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Abstract In the paper we treat the problem of minimizing and sharing
joint transportation cost in multi-agent vehicle routing problem (VRP) on
large-scale networks. A new approach for calculation subadditive character-
istic function in multi-period TU-cooperative vehicle routing game (CVRG)
has been developed. The main result of this paper is the method of con-
structing the characteristic function of cooperative routing game of freight
carriers, which guarantees its subadditive property. A new algorithm is pro-
posed for solving this problem, which is called direct coalition induction
algorithm (DCIA). Cost sharing method proposed in the paper allows to
obtain sharing distribution procedure which provides strong dynamic sta-
bility of cooperative agreement based on the concept of Sub-Core and time
consistency of any cost allocation from Sub-Core in multi-period CVRG.

Keywords: VRP, vehicle routing problem, vehicle routing games, heuristics,
multi-period cooperative games, dynamic stability, time consistency.

1. Introduction

When we study collaboration in cargo transportation and routing we have to address
the following questions partly discussed in (Agarwal et al., 2009):

– How does one evaluate the maximum potential benefit from collaboration of
carriers forming coalitions? However, to obtain such a benefit value is not easy
because the underlying computational problem is NP hard.

– How should a membership mechanism be formed to be stable during sufficiently
long period of time, and what are the desired properties that such a mechanism
should possess? For logistics applications, this involves issues related to the
design of the service network and utilization of assets, such as the allocation of
ship capacity among collaborating carriers, assignment and scheduling vehicles
on routes.

– How should the benefits achieved by collaborating be allocated among the mem-
bers in a fair way? In the cargo transportation routing setting we investigate
what does a fair allocation mean and how such an allocation may be achieved in
the context of day-to-day operations to be time consistent during transportation
process?

– How to overcome these disadvantages?

Dynamic cooperative game theory can provide us with models of coordination
carrier’s actions in order to reduce transportation costs. Cooperation issues in vehi-
cle routing models are still an insufficiently studied problem. Possible applications
of the cooperative game theory for such problems are demonstrated in the papers
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(Ergun et al., 2007; Krajewska et al., 2008). The most important object under in-
vestigation of the cooperative game theory is the characteristic function of the game
which reflects assessment of guaranteed values of total costs of participants united
in a coalition. If one constructs a mathematical model of cooperation in practical
tasks, it is important to select the method of such function building. Computational
difficulties of finding the values of the characteristic function in a cooperative vehi-
cle routing game (CVRG) are caused by the large size of the problem, which makes
it unacceptable to use exact methods for solving wide class of routing problems
with a comparatively small number of customers to be served (Baldacci et al., 2012;
Kallehauge, 2008). At the same time, using of heuristic algorithms in the general
case does not allow to guarantee fulfillment of the subadditive property of the char-
acteristic functions, which has crucial importance for achievement of cooperative
agreements and total cost reduction. Considering dynamic cooperation models, it
is expedient to use imputation distribution procedures (IDP) which were first pro-
posed by L.A.Petrosyan, as well as cooperation stability principles formulated by
L.A.Petrosyan and N.A.Zenkevich (2009).

In our paper we propose mathematical setting of the freight carriers cooperation
problem, a new approach to building the characteristic function of the multi-period
CVRG and algorithm for constructing cost sharing scheme providing strong dy-
namic stability of the Sub-Core to meet condition of time consistency (dynamic
stability) of cooperative agreements.

2. General Problem Statement

In this paper it is presumed that in the transportation service market there are sev-
eral agents (companies) engaged in cargo transportation on a network. Each agent
has a great number of customers located in nodes of network and its own resources,
such as a depot and a non-empty fleet of vehicles. These companies consider vari-
ous options of cooperation to reduce transportation costs. Each coalition meets the
demand of customers for transportation services of all companies involved in coop-
eration using consolidated resources. Thus, within cooperative service, customers
can be redistributed between participants in each coalition. In its turn, customers
exchange between agents within a coalition would extend the set of feasible routes of
consolidated fleet and provide additional possibility to improve current solution in
comparison to non-cooperative case. On the other hand, when agents cooperate, the
total number of customers that has to be dispatched at once to vehicles substantially
increases along with the computational complexity of finding routes minimizing the
total transportation costs of the coalition. Therefore, in operative decision-making
environment there is a lack of time for quick assignment of customers to optimal
routes, since this problem belongs to the class of NP-hard problems.

To find a good solution for vehicle routing problem with several depots the
adaptation of well-known metaheuristic algorithm proposed by Ropke and Pisinger
(2006) may be used for each coalition. Once the routes with minimum transporta-
tion costs for each possible coalition are found, the characteristic function value of
the cooperative routing game can be calculated. To ensure that the agents have the
motivation to form a coalition, the characteristic function has to satisfy subadditiv-
ity condition. In general, heuristic algorithms that find minimum of transportation
costs of a coalition do not guarantee this property. Therefore, a special metaheuris-
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tic algorithms providing subadditive property of the characteristic function has to
be proposed for VRP.

The solution of VRP is a set of vehicle routes, such that all customers are
visited exactly once, each route starts and ends in a depot, the length of each route
is limited to predetermined value. Additionally, in the vehicle routing problems with
time windows each customer has specified service time and must be visited within
the specified time interval.

Generally, the objective of such problems is to minimize the total length of
routes. In real-life cases the number of used vehicles has more significant impact on
the total transportation costs, because the cost of using additional vehicle appears
to be much higher than benefit from shorter routes.

3. Mathematical Model of Static CVRG

Let N be a set of companies engaged in transportation service in the same transport
network. Each company i ∈ N provides transportation service to the given set
of customers Ai. Each customer is served by only one company. Companies are
considering possibilities of cooperation to reduce total transportation costs. Let
S ⊆ N be a proper coalition of companies (players or agents in the static CVRG
with transferable utilities) to be formed. The total cost of the coalition S consists
of two parts: costs of used vehicles and direct transportation costs. In this paper
two assumptions are made concerning costs:

– direct transportation cost is linear function of the total length of routes;
– fleet of vehicles of coalition S includes homogenous vehicles of all companies from

this coalition, and each vehicle has fixed utilization price. It is also assumed that
each coalition has unlimited number of identical vehicles and pays only for those
that are used in transportation service.

Thus, the cost function may be represented as follows:

cost(S, pS) = aS ·NT (S, pS) + bS · TTC(S, pS),

where
pS ∈ PS — feasible routing plan for the vehicles of the coalition S, PS — the

finite set of feasible routing plans of the collation S;
aS — the cost of one vehicle utilization for the coalition S;
NT (S, pS) — number of vehicles used by the coalition S at the particular routing

plan pS ;
bS — cost of one unit of the length for the coalition S;
TTC(S, pS) — the total length of routes of the coalition S at the particular

routing plan pS .
For the sake of simplicity, it is assumed that each company has only one depot.

It is also assumed that companies may redistribute transportation costs among the
collaborators using some cost sharing procedure.

In order to design subadditive characteristic function of CVRG consider for
coalition S ⊆ N the costs minimization problem over the set of feasible vehicle
routes

minpS∈PS
cost(S, pS) (1)
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Suppose the exact minimum value of the problem (1) is equal to copt(S). In the
case of using heuristic algorithm for solving this problem the obtained value of the
minimum ch(S) will be not less than copt(S), that is

copt(S) ≤ ch(S) (2)

For two disjoint coalitions S ⊆ N and T ⊆ N , for any pair of feasible routing plans
pS ∈ PS , pT ∈ PT , the routing plan (pS , pT ) consisting of the union of routing plans
pS and pT is feasible in the routing problem for the joint coalition of carriers S ∪T ,
that is (pS , pT ) ∈ PS∪T , moreover PS ∪ PT ⊆ PS∪T and AS ∪ AT = AS∪T , then it
is clear that the following inequality holds

copt(S ∪ T ) ≤ copt(S) + copt(T )

Taking into account the inequality (2) we have

copt(S ∪ T ) ≤ ch(S) + ch(T ) (3)

Last inequality can be rewritten for the arbitrary coalition L ⊆ S and the corre-
sponding values ch(L) and ch(S/L)

copt(S) ≤ ch(S/L) + ch(L) (4)

We define the value of characteristic function c(S) in cooperative CVRG in the
following way

c(S) = min{minL⊂S{c(S/L) + c(L)}, ch(S)} (5)

One can notice that if we start calculation of the characteristic function c(S) with
one-element coalitions and then gradually increase the size of coalitions by 1 until
we obtain the value for the grand coalition N , the characteristic function designed
by using (5) would fulfill the condition of the subadditive, i.e.

c(S ∪ T ) ≤ c(S) + c(T ), S ⊆ N, T ⊆ N, S ∩ T = ∅ (6)

We call this algorithm for constructing characteristic function of TU-cooperative
CVRG in the form (5) the direct coalition induction algorithm (DCIA). Thus, the
following theorem holds.

Theorem 1. The characteristic function c(S) defined by (5) of static TU-cooperative
VRG and calculated using direct coalition induction algorithm satisfies subadditivity
condition (6).

4. Example of Cooperative Routing

To illustrate the algorithm implementation we consider one artificial problem of
cooperation with four transport companies D1, D2, D3, D4 having demand for
cargo transportation from 54, 49, 44, 53 customers. The example has been generated
using one benchmark (R2_2_1) proposed by Gehring and Homberger to compare
heuristic algorithms that solve vehicle routing problems with time windows.

Thus, in case of full cooperation, the transportation companies together have to
service 200 customers. Clients of each company are distributed evenly throughout
the nodes of network where the servicing is provided. And they have wide time
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service windows (the time interval during which servicing is possible) which allows
to use less vehicles, but at the same time increases the computational complexity
of the problem. Use of a little number of vehicles is also facilitated by big carrying
capacity thereof as compared to the customers’ demand. The total costs will be
calculated assuming that the value of use of one vehicle is 5000 condition monetary
units, and the value of one unit of the route length is 5 conditional monetary units.
The algorithm proposed by Ropke and Pisinger (2006) was used for solving corre-
sponding routing problems. As a basic problem, this algorithm considers the more
general problem, the particular case of which is the problem in question. In order
to find efficient routes several basic heuristics were united in one algorithm with
the help of the simulated annealing. One part of these heuristics removes several
customers from the solution, and the other inserts them into the solution again. The
adaptive mechanism tracks the performance of basic heuristics and chooses at each
step of iterations two certain heuristics using obtained statistics of their previous
effectiveness. Such mechanism is based on the special genetic algorithm. To diver-
sify search process and enhance algorithm robustness the noise value is added to
the value of objective function. Table 1 shows the solution of respective costs mini-
mization problems for each coalition and values of the game characteristic function
calculated using the direct coalition induction algorithm.

Table 1: Solutions of costs minimization problems and values of characteristic function

Coalition Vehilces Length Characteristi function value

(D1) 3 2043,4 25217,05

(D2) 3 2013,3 25066,46

(D3) 2 1852,8 19263,80

(D4) 2 2245,9 21229,39

(D1, D2) 3 3879,6 34398,07

(D1, D3) 4 2750,9 33754,39

(D1, D4) 3 3573,3 32866,71

(D2, D3) 3 2949,2 29745,90

(D2, D4) 3 3130,7 30653,36

(D3, D4) 4 2502,3 32511,41

(D1, D2, D3) 4 4127,5 40637,45

(D1, D2, D4) 4 4166,2 40830,99

(D1, D3, D4) 5 3569,8 42848,97

(D2, D3, D4) 4 3570,8 37853,79

(D1, D2, D3, D4) 5 4575,6 47878,11

As one can see in Table 1, the sum of minimum costs of companies, if there is
no cooperation, is equal to 90776.70. The minimum total costs in the case of coop-
eration are equal to 47878.11. Thus, the savings from cooperation in this example
are about 47 per cent.
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To share the total costs among players Shapley value is used. As Table 2 shows,
considerable reduction of costs of the companies can be achieved in comparison to
their minimum costs prior to cooperation.

It should be noted that reduction of costs of each of the companies under coop-
eration after redistribution of the total costs using the Shapley value was 43 to 54
percent.

Table 2: Solution for maximum coalition and cost sharing using Shapley value

Coalition Shapley
value

Minimum costs
without cooperation

Cost reduction
coefficient

(D1) 14382,5 25217,0 0,43
(D2) 11630,3 25066,5 0,54
(D3) 10571,1 19263,8 0,45
(D4) 11294,1 21229,4 0,47

5. Dynamic Model of CVRG

Suppose CVRG has duration from 0 to T . Let the interval [0, T ] be divided by
periods t0, t1, . . . , tm. That is [0, T ] = (t0, t1, . . . , tm). Cost functions of players for
the period [0, T ] and set of feasible routing plans (strategies) are determined in
the same way like in section 3. It is assumed that for CVRG starting from origin
t0 the characteristic function c(S, 0) is calculated by the direct coalition induction
algorithm.

For further calculations the following notation will be used:
phN (0) — is the optimal routing plan of grand coalitionN in original game, which

calculated by direct coalition induction algorithm and minimizes the total costs of
the coalition for the periods t0, t1, . . . , tm;

phS(0) — is the optimal routing plan of coalition S in origin game, which is
calculated by direct coalition induction algorithm and minimizes the total costs of
the coalition for the periods t0, t1, . . . , tm, S ⊂ N ;

phS(tk) — profile of the optimal routing plan of the coalition S in period tk,
S ⊆ N , k = 1, 2, . . . ,m;

phN (0) = (phN (t0), . . . , p
h
N (tm)) — vector of profiles of optimal routing plan;

phN,i(tk) — optimal routing plan for vehicles of company i ∈ N in period tk as
part of optimal plan phN (tk);

c(S, k, phN (t0), . . . , p
h
N (tk−1)) — value of minimal total costs of coalition S ⊆

N after implementation the optimal routing plan calculated by direct coalition
induction algorithm.

One of the important issues of successful implementation of the routing plan
phN(0) = (phN (t0), . . . , p

h
N(tm)) during all periods of the game is optimality of each

restriction of the original optimal plan phN (0) on the set of periods tk, tk+1, . . . , tm
for k = 1, 2, . . . ,m. We denote this restriction of the plan phN (0) by phN (k)) =
(phN (tk), . . . , p

h
N(tm)). When restriction of original optimal plan phN(0) appears to

be not optimal for at least one period tk, k = 1, 2, . . . ,m, we call this plan time in-
consistent. Notice that unlike Bellman optimality principle it might be happened in
routing optimization because of using heuristics instead of exact methods. To make
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an attempt to overcome time inconsistency of the plan formed by heuristic algorithm
we propose to realize along originally calculated plan phN(0) = (phN (t0), . . . , p

h
N (tm))

the following iterative coalition induction algorithm (ICIA).
Iterative coalition induction algorithm.
Step 1. Put k = 0.
Step 2. Assume that plan phN(k) has been implemented within the period tk.

We exclude nodes visited in the period tk from the set of customerâĂŹs nodes
and consider current CVRG(tk+1) under new conditions for the set of customers
to be served in periods tk+1, . . . , t(m) and new depots location taking into account
current positions of vehicles at the end of routs executed in period tk. If heuristic
algorithm proposes new routing plan (pN (k + 1)) = (pN (tk+1), . . . , pN (tm)) in cur-
rent CVRG(tk) which gives less total costs for the grand coalition N for periods
tk+1, . . . , tm than the plan phN(k+1) = (phN (tk+1), . . . , p

h
N(tm)) we make the follow-

ing substitution to improve the plan considered for implementation before period
tk+1:

phN (0) =

{
(phN (t0), . . . , p

h
N(tk)) – within the periods t0, t1, . . . , tk

(pN (tk+1), . . . , pN (tm) – within the periods tk+1, . . . , tm
(7)

And move to step 2 putting k = k + 1 and, if k < m. If plan ((pN (k + 1)))
in current CVRG(tk) proposed by heuristic algorithm coincides with phN (k + 1) or
gives bigger value of total costs for grand coalition put k = k + 1, we do not make
substitution (7) and move to step 2, if k < m. In any case, if k = m go to step 3.

Step 3. Stop the procedure and use for implementation plan
phN (0) = (phN (t0), . . . , p

h
N (tm)) which has been gotten on the last iteration.

Let phN (0) = (phN (t0), . . . , p
h
N (tm)) be the optimal routing plan obtained by ad-

justment of the initial optimal plan with the help of the ICIA. For each period
t1, . . . , tm along optimal routing plan phN (0) = (phN (t0), . . . , p

h
N (tm)) we can calculate

values of characteristic function c(S, k, phN (t0), . . . , p
h
N (tk−1)) for current CVRG(tk)

using DCIA. Characteristic function for CVRG(t0) is c(S, 0). We can represent value
of the characteristic function for the grand coalition in CVRG(t0)

c(N, 0) =
n∑

i=1

m∑

k=0

cost(i, phN,i(tk)) = c(N, phN (0))

When all players form grand coalition N , for optimal routing plan phN(0) the set
of imputations in the cooperative game c(S, 0, phN(0)) = c(S, 0) will be determined
as follows

I(0, phN (0)) = {α = (α1, α2, . . . , αn) : αi ≤ c({i}, 0), i = 1, . . . , n,

n∑

i=1

αi = c(N, 0)}

In this paper the Sub-Core was used as a solution of the cooperative game (Zakharov
and Kwon, 1999; Zakharov and Dementieva, 2004).

Definition 1. Sub-Core of the cooperative game c(S, 0, phN(0)) is called the set

SC(c(S, 0, phN (0))) =
⋃

c0(0)∈C0(0)

SC(c(S, 0, phN(0)), c0(0)) (8)
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where

SC(c(S, 0, phN(0)), c0(0)) =

=
{
α = c0 − λ

(
n∑

i=1

c0i (0)− C(N, 0, phN (0))

)
,

λ = (λ1, λ2, . . . , λn) :

n∑

i=1

λi = 1, λi ≥ 0, i = 1, 2, . . . , n
}

and C0 is the set of solutions of the following maximization problem

max

n∑

i=1

ci

provided that ∑

i∈S

ci ≤ c(S, 0, phN (0)), S ⊂ N

We shall call the set C0(0) as the basis of Sub-Core, any vector
c0(0) = (c01(0), c

0
2(0), . . . , c

0
n(0)) ∈ C0(0) — as the basis imputation of the coopera-

tive game c(S, 0, phN(0)).

By the structure the Sub-Core is not empty if and only if the Core of cooperative
game with the characteristic function c(S, 0, phN(0)) is not empty, and necessary
and sufficient condition for the Sub-Core (and hence the Core) to be not empty is
fulfillment the following inequality

∑

i∈N

c0i (0) ≥ c(N, 0, phN ) (9)

Sub-Core in current CVRG(tk) is determined by the same way. Presume that
the Sub-Core SC(c(S, k, phN (t0), . . . , p

h
N(tk−1)), c

0(k)) is not empty for k = 1, . . . ,m.
Let αk = (αk

1 , α
k
2 , . . . , α

k
n) ∈ SC(c(S, k, phN (t0), . . . , p

h
N(tk−1))), k = 0, 1, . . . ,m, be

vectors of cost sharing in the current games c(S, k, phN (t0), . . . , p
h
N (tk−1)). In this

case costs of any coalition determined in the current game in accordance with the
vector αk will not exceed the values of the characteristic function for this coalition
for any value k = 0, 1, . . . ,m. Thus, there is no coalition interested in leaving the
agreement at any stage of the game, which means strong dynamic stability of the
Sub-Core. By analogy with the imputation distribution procedures (IDP) discussed
e.g. in paper (Petrosyan and Zenkevich, 2009), the cost sharing procedure (CSP)
βk = (βk

1 , β
k
2 , . . . , β

k
n) can be considered in the multistage cooperative game, where

βk
i = αk

i − αk+1
i , k = 0, 1, . . . ,m− 1, i ∈ N (10)

The crucial property of such procedure is fulfillment for any player i at any stage
of the game of the condition

m∑

j=k

βj
i = αk

i , k = 0, 1, . . . ,m,

that we call condition of individual costs balance of the player i ∈ N .
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According to the definition of the Sub-Core, the following equation is valid for
the vectors αk = (αk

1 , α
k
2 , . . . , α

k
n) of cost sharing in the current games

n∑

i=1

αk
i = c(N, k, phN (0)), k = 0, 1, . . . ,m

and taking into account (10), the following equation can be obtained

n∑

i=1

βk
i = c(N, k, phN (t0), . . . , p

h
N (tk−1))− c(N, k + 1, phN(t0), . . ., p

h
N (tk)),

k = 0, 1, . . . ,m− 1

This condition will be called as condition of collective balance of coalition costs in
the multistage cooperative game.

Presume that the numerical value βk
i determines the size of payoff of the player

i within the period tk to a Costs Clearing Center (CCC), which accumulates funds
for covering the costs of all players in the process of implementation of the routing
plan phN(0) selected for implementation by coalition N . Then the economic meaning
of the condition of individual costs balance will be, that the sum of payoffs of any
player to Costs Clearing Center during the entire game will be equal to the size of
costs, which player have to pay in accordance with the selected optimal distribution
α0 = (α0

1, α
0
2, . . . , α

0
n). And collective balance of coalitional costs will provide the

possibility of covering the costs of participants of the coalition N within the same
period, when these costs are made.

6. Example of Multi-Period CVRP

As illustration of the dynamic case, consider the static problem described earlier,
but assume now that the entire servicing time is divided into 3 equal periods.
All vehicles that are maintained in previous period by the grand coalition, begin
their movement in current period from the last serviced customer’s node. Each
company participating in one or another coalition may use additional vehicles which
begin their movement from the depot belonging to the company. The same heuristic
algorithm as in the static case (Ropke and Pisinger, 2006) is used for finding efficient
routes for CVRG in each period. To calculate characteristic function values given
in Table 3 we apply algorithms DCIA and ICIA.

Using the obtained values of the characteristic function find the basis of Sub-
Core for each period. In this case all three maximization tasks have the unique
solution, and thus the set C0 for each period contains only of one element.

It should be noted that Sub-Core will not be empty within each period due to
fulfillment of the condition (9). In order to find certain imputation belonging to
Sub-Core within each period, the value of each component of the vector λ was set
to 0.25. After that, values of vectors βk using the obtained sharing vectors were
calculated. The calculation results are given in Table 5.

Negativity of payment values means that a company does not make payment to
CCC within the respective period, but receives in this period compensation from
CCC. Analyzing the data of Table 5, it is become clear that conditions of individual
costs balance and collective costs balance in the three-period CVRG have been
fulfilled.
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Table 3: Values of characteristic function for three periods

Coalition The characteristic function
c(S, 0) c(S, 1) c(S, 2)

(D1) 25217,05 22268,11 13367,79
(D2) 25066,46 15418,88 12544,99
(D3) 19263,80 20099,82 12327,52
(D4) 21229,39 22199,77 12707,63
(D1, D2) 34398,07 29613,92 19046,92
(D1, D3) 33754,39 33180,69 24390,32
(D1, D4) 32866,71 34810,43 24110,87
(D2, D3) 29745,90 32592,22 19223,78
(D2, D4) 30653,36 33699,61 19324,51
(D3, D4) 32511,41 37683,95 23736,35
(D1, D2, D3) 40637,45 40119,31 24834,71
(D1, D2, D4) 40830,99 36572,44 20308,93
(D1, D3, D4) 42848,97 37133,72 29854,66
(D2, D3, D4) 37853,79 44562,17 24723,40
(D1, D2, D3, D4) 47878,11 38552,26 30364,98

Table 4: Basis of Sub-Core for three periods

Sub-Core basis
Period 1 Period 2 Period 3

Company 1 16203 8720 9725
Company 2 11208 15419 2782
Company 3 13226 15980 12328
Company 4 13420 12433 7802
All companies 54057 52552 32637

Table 5: Values of imputations and vectors βk

Period 1 Period 2 Period 3
α0 β0 α1 β1 α2 β2

Company 1 14658 9438 5220 -3937 9157 9157
Company 2 9663 -2256 11919 9705 2214 2214
Company 3 11681 -799 12480 720 11760 11760
Company 4 11875 2942 8933 1699 7234 7234
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7. Conclusions

The main result of this paper is the method of constructing the characteristic func-
tion of cooperative routing game of freight carriers, which guarantees its subadditive
property. A new algorithm is proposed for solving this problem, which is called di-
rect coalition induction algorithm (DCIA). To upgrade optimal routing plan and
values of characteristic function of grand coalition we develop iterative coalition
induction algorithm (ICIA) for dynamic CVRP. Both algorithms were built on the
basis of the combination of various heuristic algorithms which are appropriate for
solving large-scale VRP. For implementation of algorithms a special software has
been developed and used for solving sample examples.

Proposed cost sharing method allow to obtain sharing distribution procedure
which provide strong dynamic stability of cooperative agreement based on this
Sub-Core optimality principle and time consistency of the Sub-Core in multi-period
CVRG.
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