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Abstract In this study, we extend the well-known obligation rules by using
interval calculus. We introduce interval obligation rules for minimum interval
cost spanning tree (micst) situations. It turns out that the interval obligation
rule and the interval Bird rule are equal under suitable conditions. Further,
we show that such rules are interval cost monotonic and induce population
monotonic interval allocation schemes (pmias). Some examples of pmias and
interval obligation rules for micst situations are also given.
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1. Introduction

A connection situation arises in the presence of a group of agents, each of which
needs to be connected directly or via other agents to a source. If connections among
agents are costly, then each agent will evaluate the opportunity of cooperating
with other agents in order to reduce costs. In fact, if a group of agents decides to
cooperate, a configuration of links which minimizes the total cost of connection is
provided by a minimum cost spanning tree (mcst).

The problem of finding an mcst can be easily solved by using different algorithms
proposed in literature (for example see Graham and Hell, 1985). However, finding an
mcst does not guarantee that it is going to be really implemented: agents must still
support the cost of the mcst and then a cost allocation problem must be addressed.
This cost allocation problem was introduced by Claus and Kleitman, 1973 and has
been studied with the aid of cooperative game theory since the basic paper of Bird,
1976.

The special case of a minimization problem where no network is initially pre-
sented is old problem for Operations Research (OR). In this context, algorithms to
construct a tree connecting every village to the source with minimal total cost is
provided in Borůvka, 1926. Later, (Dijksta, 1959; Kruskal, 1956; Prim, 1957)found
similar algorithms. A historic overview of this minimization problem can be found
in Graham and Hell, 1985. Further, (Claus and Kleitman, 1973) introduced the cost
allocation problem for the special case of minimum cost spanning tree problems, in
which no network is initially presented. In the sequel Bird, 1976 treated this prob-
lem with game-theoretic methods and proposed for each minimum cost spanning
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tree a cost allocation associated with it. Furthermore, we note that discrete or com-
binatorial optimization embodies a vast and significant area of combinatorics that
interfaces many related subjects. Included among these are linear programming,
OR and game theory.

Since then, many authors have noted that this kind of cost allocation problems
may arise on many different physical networks such as telephone lines, highways,
electric power systems, computer chips, water delivery systems, rail lines etc. On
the other hand, numerous studies in the literature have shown that to retrieve the
information needed to assess the exact cost of all the links of a real network is a
very hard task (Janiak and Kasperski, 2008; Montemanni, 2006; Yaman et.al., 1999;
Yaman et.al., 2001). So, we argue that it is more realistic to imagine connection
situations where the costs of links are identifiable at a level of uncertainty, i.e., only
the range of the costs is known, and no probability information on the realization of
costs is given. Such connection situations with uncertain costs may be represented
using graphs where the costs associated to the edges are intervals of real numbers.

In this context a practical example of a cost allocation problem is studied in
Moretti et.al., 2011 which is inspired by the application suggested by Yaman et.al.,
2001. In this example, a design of a telecommunication network of users that want to
be connected with a service provider is considered. Here, the agents are the users, the
source is the service provider and the cost of a link is proportional to its traffic load.
Suppose that routing delays on links are not known with certainty. This uncertainty
is caused by the time varying nature of the traffic load of the network. It is then
desirable to develop a network that hedges against all possible configurations of the
costs, that we will call scenarios, which may occur. On the other hand, the cost
of the total traffic load must be shared among users and, consequently, incentives
to cooperation should be sustainable before and after the realization of an optimal
network.

As in the classical case, where edge costs are real numbers, also in the situation
where edge costs are intervals of real numbers, a cost allocation problem arises. With
the goal to study this kind of cost allocation problems, in this paper we extend
the notion of an obligation rule by using interval calculus, and we study some
cost monotonicity properties. It turns out that cost monotonicity, under interval
uncertainty, provides a population monotonic interval allocation scheme.

We note that Suijs, 2003 studied mcst problems in which the connection costs
are represented by random variables. In our paper, costs are not random variables,
but instead, they are closed and bounded intervals of real numbers.

We start with some preliminaries in the next section. In Section 3, interval
obligation rules are introduced; in the same section, the relation between the interval
obligation rules and the interval Bird rule are given. In Section 4, it is shown that
interval obligation rules are interval cost monotonic and induce pmias. A summary
on our work are given in Section 5.

2. Preliminaries

In this section we give some terminology on graph theory, interval calculus and some
basic definitions and useful results from the theory of cooperative interval games
(Alparslan Gök, 2009; Alparslan Gök, 2010; Alparslan Gök et. al., 2009a; Alparslan
Gök et.al., 2011; Alparslan Gök et.al., 2009b; Diestel, 2000; Moretti et.al., 2011;
Tijs, 2003)
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An (undirected) graph is a pair < V,E >, where V is a set of vertices or nodes
and E is a set of edges e of the form {i, j} with i, j ∈ V , i 6= j. The complete graph on
a set V of vertices is the graph< V,EV >, whereEV = {{i, j}|i, j ∈ V and i 6= j}. A
path between i and j in a graph< V,E > is a sequence of nodes i = i0, i1, . . . , ik = j,
k ≥ 1, such that all the edges {is, is+1} ∈ E, for s ∈ {0, . . . , k − 1}, are distinct.
A cycle in < V,E > is a path from i to i for some i ∈ V . Two nodes i, j ∈ V are
connected in < V,E > if i = j or if there exists a path between i and j in < V,E >.
A connected component of V in a graph < V,E > is a maximal subset of V with
the property that any two nodes in this subset are connected in < V,E >.

A minimum interval cost spanning tree (micst) situation is a situation where
N = {1, 2, . . . , n} is a set of agents who are willing to be connected as cheaply
as possible to a source (i.e., a supplier of a service) denoted by 0, based on an
interval-valued weight (or cost) function.

For each S ⊆ N , we also use the notation S0 = S ∪ {0}, and the notation W
for the interval weight function, i.e., a map which assigns to each edge e ∈ EN0

a closed interval W (e) ∈ I(R+). The interval cost W (e) of each edge e ∈ EN0

(N0 = N ∪ {0}) will be denoted by [W (e),W (e)]. No probability distribution is
assumed for edge costs. We denote an micst situation with set of users N , source 0,
and interval weight function W by < N0,W > (or simply W ). Further, we denote
by IWN0 the set of all micst situations < N0,W > (or W ) with node set N0.

The cost of a network Γ ⊆ EN0 in an micst situation W ∈ IWN0 is W (Γ ) =∑
e∈Γ W (e). A network Γ is a spanning network on S0 = S ∪ {0}, with S ⊆ N , if

for every e ∈ Γ we have e ∈ ES0 and for every i ∈ S there is a path in < S0, Γ >
from i to the source. For any micst situation W ∈ IWN0 it is possible to determine
at least one spanning tree on N0, i.e., a spanning network without cycles on N0,
of minimum interval cost (such a network is also called an micst on N0 in W or,
shorter, an micst for W ). Note that the number of edges which form a spanning
tree on N0 is n. In the following, we will denote by TN0 the set of all spanning trees
for N0 and byMW

N0
⊆ TN0 the set of all micst for N0 in W , for each W ∈ IWN0 .

Let I (R) be the set of all closed intervals in R. A cooperative interval cost
game is an ordered pair < N, ĉ >, where N = {1, 2, ..., n} is the set of players and
ĉ : 2N → I (R) is the characteristic function with ĉ (∅) = [0, 0] , which assigns to each
coalition S ∈ 2N a closed and bounded interval [ĉ (S) , ĉ (S)]. A classical cooperative
game < N, c > can be identified with < N, ĉ >, where ĉ (S) = [c (S) , c (S)] for each
S ∈ 2N . The family of all interval games with player set N is denote by IGN .
Instead of ĉ ({i}) , ĉ ({i, j}) , etc., we often write ĉ (i) , ĉ (i, j), etc..

Let I, J ∈ I (R) with I =
[
I, I
]
, J = [J, J ], |I| = I − I and α ∈ R+. Then,

I + J = [I + J, I + J ] and αI =
[
αI, αI

]
.

In this paper we also need a partial substraction operator. We define I−J, only
if |I| ≥ |J | , by I − J =

[
I − J, I − J

]
. We recall that I is weakly better than J,

which we denote by I < J, if and only if I ≥ J and I ≥ J. We also use the reverse
notation I 4 J, if and only if I ≤ J and I ≤ J. We say that I is better than J,
which we denote by I ≻ J, if and only if I < J and I 6= J.

Further, we use the notation I (R+) for the set of all closed nonnegative intervals
in R.

In this paper, n−tuples of intervals I = (I1, ..., In) where Ii ∈ I (R) for each
i ∈ N, will play a key role. For further use we denote by I (R)N the set of all
n−dimensional vectors whose components are elements in I (R) . Let Ii =

[
Ii, Ii

]
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be the interval payoff of player i, and let I = (I1, ..., In) be an interval payoff vector.
Then, according to Moore, 1985, we have
nolimitsi∈SIi = [

∑
i∈S Ii,

∑
i∈S Ii] ∈ I (R) for each S ∈ 2N\ {∅} .

The interval core C (N, ĉ) of the interval cost game ĉ is defined by

C (N, ĉ) :=
{
(I1, ..., In) ∈ I (R)N |

∑

i∈N

Ii = ĉ (N) ,
∑

i∈S

Ii 4 ĉ (S) , ∀S ∈ 2N\ {∅}
}
.

The interval core consists of those interval payoff vectors which assure the distri-
bution of the uncertain worth of the grand coalition such that each coalition of
players can expect a weakly better interval payoff than what that group can ex-
pect on its own, implying that no coalition has any incentives to split off. Here,∑

i∈N Ii = ĉ (N) is the efficiency condition and
∑

i∈S Ii 4 ĉ (S) , S ∈ 2N\ {∅} , are
the stability conditions of the interval payoff vectors.

Given an element a = (a1, . . . , an) ∈ (EN0)
n, we denote by a|j the restriction of

a to the first j components, that is a|j = (a1, . . . , aj) for each j ∈ N . Further, for
each j ∈ N , we denote by Π(a|j) the partition of N0 defined as

Π(a|j) = {T ⊆ N0|T is a connected component in < N0, {a1, . . . , aj} >}.

In the following, we will use the notation Π(a|0) to denote the singleton partition
of N0.

For each Γ ∈ TN0 and each W ∈ IWN0 , we denote by AΓ,W ⊆ (EN0)
n the set

of vectors a = (a1, . . . , an) of n distinct edges in Γ such that W (a1) 4 ... 4W (an),
Note that W (ai) is monotonically increasing with respect to ” 4 ” :

AΓ,W = {a ∈ (Γ )n|W (a1) 4 . . . 4W (an), aj 6= ak for all j, k ∈ N}.

An micst game < N, ĉW > (or simply ĉW ) corresponding to an micst situation
W ∈ IWN0 is defined by

ĉW (T ) := min{W (Γ )|Γ is a spanning network on T0}

for every T ∈ 2N\{∅}, with the convention that ĉW (∅) = [0, 0]. Also, an interval
solution is a map F : IWN0 → I(R)N assigning to every micst situationW ∈ IWN0

a unique allocation in I(R)N .
Finally, we give the notion of population monotonic interval allocation scheme

(pmias) for the game < N, ĉ >. We say that for a cost game ĉ, a scheme A =

(AiS)i∈S,S∈2N\{∅} with AiS ∈ I (R)N is a pmias of ĉ if
i)
∑

i∈S AiS = ĉ (S) for all S ∈ 2N\ {∅} , and
ii) AiS < AiT for all S, T ∈ 2N and i ∈ N with i ∈ S ⊂ T.

3. Interval obligation rules

Consider∆(N) to be an usual simplex onN , defined by∆(N) = {x ∈ RN
+ |
∑

i∈N xi =
1}. The sub-simplex ∆(S) of ∆(N) given by ∆(S) = {x ∈ ∆(N)|∑i∈S xi = 1}
is called the set of obligation vectors of S. An obligation function is a map O :
2N \ {∅} → ∆(N) assigning to each S ∈ 2N \ {∅} an obligation vector

O(S) ∈ ∆(S)
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in such a way that for each S, T ∈ 2N \ {∅} with S ⊂ T and for each i ∈ S it holds

Oi(S) ≥ Oi(T ).

Such an obligation function O on 2N \ {∅} induces an obligation map
Ô : Θ(N0)→ RN such that

Ôi(θ) :=
∑

S∈θ,0/∈S

Oi(S),

for each i ∈ N and each θ ∈ Θ(N0); here, Θ(N0) is the family of partitions of N0.
Note that if θ = {N0}, then the resulting empty sum is assumed, by definition,

to be the n-vector of zeroes: Ô(θ) = 0 ∈ RN (for details see Tijs et.al., 2006). Obli-
gation maps are basic ingredients for interval obligation rules. Now, we introduce
the notion of the interval obligation rule.

Definition 1. Let Ô be an obligation map on Θ(N0). The interval obligation rule
φÔ : IWN0 → I(R)N is defined by

φÔ(W ) :=

n∑

j=1

W (aj)(Ô(Π(a|j−1))− Ô(Π(a|j)))

for each micst situation W ∈ IWN0 , each Γ ∈ MW
N0

and a ∈ AΓ,W , and where
Π(a|j−1)) and Π(a|j), for each j = 1, . . . , n, are partitions of the set N0.

Example 1. We consider an micst situation < N0,W > with three agents denoted
by 1, 2, and 3 and the source 0. As depicted in Figure 1, to each edge e ∈ E{0,1,2,3}
is assigned a closed interval W (e) ∈ I(R+) representing the uncertain cost of edge
e. For instance, W (0, 1) = [20, 24],W (2, 3) = [10, 13] , etc.. Now we compute the
interval obligation rule In this micst situation, W, Γ = {(0, 1) , (1, 2) , (2, 3)} ∈ MW

N0

and

a =(a1, a2, a3) = ((2, 3) , (1, 2) , (0, 1)) ∈ AΓ,W .

Then,

φÔ1 (W ) =
2

3
[15, 20] +

1

3
[20, 24] =

[
50

3
,
64

3

]
,

φÔ2 (W ) =
1

2
[10, 13] +

1

6
[15, 20] +

1

3
[20, 24] =

[
85

6
,
107

6

]
, and

φÔ3 (W ) =
1

2
[10, 13] +

1

6
[15, 20] +

1

3
[20, 24] =

[
85

6
,
107

6

]
.

Hence,

φÔ(W ) =

([
50

3
,
64

3

]
,

[
85

6
,
107

6

]
,

[
85

6
,
107

6

])
.
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Fig. 1: An micst situation < N0,W > .

Remark 1. It is obvious that if the cost of the edge connecting to source is the
cheapest cost, then the interval obligation rule equals the interval Bird rule which
is defined by Alparslan Gök et.al., 2014.

Example 2. Figure 2 corresponding to micst situation < N0,W
′ >, the interval Bird

allocation is

IB(N, {0} , A,W ′) = ([10, 13] , [15, 20] , [20, 24]) (see Alparslan Gök et.al., 2014).

In this micst situation W ′, Γ = {(0, 1) , (1, 2) , (2, 3)} ∈ MW ′

N0
and

a =(a1, a2, a3) = ((0, 1) , (1, 2) , (2, 3)) ∈ AΓ,W ′

.

Then,

φÔ1 (W ′) = (1− 0) [10, 13] + (0− 0) [15, 20] + (0− 0) [20, 24] = [10, 13] ,

φÔ2 (W ′) = (0− 0) [10, 13] + (1− 0) [15, 20] + (0− 0) [20, 24] = [15, 20] ,

φÔ3 (W ′) = (0− 0) [10, 13] + (0− 0) [15, 20] + (1− 0) [20, 24] = [20, 24].

It is clear that

φÔ(W ′) = IB(N, {0} , A,W ′) = ([10, 13] , [15, 20] , [20, 24]) .

Fig. 2: An micst situation < N0,W
′ > .
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4. Interval cost monotonicity and PMIAS

In this section, we discuss some interesting interval monotonicity properties for the
interval obligation rules. First, we provide the definition of interval cost monotonic
solutions for micst situations.

Definition 2. An interval solution F is an interval cost monotonic solution if for
all micst situations W,W ′ ∈ IWN0 such that W (e) 4 W ′(e) for each e ∈ EN0 it
holds that Fi(W ) 4 Fi(W

′) for each i ∈ N .

We prove in Theorem 7 that interval obligation rules are interval cost monotonic;
the main step is the following lemma whose proof is straightforward.

Lemma 1. Let Ô be an obligation map on Θ(N0) and let W ∈ IWN0 . Let ē ∈ EN0

and let h ≻ W (ē) be such that there is no e ∈ EN0 with W (ē) ≺ W (e) ≺ h.
Define W̃ ∈ IWN0 by W̃ (e) := W̃ (e) if e ∈ EN0\ {ē} , and W̃ (ē) = h. Then,
φÔ(W̃ ) < φÔ (W ) .

The proofs of the following theorems are straightforward (see Tijs et.al., 2006).

Theorem 1. Interval obligation rules are interval cost monotonic.

Theorem 2. Let Ô be an obligation map on Θ(N0) and let φÔ the interval obliga-
tion rule with respect to Ô, and W ∈ IWN0 . Then the table [φÔS (W|S0

)]S∈2N\{∅} is
a pmias for the micst game < N, ĉW > .

From Theorem 8 and the definition of a pmias, it follows that interval obligation
rules provide interval cost allocations which are interval core elements of the game
< N, ĉW > .

Now, we give an example of interval cost monotonicity and pmias.

Example 3. Consider again the micst situation < N0,W > as depicted in Figure 1.
Then, as the interval obligation rule φÔ(W ) previously introduced, applied to each
micst situation < S0,W|S0

>, provides the following population monotonic interval
allocation scheme:

[φÔS (W|S0
)]S∈2N\{∅} =





S
(123)
(12)
(13)
(23)
(1)
(2)
(3)

1 2 3
[16 4

6 , 21
2
6 ] [14

1
6 , 17

5
6 ] [14

1
6 , 17

5
6 ]

[17 1
2 , 22] [17 1

2 , 22] ∗
[20, 24] ∗ [25, 28]
∗ [17, 21] [17, 21]

[20, 24] ∗ ∗
∗ [24, 29] ∗
∗ ∗ [30, 33]

.

5. Conclusions and outlook

This paper considers the class of interval obligation rules and studies their interval
cost monotonicity properties. The interval obligation rules are interval cost mono-
tonic and induce a pmias. The most important result of this study is, as already
stated in Remark 3, if the cost of the edges connecting to source is the cheapest
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cost, then the interval obligation rule equals the interval Bird rule which is defined
by Alparslan Gök et.al., 2014.

Before closing we note that the obtained results can be extended to Network
Steiner problem by using Kirzhner et.al., 2012. The Steiner tree problem is super-
ficially similar to the minimum spanning tree problem. The difference between the
Steiner tree problem and the minimum spanning tree problem is that, in the Steiner
tree problem, extra intermediate vertices and edges may be added to the graph in
order to reduce the length of the spanning tree.
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