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Abstract TU-games with communication structure are cooperative games
with transferable utility where the cooperation between players is limited
by a communication structure represented by a graph on the set of players.
On this class of games, the Myerson value is one of the most well-known
solutions and it is the Shapley value of the so-called restricted game. In
this study we give another form of fairness axiom on the class of TU-games
with communication structure so that the Myerson value is uniquely char-
acterized by this fainess axiom with (component) efficiency, a kind of null
player property and additivity. The combination is similar to the original
characterization of the Shapley value.
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Cooperative game theory describes situations of cooperation between players.
A cooperative game with transferable utility, TU-game for short, expresses such
situations by a finite set of players and a characteristic function that assigns a
worth to any subset of players, a coalition. Players within a coalition can freely
divide the worth of the cooperation among themselves. The main focuses of TU-
games are investigating under which conditions the players cooperate to form the
grand coalition of all players and how to divide the worth of this grand coalition
into a payoff for each player.

A single-valued solution on a class of games assigns as an allocation a payoff
vector to each game which belongs to the class. Shapley (1953) introduces one of
the most well-known single-valued solution. The solution, the Shapley value, is the
average of all marginal vectors of a TU-game, where a marginal vector corresponds
to a payoff vector for a permutation on the player set. Each permutation can be seen
as an ordering of the players joining to from the grand coalition, and in the marginal
vector associated with a permutation each player gets as payoff the difference in
worth of the set of players preceding him in the permutation with and without him.
While being introduced, the Shapley value is characterized as the unique solution
on the class of TU-games that satisfies efficiency, additivity, null player property
and symmetry in Shapley (1953).

TU-games assume that any coalition can be formed to cooperate and gain its
worth of their cooperation, but in many economic situations there exist restrictions
which prevent some coalitions from cooperating. A TU-game with this kind of sit-
uation is firstly introduced by Myerson (1977) as a TU-game with communication
structure. It arises when the restriction is represented by an undirected graph in
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which the vertices represent the players and a link between two players shows that
these players can communicate and are able to cooperate by themselves.

One of the most well-known single-valued solutions on the class of TU-games
with communication structure is the Myerson value (Myerson (1977)), defined as
the Shapley value of the so-called Myerson restricted game. By Myerson (1977),
the Myerson value is characterized by (component) efficiency and fairness, fair in
the sense that if a link is deleted between two players, the Myerson value imposes
the same loss on payoffs for each of these two players. Other characterizations of
the Myerson value are given in Borm et al. (1992), Brink (2009) for the class of
TU-games with cycle-free communication structure.

In this study we give an alternative axiomatization of the Myerson value for
TU-games with communication structure. Our approach is to give another form of
fainess axiom so that the Myerson value is characterized by (component) efficiency,
a kind of null player property, additivity and a kind of fairness. The combination is
similar to the original characterization of the Shapley value by Shapley (1953).

This paper is organized as follows. Section 2 introduces TU-games with commu-
nication structure and the Myerson value. In Section 3 an axiomatic characterization
for the solution is given.

1. TU-games with communication structure and the Myerson value

A cooperative game with transferable utility, or a TU-game, is a pair (N, v) where
N = {1, . . . , n} is a finite set of n players and v : 2N → R is a characteristic function
with v(∅) = 0. For a subset S ∈ 2N , being the coalition consisting of all players in S,
the real number v(S) represents the worth of the coalition that can be maximially
achived, and can be freely distributed among the players in S. Let GN denote the
class of TU-games with fixed player set N . We often identify a TU-game (N, v) by
its characteristic function v.

A special class of TU-games is the class of unanimity games. For T ∈ 2N , the
unanimity game (N, uT ) ∈ GN has characteristic function uT : 2N → R defined as

uT (S) =

{
1 if T ⊆ S,
0 otherwise.

It is well-known that any TU-game can be uniquely expressed as a linear combina-
tion of unanimity games. Let (N,0) ∈ GN denote the zero game, i.e., 0(S) = 0 for
all S ∈ 2N .

A payoff vector x = (x1, ..., xn) ∈ Rn is an n-dimentional vector and it assigns
payoff xi to player i ∈ N . A single-valued solution on GN is a mapping ξ : GN → Rn

which assigns to every TU-game (N, v) a payoff vector ξ(N, v) ∈ Rn.
The most well-known single-valued solution on the class of TU-games is the

Shapley value, see Shapley (1953). It is the average of the marginal vectors induced
from the collection of all permutations of players. Let Π(N) be the collection of all
permutations on N . Given a permutation σ ∈ Π(N), the set of predecessors of any
element i ∈ N in σ is defined as

Pσ(i) = {h ∈ N | σ−1(h) < σ−1(i)}.



An Axiomatization of the Myerson Value 343

Given a TU-game (N, v) ∈ GN , for a permutation σ in Π(N) the marginal vector
mσ(N, v) assigns payoff

mσ
i (N, v) = v(Pσ(i) ∪ {i})− v(Pσ(i))

to agent i = σ(k), k = 1, . . . , n. The Shapley value of (N, v), Sh(N, v), is the average
of all n! marginal vectors, i.e.,

Sh(N, v) =
1

n!

∑

σ∈Π(N)

mσ(N, v).

A graph on N is a pair (N,L) where N = {1, . . . , n} is a set of vertices and
L ⊆ Lc

N , where Lc
N = {{i, j} | i, j ∈ N, i 6= j} is the complete set of undirected

links without loops on N and an unordered pair {i, j} ∈ L is called an edge in
(N,L). A subset S ∈ 2N is connected in (N,L) if for any i ∈ S and j ∈ S, j 6= i,
there is a sequence of vertices (i1, i2, . . . , ik) in S such that i1 = i, ik = j and
{ih, ih+1} ∈ L for h = 1, . . . , k − 1. The collection of all connected coalitions in
(N,L) is denoted CL(N). By definition, the empty set ∅ and every singleton {i},
i ∈ N , are connected in (N,L). For S ∈ 2N , the subset of edges L(S) ⊆ L is
defined as L(S) = {{i, j} ∈ L| i, j ∈ S}, being the subset of L of edges that can be
established within S. The graph (S,L(S)) is a subgraph of (N,L). A component of
a subgraph (S,L(S)) of (N,L) is a maximally connected coalition in (S,L(S)) and
the collection of components of (S,L(S)) is denoted ĈL(S). For a graph (N,L),
if {i, j} ∈ L, then i is called a neighbor of j and vice versa. Given (N,L) and
i ∈ N , the collection of neighbors of i is denoted by DL

i , that is, DL
i = {j ∈

N \ {i} | {i, j} ∈ L}. The collection of neighbors of S ∈ 2N is defined similarly as
DL

S = {j ∈ N \ S | ∃i ∈ S : {i, j} ∈ L}.
The combination of a TU-game and an (undirected) graph on the player set

is a TU-game with communication structure, introduced by Myerson (1977) and
denoted by a triple (N, v, L) where (N, v) is a TU-game and (N,L) is a graph on
N . A link between two players has as interpretation that the two players are able to
communicate and it is assumed that only a connected set of players in the graph is
able to cooperate to obtain its worth to freely transfer as payoff among the players in
the coalition. Let GcsN denote the class of TU-games with communication structure
and fixed player set N . A single-valued solution on GcsN is a mapping ξ : GcsN → Rn

which assigns to every TU-game with communication structure (N, v, L) ∈ GcsN a
payoff vector ξ(N, v, L) ∈ Rn.

The most well-known single-valued solution on the class of TU-games with com-
munication structure is the Myerson value, see Myerson (1977). It is the Shapley
value of the so-called Myerson restricted game. Following Myerson (1977), the re-
stricted characteristic function vL : 2N → R of (N, v, L) is defined as

vL(S) =
∑

K∈ĈL(S)

v(K), S ∈ 2N .

The pair (N, vL) is a TU-game and is called the Myerson restricted game of (N, v, L),
and the Myerson value of a game (N, v, L) ∈ GcsN is defined as

µ(N, v, L) =
1

n!

∑

σ∈Π(N)

mσ(N, vL).
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2. An axiomatic characterization of the Myerson value

Most of the single-valued solutions proposed in the literature are characterized by
axioms which state desirable properties a solution possesses. The most well-known
characterization of the Shapley value for TU-games is given by Shapley (1953) as
the unique solution on the class of TU-games that satisfies efficiency, additivity, the
null player property and symmetry. Other characterizations of the Shapley value
are proposed in for example Young (1985) and Brink (2002). While introducing the
class of TU-games with communication structure, Myerson (1977) characterizes the
Myerson value by component efficiency and fairness axioms.

Definition 1. A solution ξ : GcsN → Rn satisfies component efficiency if for any
(N, v, L) ∈ GcsN it holds that

∑
i∈Q ξi(N, v, L) = v(Q) for all Q ∈ ĈL(N).

A solution on the class of TU-games with communication structure satisfies com-
ponent efficiency if the solution allocates to each component as the sum of payoff
among its members the worth of the component.

Definition 2. A solution ξ : GcsN → Rn satisfies fairness if for any (N, v, L) ∈ GcsN
and {i, j} ∈ L it holds that

ξi(N, v, L)− ξi(N, v, L \ {i, j}) = ξj(N, v, L)− ξj(N, v, L \ {i, j}).

A solution on the class of TU-games with communication structure satisfies fairness
if the deletion of an edge from the game results in the same payoff change for the
two players who own the edge.

Theorem 1. (Myerson, 1977) The Myerson value is the unique solution on GcsN
that satisfies component efficiency and fairness.

For the class of TU-games with cycle-free communication structure, which is a
subclass of TU-games with communication structure, other characterizations of the
Myerson value are given by Borm et al. (1992) and Brink (2009). The axioms we
propose in this study are modified versions of the four axioms used in Shapley
(1953), i.e., an efficiency axiom (component efficiency), an additivity axiom, a null
player property and a fairness axiom.

For any two TU-games v and w in GN , the game v + w is well defined by
(v + w)(S) = v(S) + w(S) for all S ∈ 2N .

Definition 3. A solution ξ : GcsN → Rn satisfies additivity if for any (N, v, L),
(N,w,L) ∈ GcsN it holds that ξ(N, v + w,L) = ξ(N, v, L) + ξ(N,w,L).

Additivity of a solution means that if there are two TU-games with the same commu-
nication structure, the resulting payoff vectors coincide when applying the solution
to each of the two games and adding the two vectors and when applying the solution
to the game which is the sum of the two games.

A player i ∈ N is a restricted null player in a TU-game with communication
structure (N, v, L) ∈ GcsN if this player never contributes whenever he joins to form
a connected coalition, that is, v(S ∪ {i})−∑K∈ĈL(S) v(K) = 0 for all S ∈ 2N such
that i /∈ S and S ∪ {i} ∈ CL(N). The restricted null player property says that this
player must get zero payoff.
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Definition 4. A solution ξ : GcsN → Rn satisfies the restricted null player property
if for any (N, v, L) ∈ GcsN and restricted null player i ∈ N in (N, v, L) it holds that
ξi(N, v, L) = 0.

Note that a restricted null player of a TU-game with communication structure is a
null player of its Myerson restricted game. The last axiom replaces symmetry.

Definition 5. A solution ξ : GcsN → Rn satisfies coalitional fairness if for any
two TU-games (N, v, L), (N, v′, L) ∈ GcsN and Q ∈ 2N it holds that ξi(N, v, L) −
ξi(N, v

′, L) = ξj(N, v, L)− ξj(N, v′, L) for all i, j ∈ Q whenever v(S) = v′(S) for all
S ∈ 2N , S 6= Q.

Coalitional fairness of a solution implies that given a TU-game with communication
structure, if the worth of a single coalition changes, then the payoff change should
be equal among all players in that coalition. From additivity and the restricted null
player property we have the following lemma.

Lemma 1. Let a solution ξ : GcsN → Rn satisfy additivity and the restricted null
player property. Then for any two TU-games with the same communication structure
(N, v, L), (N, v′, L) ∈ GcsN it holds that ξ(N, v, L) = ξ(N, v′, L) whenever v(S) =
v′(S) for all S ∈ CL(N).

Proof. Consider the game (N,w,L) where w = v − v′. Then every player is a
restricted null player in this game because w(S) = 0 for all S ∈ CL(N). Therefore
every player must receive zero payoff, that is, ξ(N,w,L) = 0. From additivity and
v = w + v′ it follows that ξ(N, v, L) = ξ(N,w,L) + ξ(N, v′, L) = 0 + ξ(N, v′, L) =
ξ(N, v′, L). ⊓⊔

This lemma says that the worth of an unconnected coalition does not affect the
outcome of a solution that satisfies additivity and the restricted null player property,
which leads to the following corollary.

Corollary 1. If a solution ξ : GcsN → Rn satisfies additivity and the restricted null
player property, then ξ(N, v, L) = ξ(N, vL, L) for any (N, v, L) ∈ GcsN .

To prove that on the class of TU-games with communication structure the ax-
ioms above uniquely define the Myerson value, we consider Myerson restricted una-
nimity games. Given a unanimity game with communication structure (N, uT , L) ∈
GcsN with T ∈ 2N , the Myerson restricted unanimity game (N, uLT ) ∈ GN is given by

uLT (S) =

{
1 if ∃ K ∈ ĈL(S), T ⊆ K,
0 otherwise.

Given a graph (N,L) and S ∈ 2N , let C
L
(S) denote the collection of connected

coalitions which minimally contain S, that is,

C
L
(S) = {K ∈ CL(N) | S ⊆ K, K \ {i} /∈ CL(N) ∀ i ∈ K \ S}.

Lemma 2. For a unanimity TU-game with communication structure (N, uT , L) ∈
GcsN with T ∈ 2N , it holds that

uLT =





∑

J⊆{1,...,k}
(−1)|J|+1u∪j∈JQj

if C
L
(T ) = {Q1, . . . , Qk},

0 if C
L
(T ) = ∅.
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Proof. First consider the case when C
L
(T ) = ∅. This implies that there exists no

K ∈ ĈL(N) which contains T , and from the definition of uLT it follows that uLT (S) =

0 for all S ∈ 2N . Next, let v =
∑

J⊆{1,...,k}(−1)|J|+1u∪j∈JQj
when C

L
(T ) 6= ∅. If

T ∈ CL(N), then C
L
(T ) = {T } and therefore it holds that v = uT = uLT . Suppose

T /∈ CL(N). It is to show that v(S) = uLT (S) holds for every S ∈ 2N . First take
S ∈ 2N such that there is no K ∈ ĈL(S) satisfying T ⊆ K. This implies that
Q 6⊂ S for any Q ∈ CL

(T ), and thus we have u∪j∈JQj
(S) = 0 for all J ⊆ {1, . . . , k},

which results in v(S) = 0 = uLT (S). Next, take any S ∈ 2N such that there exists
K ∈ ĈL(S) satisfying T ⊆ K. This K is unique and let M ⊆ {1, . . . , k} be such
that Qj ⊆ K for all j ∈M and Qj 6⊂ K for all j /∈M . Among all J ⊆ {1, . . . , k}, it
holds that u∪j∈JQj

(S) = 1 only when J ⊆ M , and otherwise u∪j∈JQj
(S) = 0. Let

|M | = m. Then v(S) =
∑

J⊆M (−1)|J|+1u∪j∈JQj
(S) =

∑k=m
k=1 (−1)k+1

(
m
k

)
= 1 =

uLT (S), since it is known from the binominal theorem that
∑k=m

k=0 (−1)k
(
m
k

)
= 0 and

therefore
∑k=m

k=1 (−1)k+1
(
m
k

)
= −∑k=m

k=1 (−1)k
(
m
k

)
=
(
m
0

)
= 1. ⊓⊔

Note that for any J ⊆ {1, . . . , k}, it holds that ∪j∈JQj is connected, since for
each j ∈ J , the set Qj itself is connected and it also contains T . This lemma
shows that any restricted unanimity TU-game with communication structure can
be uniquely expressed as a linear combination of unanimity TU-games with the
same communication structure for connected coalitions.

On the class of unanimity TU-games with communication structure, we have
the following expression, which is well known and we present without proof.

Lemma 3. For any TU-game with communication structure (N, cuT , L) ∈ GcsN with
T ∈ CL(N), T 6= ∅, and c ∈ R, it holds that

µj(N, cuT , L) =

{
c/|T | if j ∈ T,
0 if j 6∈ T.

This lemma says that the Myerson value of a unanimity TU-game with communi-
cation structure with a connected coalition assigns the allocation which gives zero
payoffs to the players who do not belong to the connected coalition and the worth
of the connected coalition is shared equally among those who belong to it. Next, we
give a characterization of the Myerson value in the following theorem.

Theorem 2. The Myerson value is the unique solution on GcsN that satisfies compo-
nent efficiency, additivity, the restricted null player property, and coalitional fainess.

Proof. First, we show that the Myerson value satisfies all properties. Component
efficiency follows from the fact that all marginal vectors are component efficient by
construction. Since all marginal vectors of a TU-game with communication structure
are linear in the worths of the connected coalitions and the Myerson value is the
average of these vectors, the Myerson value satisfies additivity. If a player is a
restricted null player, this player has marginal contribution equal to zero at any
permutation and therefore the average is also zero. Finally, suppose there are two
TU-games with the same communication structure (N, v, L), (N, v′, L) ∈ GcsN and
Q ∈ CL(N) such that v(S) = v′(S) for all S ∈ CL(N), S 6= Q, and take any i ∈ Q.
It holds that mσ

i (N, v, L) = mσ
i (N, v

′, L) for any σ ∈ Π(N) unless Pσ(i) = Q \ {i}.
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There are (|Q| − 1)!(n − |Q|)! permutations σ such that Pσ(i) = Q \ {i} and for
each such σ the marginal contribution of i changes by mσ

i (N, v, L)−mσ
i (N, v

′, L) =
(vL(Q)−vL(Q\{i}))−(v′L(Q)−vL(Q\{i})) = vL(Q)−v′L(Q), which is independent
of i. Therefore every player in Q receives the same change the same number of times
and so the change in the Myerson value is the same among all players in Q.

Second, let ξ : GcsN → Rn be a solution which satisfies all four axioms. Since
ξ satisfies additivity and the restricted null player property, with Corollary 1 and
Lemma 2, it suffices to show that for any graph (N,L) it holds that ξ(N, cuT , L) =
µ(N, cuT , L) for any T ∈ CL(N) and c ∈ R. Let (N,L) be any graph on N .
First consider the zero game (N,0, L) ∈ GcsN . In this game all players are restricted
null players and therefore it follows from the restricted null player property that
ξi(N,0, L) = 0 = µi(N,0, L) for all i ∈ N . Next consider the game (N, cuN , L) ∈
GcsN with N ∈ CL(N). Between the games (N, cuN , L) and (N,0, L) it holds that
cN (N) = c and cuN (K) = 0(K) = 0 for all K ∈ 2N , K 6= N . From efficiency,
coalitional fairness, and Lemma 3, we have

ξi(N, cuN , L) =
c

n
= µi(N, cuN , L) ∀ i ∈ N.

Now consider a game (N, cuT , L) ∈ GcsN with T ∈ CL(N), |T | = n − 1. It follows
from the restricted null player property that player i /∈ T receives zero payoff, since
this player yields zero marginal contribution when joining to any set of players to
form a connected coalition. For the games (N, cuT , L) and (N, cuN , L), it holds that
cuT (K) = cuN (K) for all K ∈ 2N , K 6= T . Coalitional fairness then implies that

ξi(N, cuT , L)− ξi(N, cuN , L) = ξj(N, cuT , L)− ξj(N, cuN , L) ∀ i, j ∈ T,

which, with efficiency and Lemma 3, results in

ξi(N, cuT , L) =
c

|T | = µi(N, cuT , L) ∀ i ∈ T.

Next, suppose ξ(N, cuT , L) = µ(N, cuT , L) holds for all T ∈ CL(N), |T | > m > 1.
Consider (N, cuT , L) ∈ GcsN with T ∈ CL(N), |T | = m. For i /∈ T , it follows from
the restricted null player property that ξi(N, cuT , L) = 0. By comparing (N, cuT , L)
and (N, v, L) with v =

∑
ℓ∈DL

T
cuT∪{ℓ} − (k− 1)cuN where k = |DL

T | is the number
of neighbors of T in (N,L), it holds that cuT (S) = v(S) for all S ∈ 2N , S 6= T , and
cuT (T ) = c while v(T ) = 0. Then coalitional fairness implies

ξi(N, cuT , L)− ξi(N, v, L) = ξj(N, cuT , L)− ξj(N, v, L) ∀ i, j ∈ T.

From additivity and the supposition that ξ(N, cuS , L) = µ(N, cuS , L) for all con-
nected S with |S| > m, it follows that

ξi(N, v, L) =
∑

ℓ∈DL
T

ξi(N, cuT∪{ℓ}, L)− (k − 1)ξi(N, cuN , L) =

∑

ℓ∈DL
T

µi(N, cuT∪{ℓ}, L)− (k − 1)µi(N, cuN , L) =

∑

ℓ∈DL
T

µj(N, cuT∪{ℓ}, L)− (k − 1)µj(N, cuN , L) = ξj(N, v, L)
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for all i, j ∈ T , and therefore

ξi(N, cuT , L) = ξj(N, cuT , L) ∀ i, j ∈ T.

By efficiency it holds that ξi(N, cuT , L) = c/|T | for all i ∈ T , which implies
ξ(N, cuT , L) = µ(N, cuT , L). When |T | = 1, efficiency and the restricted null player
property imply that ξ allocates the Myerson value to (N, cuT , L) ∈ GcsN . There-
fore for a multiple of any unanimity TU-game with communication structure for
a connected coalition, the four axioms uniquely give the allocation of the Myerson
value. Since ξ satisfies additivity and the restricted null player property, it follows
from Corollary 1 that ξ(N, v, L) = ξ(N, vL, L) for any (N, v, L) ∈ GcsN . By Lemma
2 it holds that vL can be expressed as a unique linear combination of unanimity
games for connected coalitions. That is, given any (N, v, L) ∈ GcsN there exist unique
numbers cT ∈ R for T ∈ CL(N), T 6= ∅, such that vL =

∑
T cTuT . The proof is

completed since for any (N, v, L) ∈ GcsN it holds from additivity that

ξ(N, v, L) = ξ(N, vL, L) = ξ(N,
∑

T∈CL(N),T 6=∅
cTuT , L) =

∑

T∈CL(N),T 6=∅
ξ(N, cTuT , L) =

∑

T∈CL(N),T 6=∅
µ(N, cTuT , L) = µ(N, v, L).

⊓⊔
To show the independence of the four axioms, consider the linear solution ξ(N, v,

L) =
∑

T∈CL(N) f(N, cTuT , L) where v =
∑

T∈CL(N) cTuT and f(N, cTuT , L) allo-
cates c to the player in T who has the smallest index and 0 to any other player. It
only fails coalitional fairness. Next, consider the solution ξ(N, v, L) that allocates
payoff vector ξ(N, v, L) as follows. When N = {1, 2}, L = {1, 2}, vL(S) 6= 0 for
all S ∈ CL(N), and further v(S) 6= v(T ) for all distinct T, S ∈ 2N , then it gives
ξj(N, v, L) = v(N)/2, and in any other case it gives ξ(N, v, L) = µ(N, v, L). This
solution satisfies all axioms except additivity. The equal sharing solution, where
each agent receives v(N)/n, satisfies every axiom except the restricted null player
property. Finally, the solution where each agent receives zero payoff only fails effi-
ciency.
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