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Abstract A preferences structure is called a complete one if it axiom linear-
ity satisfies. We consider a problem of completion for ordering preferences
structures. In section 2 an algorithm for finding of all linear orderings of
finite ordered set is given. It is shown that the indicated algorithm leads to
construction of the lattice of ideals for ordered set. Further we find valu-
ations for a number of linear orderings of ordered sets of special types. A
problem of contraction of the set of linear completions for ordering prefer-
ences structures which based on a certain additional information concerning
of preferences in section 4 is considered. In section 5, some examples for con-
struction and evaluations of the number of all linear completions for ordering
preferences structures are given.
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1. Introduction

A space of preferences (or preferences structure) can be defined as a triplet of the
form

〈A,α, β〉 , (1)

where α and β are binary relations on a set A satisfying the following axioms:

1. α ∩ α−1 = ∅ (asymmetry);

2. β−1 = β (symmetry);

3. ∆A ⊆ β (reflexivity); (2)

4. α ∩ β = ∅ (disjointness).

We mean
A as a set of alternatives;
α as a strict preference relation;
β as an indifference relation.
As usually we put ρ = α ∪ β and use the notation:

a
ρ

. b
df⇔ a

α
< b or a

β∼ b.
Then a space of preferences can be written as a pair 〈A, ρ〉, where the strict

preference relation and the indifference relation can be presented as

α = ρ\ρ−1,

β = ρ ∩ ρ−1. (3)
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The main special properties for preferences structures are the following ones:

Transitivity : a1
ρ

. a2, a2
ρ

. a3 ⇒ a1
ρ

. a3; (Tr)

Antisymmetry : a1
ρ

. a2, a2
ρ

. a1 ⇒ a1 = a2; (Antsym)

Linearity : a1
ρ

. a2 or a2
ρ

. a1. (Lin)

Definition 1. Preferences structure satisfying the conditions (Tr) and (Antsym) is
called an ordering preferences structure and satisfying the conditions (Tr), (Antsym)
and (Lin) is called a linear (or complete) ordering preferences structure.

Definition 2. A preferences structure 〈A,α1, β1〉 is called a completion of a pref-
erences structure 〈A,α, β〉 if inclusions

α ⊆ α1, β ⊆ β1 (4)

hold and at least once of these inclusions is strict.

Remark 1. A preferences structure 〈A,α, β〉 has not completions if and only if it
is a linear one.

Thus the most interesting are completions of a preferences structure to a linear
preferences structure. In this paper, we study some questions concerning of com-
pletions for ordering preferences structure. The main problems of our investigation
are:

(PI) The problem of description of all completions for ordering preferences struc-
ture to a linear one and

(PII) The problem of contraction of the set of linear completions based on certain
additional information concerning of these completions.

2. Linear orderings of ordered sets

2.1. An algorithm for finding of all linear orderings

It is well known the following classical result (Birkhoff, 1967).
Szpilrajn Theorem. Any partial ordering can be enlarged to a linear ordering.
Thus in terms of our paper, any ordering preferences structure has a completion

to a linear one. However, Szpilrajn theorem is not a constructive propositional since
it does not indicate a method for construction of linear completions.

Consider an ordering preferences structure which on a set of alternatives A is
given. In algebra terminology, such a structure can be presented as an ordered set
(A,≤) (i.e.≤ is a binary relation onA satisfying conditions reflexivity, antisymmetry
and transitivity). In this notations, the strict preference relation α coincides with
strict order < and the indifference relation β is identity relation.

We now state an algorithm for finding of all linear orderings of a finite ordered set
that is an algorithm for finding of all linear completions of an ordering preferences
structures. Remark that formally a linear ordering of k-element subset B ⊆ A can
be represented as one-one isotonic function ϕ from B into {1, . . . , k}, where ϕ (a)
is a number of element a ∈ B under this linear ordering. The required algorithm is
based on the following lemma.
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Lemma 1. Suppose an ordered set A contains n elements and a∗ is a maximal
element. Assume that we have a linear ordering ϕ of a subset A\a∗ (by numbers
1, 2, . . . , n − 1). Preserve the function ϕ for elements of A\a∗ and put ϕ (a∗) = n
then ϕ becomes a linear ordering of all set A.

Thus we can obtain all completions of the set A, having completions of subsets
which are a result of extraction of maximal elements. Further we use the same
method for these subsets until the empty set ∅ appears. To realize this algorithm
we need in the following steps.

Step 1. Define an auxiliary graph γ by the following rule. Vertexes of graph γ
are some subsets of A and for two subsets A1, A2 ⊆ A put A1

γ
≺ A2 if and only if A2

is a result of extraction of some maximal element belonging to A1. Then starting of
the set A, we construct some sequence of conjugate subsets with respect to graph
γ. It is evident that in graph γ the length of any path is equal to n.

Step 2. For each one element subset which is a vertex of graph γ write its single
linear ordering.

Step 3. Let B be a k-element subset (k = 2, . . . , n) which is a vertex of graph
γ. Assume we have a linear ordering for each subset of the form B\a, where a
is a maximal element of B. Then we preserve these linear orderings for elements
belonging B\a and set ϕ (a) = k.

Step 4. As the final step of this algorithm we obtain all linear orderings for set
A which is a vertex of graph γ.

An example for finding of all completions of ordered set in section 5 is given.

2.2. Ideals of ordered set

Definition 3. Let 〈A,≤〉 be an arbitrary ordered set. A subset B ⊆ A is called an
ideal in 〈A,≤〉 if the following condition

a ∈ B, a′ ≤ a⇒ a′ ∈ B

holds. For any subset X ⊆ A we define a set of its minorants X↓ by setting

X↓ = {a ∈ A : (∃x ∈ X)a ≤ x} . (5)

For any X ⊆ A, subset X↓ is the smallest (under inclusion) ideal which contains
X ; if X is an ideal then X↓ = X . It is said that X↓ is the ideal generated by
subset X . Particularly an ideal generated by one element subset {a} is called a
main ideal and denoted by a↓. A mapping X → X↓ which every subset X ⊆ A put
in correspondence the ideal generated by this subset is a closure operation, hence
the set Id (A) of all ideals of ordered set 〈A,≤〉 forms (under inclusion) a complete
lattice in the sense (Birkhoff, 1967). Since the intersection and the union of any
family of ideals is an ideal also then the lattice of ideals Id (A) is distributive. We
now indicate some method for construction of the lattice Id (A).

Theorem 1. Let 〈A,≤〉 be a finite ordered set. Then
1. A subset which is a result of extraction from ideal its maximal element is an

ideal also;
2. Any ideal can be realized from ideal A with help of procedure of extraction of

maximal elements by a finite number steps.
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Proof (of theorem 1). 1. Let B ⊆ A be an ideal of the ordered set 〈A,≤〉 and b∗ ∈ B
a maximal element of B. Show that B\b∗ also is an ideal. Indeed suppose a ∈ B\b∗
and a′ ≤ a; since subset B is an ideal and a ∈ B then a′ ∈ B. Assumption a′ = b∗

implies b∗ ≤ a. The equality b∗ = a is false since we obtain b∗ ∈ B\b∗. Then b∗ < a
that is impossible for maximal element b∗ ∈ B. Thus a′ 6= b∗ hence a′ ∈ B\b∗.

We now state the following lemma.

Lemma 2. Let B ⊆ A be an ideal in ordered set 〈A,≤〉 and B 6= A. Then there
exists such element a1 ∈ A\B that

α) subset B ∪ {a1} is an ideal and
β) the element a1 is a maximal one in B ∪ {a1}.

Proof (of lemma 2). Consider any ideal B in ordered set 〈A,≤〉 where B 6= A. Fix
some minimal element a1 of non-empty set A\B. Check that B ∪ {a1} is an ideal.
Suppose a ∈ B ∪ {a1} and a′ < a. If a ∈ B then a′ ∈ B by definition of ideal hence
a′ ∈ B∪{a1}. In the case a = a1 assume a′ /∈ B. Then a′ ∈ A\B and we have a1 > a′

that is false since element a1 is minimal in A\B. Thus a′ ∈ B ⊆ B ∪ {a1} and α)
is proved. Show β). The assumption b > a1 for some b ∈ B implies by definition of
ideal the inclusion a1 ∈ B in contradiction with a1 ∈ A\B and lemma 2 is proved.

⊓⊔

We now prove the proposition 2 of theorem 1. Let B ⊆ A be an ideal in ordered
set 〈A,≤〉 and B 6= A. By lemma 2 there exists such element a1 ∈ A\B that the
subset B∪{a1} is an ideal and a1 is a maximal element in B∪{a1}. If B∪{a1} = A
then the ideal B is a result of extraction of maximal element a1 from A and our
proposition is proved. If B ∪ {a1} 6= A then using lemma 2 once more we obtain
that there exists such a2 ∈ A\ (B ∪ {a1}) that the subset B ∪ {a1, a2} is an ideal
and a2 is a maximal element in B ∪ {a1, a2}. Consider two cases: B ∪ {a1, a2} = A
and B ∪ {a1, a2} 6= A etc. Since the set A is finite, we have a sequence of the kind
{a1, a2, . . . , at} where as ∈ A\ (B ∪ {a1, . . . , as−1}) and the following conditions
hold (s = 1, . . . , t):

α∗) B ∪ {a1, . . . , as} is an ideal;
β∗) as is a maximal element in B ∪ {a1, . . . , as};
γ∗) B ∪ {a1, . . . , at} = A.
Thus the ideal B is a result of extraction of maximal elements {at, at−1, . . . , a1}

from a chain of ideals starting of A which was to be proved. Finally for B = A
the proposition 2 of Theorem 1 is evident since in this case the required number of
extractions of maximal elements is equal to zero. ⊓⊔

According to theorem 1, we remark that vertexes of an auxiliary graph γ are
precisely ideals of ordered set 〈A,≤〉. Hence we obtain

Corollary 1. We can identify auxiliary graph γ of ordered set 〈A,≤〉 with lattice
Id (A) of its ideals Id (A). Namely, the set of vertexes of graph γ coincides with the
set of ideals and the canonical order relation of lattice Id (A) can be presented as
following: B1 ⊇ B2 if and only if there exists a path from B1 to B2 in graph γ.

We now remark that for finite ordered set 〈A,≤〉 the procedure of finding its
linear orderings can be reduced to finding of maximal chains in the lattice of ideals
Id (A). Further using the indicated algorithm for construction of linear orderings,
we have
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Corollary 2. For finite ordered set 〈A,≤〉, there exists one-one correspondence
between its linear orderings and maximal chains in the lattice Id (A) of its ideals.
Hence the number of linear completions of an ordering preferences structure 〈A,≤〉
coincides with the number of maximal chains in the lattice Id (A).

Remark 2. Indicated correspondence can be realized in the following manner. For
linear ordering {ai1 < ai2 < . . . < ain} of A, the corresponding maximal chain in
the lattice of ideals is

{∅ ⊂ {ai1} ⊂ {ai1 , ai2} ⊂ . . . ⊂ {ai1 , ai2 , . . . , ain}} .

3. A valuation for a number of linear orderings

3.1. A finding of the number of linear ordering with help of auxiliary
graph γ

Using inductive algorithm for construction of auxiliary graph γ (see 2.1.), we can
find the number N (A) of all linear orderings of a finite ordered set without of finding
of these orderings. As a first step, we need to construct the auxiliary graph γ. Denote
by N (B) the number of all linear orderings for arbitrary set B which is a vertex of
graph γ. Since linear orderings of B are extensions of linear orderings of conjugate
with B vertexes then we obtain the following recurrent formula:

N (B) =
∑

N (B\a) , (6)

where a is an arbitrary maximal element of subset B. Since every subset which is
a final vertex in graph γ is one element hence it has a single linear ordering. Using
formula (6) we can find the number of all linear orderings for any vertex of graph γ.
In particular we can find the required number N (A). An example for count of the
number of all linear orderings of ordered set in section 5 will be given.

3.2. A valuation of the number of linear orderings for some special
cases

Remark that formula (6) for finding ofN (A) can be used only in the case the graph γ
(i.e. the lattice of ideals of ordered set) is given. However a practical construction
of the graph γ for ordered set which contains some tens of elements is very hard.
Further we consider certain methods for finding N (A) in some special cases. Let
〈Ak, ωk〉 (k = 1, . . . , r) be a family of ordered sets and 〈A,ω〉 is the discrete sum of
this family. Denote by Ndis the number of all linear orderings for 〈A,ω〉. Then we
have the following formula (see Rozen, 2013):

Ndis =
n!

n1!n2! . . . nr!
N1 ·N2 · . . . ·Nr, (7)

where nk = |Ak| (k = 1, . . . , r) , n =
r∑

k=1

nk.

This formula is proved by induction on r. For r = 1 the right part of (7) is
equal to N1 = Ndis. Let us show that (7) is truth for r = 2. Indeed, consider
two ordered sets A and B, where the first set contains n1 elements and the second
set n2 elements. Let (a1, a2, . . . , an1) and (b1, b2, . . . , bn2) be their linear orderings,
respectively. Then we can obtain a linear ordering for discrete sum A ∪ B in the
following manner. Fix a subset {i1, i2, . . . , in1} in the set {1, 2, . . . , n1 + n2} and



Completions for Space of Preferences 295

let {in1+1, . . . , in1+n2} be its complement (suppose these sequences are increasing).
Then by setting ϕ (as) = is (s = 1, . . . , n1) and ϕ (bt) = in1+t (t = 1, . . . , n2) we
obtain a linear ordering of discrete sum A∪B. Hence every pair of linear orderings
of A and B generates Cn1

n1+n2
= (n1+n2)!

n1!n2!
of linear orderings for their discrete sum

A∪B. Denote by N1 the number of linear orderings of A and by N2 the number of
linear orderings of B, then the number of pairs of linear orderings is equal to N1 ·N2;
thus we obtain (n1+n2)!

n1!n2!
N1 ·N2 of linear orderings for A ∪B. For r = 2 formula (7)

is shown. Remark now that discrete sum of r ordered sets can be represented as a
discrete sum of two ordered sets: A1 ∪ . . . ∪ Ar−1 ∪ Ar = (A1 ∪ . . . ∪ Ar−1) ∪ Ar.
Using our assumption for r = 2, we obtain the required proposition in general case,
that is (7).

As a corollary of formula (7) we now obtain a valuation for N (A) in the case A
is a tree ordered set. Consider a tree T with a root a0. Then we can define on the
set A of tree vertexes the tree order by the rule: a1 ≤ a2 if and only if there exists
a path from a1 to a2. Remark that a0 is the greatest element under order ≤. For
each ak ∈ A the set Tak

consisting of vertexes a ≤ ak forms a tree with root ak; it
is called subtree with root ak. Particularly, T = Ta0 .

Corollary 3. Let Ta0 be a tree and {Ta0 , Ta1 , . . . , Tar
} all its subtrees having not

less than two vertexes. Then a number N (Ta0) of all linear orderings of tree Ta0 is
defined by formula:

NTa0
=

|Ta0 |!
|Ta0 | · . . . · |Tar

| , (8)

where |Tak
| denotes a number of elements of subtree Tak

.

Proof of corollary 3 is given by induction on numbers of levels of tree. To prove
induction step one can use that if to eliminate the greatest element of tree then we
obtain a discrete sum of tree orders for which formula (7) is true, and the number
of linear orderings for these tree orders can be founded by assumption (8).

4. A contraction of the set of linear completions

We now consider a problem of contraction of the set of linear completions for order-
ing preferences structures which based on some additional information concerning
of preferences. Suppose an ordering preferences structure in the form 〈A,ω〉 is given
where ω is an order relation on the set of alternatives A.

We consider here additional information of the following types.
Type 1: Information under strict preferences
This information with binary relation δ ⊆ A2 can be given where the assertion

(a1, a2) ∈ δ means that alternative a2 is strict better than alternative a1. Such
information does not contradict with an ordering ω if and only if the relation ω ∪ δ
is acyclic; in this case ω1 = tr (ω ∪ δ) is an ordering of A which contains previous
ordering ω and the relation δ also. Further finding linear completions of ordering ω1

we obtain some part of all linear completions for ordering ω. Completions of ordering
ω1 are completions for ordering ω which conform with additional information in the
form of binary relation δ.

Type 2: Information under indifference relation
In this case, additional information in the form of an equivalence relation ε ⊆ A2

is given.
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Definition 4. Let ϕ be an isotonic function from ordered set A in some chain C.
Put εϕ = {(a1, a2) : ϕ (a1) = ϕ (a2)}. An equivalence ε ⊆ A2 is said to be ranged
equivalence if ε = εϕ for some isotonic function ϕ.

We assume here that ε is a ranged equivalence. Then we factorize relation ω
under equivalence ε and obtain factor-ordering Tr (ω/ε) on the factor-set A/ε. Let
C1, . . . , Cr be all classes of equivalence ε and ωk is a restriction of ω on subset
Ck (k = 1, . . . , r); put Nk the number of linear completions for ωk and N (ω) the
number of linear completions for 〈A,ω〉. Then we have the following evaluation for
the number N (ω, ε) of linear completions for the factor-structure:

N (ω, ε) ≤ N (ω)

N1 ·N2 · . . . ·Nr
. (9)

The inequality (9) shows that additional information of type 2 implies a strong
contraction for the number of linear completions.

Remark 3. Conditions concerning of equivalence ε ⊆ A2 under which there exists
the unique linear completions for factor-structure A/ε (i.e. N (ω, ε) = 1) is given in
(Rozen, 2011).

5. Examples

Example 1. Finding of all linear completions for ordering preferences struc-
tures

Consider an ordering preferences structure consisting of 6 alternatives A =
{a, b, c, d, e, f} presented by a diagram (fig. 1).

Fig. 1

To construct all its linear orderings, we need in the following steps.
Step 1. Using a procedure of extraction of maximal elements (see 2.1.), we

obtain an auxiliary graph γ (fig. 2).
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Fig. 2

Step 2. We now construct Table 1 whose rows are vertexes of graph γ (i.e.
ideals) and for each ideal all its linear completions are given. Starting of one element
ideals, we receive at last linear orderings of ideal A = {a, b, c, d, e, f} in lower block
of Table 1.
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Table 1.

a b c d e f a b c d e f

{a} 1 {a, b, c, d, e} 1 4 5 2 3
{d} 1 2 4 5 1 3
{a, d} 1 2 1 3 5 2 4

2 1 2 3 5 1 4
{a, b} 1 2 1 2 5 3 4
{a, d, e} 1 2 3 1 3 4 2 5

2 1 3 2 3 4 1 5
{a, b, d} 1 3 2 1 2 4 3 5

2 3 1 1 2 3 4 5
1 2 3

{a, b, c} 1 2 3 A = {a, b, c, d, e, f} 1 4 5 2 3 6
{a, b, d, e} 1 4 2 3 2 4 5 1 3 6

2 4 1 3 1 3 5 2 4 6
1 3 2 4 2 3 5 1 4 6
2 3 1 4 1 2 5 3 4 6
1 2 3 4 1 3 4 2 5 6

{a, b, c, d} 1 3 4 2 2 3 4 1 5 6
2 3 4 1 1 2 4 3 5 6
1 2 4 3 1 2 3 4 5 6
1 2 3 4

Step 3. All linear orderings which are completions of the ordering preferences
structure in fig. 1 on the following diagram are given (fig. 3)

Fig. 3

Example 2. A count of the number of all linear completions for ordering
preferences structure

Consider an ordering preferences structure in the fig. 1. To count all its linear
completions we need in construction of auxiliary graph γ only. Since each subset
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which is a final vertex of graph γ consists of one element, it has single linear comple-
tion, hence we write 1 near every final vertex of graph γ (fig. 4). Further we write
a number N (B) near others vertexes B of graph γ in accordance with formula
(6). The number N (B) indicates a number of all linear completions for subset B.
In particularly, N (A) is a number of all completions for the set of all alternatives
A = {a, b, c, d, e, f}.

Fig. 4
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