l
(lP + 0) =

ϕt2

3πK
=
∂CC

u

∂l
(lP − 0).
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Recall that for l ≤ lP the urban costs CC
u =

2t

3

√
θl

π
, therefore

∂CC
u

∂m
≡ 0.

Moreover, for l > lP

∂CC
u

∂m
=
∂CC

u

∂θ

∂θ∗

∂m
,

where
∂θ∗

∂m
< 0 by Proposition 2 and

∂CC
u

∂θ
=

t

3
√
θ

√
l

π

(
1−
√
πK

ϕt
√
l

√
θ

)
> 0

because l > lP =
πK2

ϕ2t2
and θ < 1. Therefore

∂CC
u

∂m
=
∂CC

u

∂θ
· ∂θ

∗

∂m
< 0.

Moreover, θ∗(lP ) = 1, hence

∂CC
u

∂θ
(lP + 0) =

t

3

√
lP

π

(
1−

√
πK

ϕt
√
lP

)
= 0,

which implies that

∂CC
u

∂m
(lP + 0) =

∂θ∗

∂m
· ∂C

C
u

∂θ
(lP + 0) = 0,

i.e. the urban cost function is continuously differentiable with respect to m.
Let y(t) = θ∗(t) · t2, then y is an implicit function defined by equation

H(y, t) =
√
my −

√
t2 − y − K

√
mπ

ϕ
√
l

= 0

which is equivalent to equation (15). Moreover,

∂H

∂y
=

√
m

2
√
y
+

1

2
√
t2 − y

> 0,
∂H

∂t
= − t

2
√
t2 − y

< 0,

therefore
∂y

∂t
= −

(
∂H

∂t

/
∂H

∂y

)
> 0.

It implies that function t ·
√
θ∗(t) =

√
y(t) increases with respect to t, as well as

1− θ∗(l,m, t). Therefore, urban costs function

CC
u (l,m, t) =

2t

3

√
θ∗(l,m, t) · l

π
+
K

3ϕ
· (1− θ∗(l,m, t))

also increases with respect to t, increase with respect to t.
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Proof of Proposition 5

Note that wage wC∗(l) is bounded function, while urban costs increase unrestrict-
edly with respect to l, hence, wC∗(l) − CC

u (l,m) < 0 for all sufficiently large l.

Moreover, wC(0) = CC
u (0,m) = 0, while

∂wC∗

∂l
(0) =

α2

2
<
∂CC

u

∂l
(0,m) = +∞, thus

wC∗(l)−CC
u (l,m) < 0 for all sufficiently small l > 0. It implies that set of l guaran-

teeing “the surviving condition” wC∗(l)−CC
u (l,m, t) ≥ 0 is subset of some interval

[lmin(m, t), lmax(m, t)], where lmin(m, t) = inf
{
l > 0 | wC∗(l)− CC

u (l,m, t) ≥ 0
}
>

0 and lmax(m, t) = sup
{
l > 0 | wC∗(l)− CC

u (l,m, t) ≥ 0
}
<∞. It remains to prove

that this subset is nonempty and inequality wC∗(l) − CC
u (l,m, t) ≥ 0 holds for all

l ∈ [lmin(m, t), lmax(m, t)], at least for t ∈
(
0,
K

ϕ

√
πγ

2βϕ

)
.

Note that

t <
K

ϕ

√
πγ

2βϕ
⇒ t <

3α2

16γ

√
πγ

2βϕ
⇐⇒

wC∗(l∗) =
α2

8γ
>

2t

3

√
πγ

2βϕ
= CC

u (l∗, 0, t) ≥ CC
u (l∗,m, t)

for all m ≥ 0, where l∗ =
2βϕ

γ
is the “maximum wage” population size. It implies

that “surviving” set of city population is non-empty and lmax(m, t) > l∗. Moreover,

inequality
K

ϕ
<

3α2

16γ
ensures that equation

wC∗(l) =
α2βϕl

(2βϕ+ γl)
2 =

2K

3ϕ

has two real positive roots

l1,2 =

(
3α2ϕ2β

2K − 4βγϕ
)
∓
√(

3α2ϕ2β
2K − 4βγϕ

)2
− 16β2γ2ϕ2

2γ2

and wC∗(l) >
2K

3ϕ
if and only if l1 < l < l2. In particular, l∗ =

2βϕ

γ
∈ (l1, l2)

because wC∗(l∗) = maxwC∗.
Note that

t <
K

ϕ

√
πγ

2βϕ
=
K

ϕ

√
π

l∗
⇒ t <

K

ϕ

√
π

l1
⇐⇒ lP =

πK2

ϕ2t2
> l1.

Let l1 < lP < l2 then inequality wC∗(lP ) >
2K

3ϕ
= CC

u (lP ,m) holds, which implies

that lmin(m, t) < lP . On the other hand, if lP ≥ l2 > l∗ then wC∗(l∗) >
2K

3ϕ
=

CC
u (lP ,m) > CC

u (l∗,m), which also implies that lmin(m, t) < lP .
Assume at first that m = 0 and consider set of positive roots of equation

wC∗(l) =
α2βϕ · l

(2βϕ+ γl)2
= CC

u (l, 0, t) =
2t

3

√
l

π
.
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Dividing both sides by
√
l and substituting x =

√
l we obtain the equivalent equation

3α2βϕ
√
π ·x = 2t

(
2βϕ+ γx2

)2 ⇐⇒ 8tβ2ϕ2−3α2βϕ
√
π ·x+8tβγϕx2+γ2x4 = 0.

Sign of coefficients changes twice, hence, this equation has either 2, or 0 positive
roots, due to Descartes’ rule of signs. On the other hand, wC∗(l∗) > CC

u (l∗, 0, t) and
wC∗(l) < CC

u (l, 0, t) for sufficiently large t, i.e., there is at least one positive root.
It implies that these roots are lmin(0, t) and lmax(0, t), respectively, and wC∗(l) −
CC

u (l, 0, t) ≥ 0 if and only if l ∈ [lmin(0, t), lmax(0, t)]. Moreover, it was proved that
lmax(0, t) > l∗ and lmin(0, t) < lP .

Now let m > 0, then CC
u (l,m) ≡ CC

u (l, 0) for all l ∈ [0, lP ] and CC
u (l,m) >

CC
u (l, 0) for all l > lM by Proposition 2. Let’s show that equation wC∗(l) =

CC
u (l,m, t) also has two positive roots lmin(m, t) and lmax(m, t), such that wC∗(l) ≥

CC
u (l,m, t) if and only if l ∈ [lmin(m, t), lmax(m, t)]. Indeed, CC

u (l,m, t) ≡ CC
u (l, 0, t)

for all l ≤ lP , thus lmin(m, t) ≡ lmin(0, t) ∈ (0, lP ). There is no roots in interval
(lmin(0, t), lmax(0, t)), because CC

u (l,m, t) ≤ CC
u (l, 0, t) < wC∗(l). Therefore, there

is a unique root of equation wC∗(l) = CC
u (l,m, t) on interval (lmax(0, t),+∞), be-

cause wC∗(l) strictly decreases for all l > lmax(0, t) > l∗, while CC
u (l,m, t) strictly

increases on (0,+∞). This completes the proof of proposition.

Proof of Proposition 7

Note that

wC∗
H (0) =

α2βϕL

(2βϕ+ γL)2

(
1− τ · 2αβϕ+ γL

2αβϕ

)2

> 0 = CC
u (0)

for all τ < τtrade =
2αβϕ

2βϕ+ γL
. Moreover, substituting τ = 0 into (19) we obtain

wC∗
H (λ) ≡ α2βϕL

(2βϕ+ γL)2
= wC∗

H (1) ≥ CC
uH(1) > CC

uH(λ)

for all λ ∈ (0, 1), because L < lmax(mH). Thus, for all sufficiently small τ < τ∗

inequality wC∗
H (λ) > CC

uH(λ) holds for all λ ∈ (0, 1).
Let

∆(λ, τ) = VH(λ, τ) − VH(λ) =
(
wC∗

H (λ, τ) + CSH(λ, τ)
)
−
(
wC∗

H (λ) + CSH(λ)
)
.

We are about to prove that ∆(λ, τ) > 0 for all λ ∈ (0, 1) and sufficiently small
τ > 0. Note that ∆(1, τ) = 0 and

∆(0, τ) =
L
(
2ϕLβγ(α− 3τ)(α − τ) + 6ϕ2β2(α− τ)2 + L2γ2τ2

)

4ϕβ(2ϕβ + Lγ)2
.

Quadratic equation

2ϕLβγ(α− 3τ)(α − τ) + 6ϕ2β2(α− τ)2 + L2γ2τ2 = 0

has no real solutions with respect to τ , while ∆(0, 0) > 0. It implies that ∆(0, τ) >
0 = ∆(1, τ) for all τ . Now we are about to prove that ∆(λ, τ) is decreasing function.
Note that

∂∆

∂λ
(λ, 0) = −ϕLα

2β(6ϕβ + Lγλ)

2(2ϕβ + Lγλ)3
< 0

for all λ ∈ (0, 1). Thus, for sufficiently small τ < τ∗∗ inequality
∂∆

∂λ
(λ, τ) < 0 holds

for all λ.
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