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Abstract We consider the noncooperative zero-sum game, related with the
competitions. Players submit the competition projects, that are character-
ized by a finite set of parameters. The arbitrator or arbitration committee
uses a stochastic procedure with the probability distribution to determine
the most preferred project. This distribution is known to all participants.
Payoff ot the winner depend on the parameters of his project. The three-
dimensional mathematical model of this problem is constructed, which is
then extended to the multi-dimensional case. The equilibria in the games
with four and n persons are found, as well as the corresponding payoffs are
computed.
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game, Nash equilibrium.

1. Introduction

Recently in the search for performer of any work or any service provider, tenders
are widely used. A lot of companies participate in it, both large and just develop-
ing. Tender means the competition form of bargaining. A competition presupposes
rivalry among participants for the right to carry out their projects. This means that
in the market there are several potential performers with similar capabilities, and
the initiator’s of tender offer is interesting for them. As a result, both sides stand to
benefit: the organizer receives the best performer, and performer gets a big contract
and good profit.

This paper presents a multi-dimensional game-theoretic model of the tender
as the competition of projects. The n persons participate in the competition. Their
proposals, or projects, are characterized by a finite set of parameters. As parameters
such project can include, for example, description of cost, time of implementation,
number of participants, etc.

2. The model

2.1. Game with Four Players

We consider a noncooperative non-zero sum game, related with competition. As-
sume there are four persons, or players. They represent competition projects, char-
acterized by a set of three parameters (x, y, z). Let the player I seeks for maximize
the amount of x+ y+ z, and players II, III and IV - for minimize the parameter x,
y or z, respectively.

An arbitrator or arbitration committee considers proposals received and selects
one of projects, using the stochastic procedure with the probability distribution

f(x, y, z) = g(x) · g(y) · g(z), where g(x) =
1√
2π
· e−x2/2,
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which is known to participants. In this case the winner receives payoff, which de-
pends on the parameters of project. In the paper (Mazalov and Tokareva, 2010) an
equilibrium in competition of projects among three persons on the plane is obtained.

Because of the symmetry of the model, the optimal strategies of players will be
found in this form
player I: (c, c, c),
player II: (−a, 0, 0),
player III: (0,−a, 0),
player IV: (0, 0,−a).

Fix these proposals of players II, III and IV. Let player I submit the project
(x1, y1, z1), where x1, y1, z1 > 0. Then the space of projects is split into four sub-
spaces, limited by the planes: α1 : y = x, α2 : z = x, α3 : z = y,

α4 : z = −x1 + a

z1
x− y1

z1
y +

x21 + y21 + z21 − a2
2z1

,

α5 : z = −x1
z1
x− y1 + a

z1
y +

x21 + y21 + z21 − a2
2z1

,

α6 : z = − x1
z1 + a

x− y1
z1 + a

y +
x21 + y21 + z21 − a2

2(z1 + a)
.

These planes intersect at the point with coordinates x = y = z = x0, where

x0 =
x21 + y21 + z21 − a2
2(x1 + y1 + z1 + a)

.

Consider the subspace V1, bounded by the planes α4, α5 and α6. Depict the
projection of lines, which considered planes intersect, on the planeXOY (Fig. 1) and
the mutual arrangement of all obtained regions in space (Fig. 2). If the arbitrator’s
decision is in the region V1, player I wins, and his payoff is

H1(x1, y1, z1) = (x1 + y1 + z1) · µ(V1), (1)

where µ(V1) is measure of the set V1, which is equal to

µ(V1) =

x0∫

−∞

g(x)dx

x∫

−∞

g(y)dy

∞∫

q(x,y)

g(z)dz +

x0∫

−∞

g(x)dx

u(x)∫

x

g(y)dy

∞∫

p(x,y)

g(z)dz+

+

x0∫

−∞

g(x)dx

∞∫

u(x)

g(y)dy

∞∫

r(x,y)

g(z)dz +

∞∫

x0

g(x)dx

v(x)∫

−∞

g(y)dy

∞∫

q(x,y)

g(z)dz+

+

∞∫

x0

g(x)dx

∞∫

v(x)

g(y)dy

∞∫

r(x,y)

g(z)dz. (2)

There

u(x) = −x1 + z1 + a

y1
x+

x21 + y21 + z21 − a2
2y1

,
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Fig. 1: Projection on the plane XOY

v(x) = − x1
y1 + z1 + a

x+
x21 + y21 + z21 − a2
2(y1 + z1 + a)

,

p(x, y) = −x1 + a

z1
x− y1

z1
y +

x21 + y21 + z21 − a2
2z1

,

q(x, y) = −x1
z1
x− y1 + a

z1
y +

x21 + y21 + z21 − a2
2z1

,

r(x, y) = − x1
z1 + a

x− y1
z1 + a

y +
x21 + y21 + z21 − a2

2(z1 + a)
.

From equations (1) and (2) we obtain

H(x1, y1, z1) = (x1 + y1 + z1) ·


1−

x0∫

−∞

g(x)dx




x∫

−∞

g(y) ·G(q(x, y))dy+

+

u(x)∫

x

g(y) ·G(p(x, y))dy +
∞∫

u(x)

g(y) ·G(r(x, y))dy


−

−
∞∫

x0

g(x)dx




v(x)∫

−∞

g(y) ·G(q(x, y))dy +
∞∫

v(x)

g(y) ·G(r(x, y))dy





 , (3)
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Fig. 2: Schematic representation of the regions

where G(x) is the normal distribution function. The function (3) has a maximum,
depending on a, at the point x1 = y1 = z1 = c.

Suppose now that player I selects the strategy (c, c, c), while the offers of players
II and III remain the same: (−a, 0, 0) and (0,−a, 0), respectively, and player IV
offers (0, 0,−b). We find the best response of player II to the strategies of players
I, III and IV. The space of projects splits into subspaces. Consider the boundary
subspaces of V2:

α1 : y = x,

α2 : z =
a

b
x− b2 − a2

2b
,

α4 : z = −c+ a

c
x− y + 3c2 − a2

2c
.

The abscissa of the intersection point of these three planes is

m =

(
3c2 − a2

2c
+
b2 − a2

2b

)
· 1

2 + a/b+ a/c
.

In the region under consideration player II wins, and his payoff is equal

H2(a) = a · µ(V2) = a ·




m∫

−∞

g(x)dx

u(x)∫

x

g(y)dy

s(x,y)∫

w(x)

g(z)dz


 =
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= a ·




m∫

−∞

g(x)dx

u(x)∫

x

(G(w(x)) −G(s(x, y))) · g(y)dy


 , (4)

where

w(x) =
a

b
x− b2 − a2

2b
,

s(x, y) = −c+ a

c
x− y + 3c2 − a2

2c
.

Using symmetry, we can conclude that minimum of the function (4) is reached
when a = b. The optimal parameters a and c can be found approximately by the
methods of numerical simulation

a = b ≈ 1.5834, c ≈ 1.3207.

In equilibrium the players get payoffs

H1 ≈ 0.9949, H2 = H3 = H4 ≈ 0.3952

with probabilities, respectively

µ(V1) ≈ 0.2511, µ(V2) = µ(V3) = µ(V4) ≈ 0.2496.

2.2. Game with n+1 Players

Suppose now that n+1 players submit their projects for the competition, which are
characterized by a set of n parameters (u1, u2, ..., un). Let player I still interested in
maximizing the amount of u1 + u2 + ... + un, and the other players, starting from
the second, seek for minimize the parameter ui−1, where i = 1, n is the number of
player.

Present the stochastic procedure with the probability distribution for the arbi-
trator as follows

f(u1, u2, ..., un) =

n∏

i=1

g(ui), where g(x) =
1√
2π
· e−x2/2,

We assume that this distribution is known to all participants of the competi-
tion. According to the symmetry of the model, the optimal strategies of players
have the form of n-dimensional vector (u1, u2, ..., un). Suppose that for player I the
components of this vector are the same u1 = u2 = ... = un = c, and for all other
players such vector has only one non-zero component ui−1 = −a, where i = 1, n is
the number of player.

Fix these proposals of players, from the second player. Let player I submit the
project (x1, x2, ..., xn), where x1, x2, ..., xn > 0. Then the n-dimensional space of
projects is split into n+ 1 subspaces, limited by hyperplanes:

π1 : (x1 + a)u1 + x2u2 + ...+ xnun =
1

2

(
n∑

i=1

x2i − a2
)
,

π2 : x1u1 + (x2 + a)u2 + ...+ xnun =
1

2

(
n∑

i=1

x2i − a2
)
,
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...

πn : x1u1 + x2u2 + ...+ (xn + a)un =
1

2

(
n∑

i=1

x2i − a2
)
.

πn+1 : u1 = u2,

πn+2 : u1 = u3,

...

πn+k : un−1 = un, where k =
n(n− 1)

2
.

All these hyperplanes intersect at the point with coordinates u1 = u2 = ... =
un = u0, where

u0 =

n∑
i=1

x2i − a2

2

(
n∑

i=1

xi + a

) .

Consider the subspace V1, bounded by the n-dimensional planes π1, π2, ..., πn.
If the arbitrator’s decision is in the region V1, player I wins, and his payoff is

H1(x1, x2, ..., xn) = (x1 + x2 + ...+ xn) · µ(V1), (5)

where mu(V1) is the measure of V1, which is equal to

µ(V1) =

u0∫

−∞

u1∫

−∞

∞∫

α3(u1,u2)

...

∞∫

π1(u1,...,un)

n∏

i=1

g(ui) du1...dun + ...+

+

u0∫

−∞

l1(u1)∫

u1

α2(u1,u2)∫

u1

...

∞∫

π2(u1,...,un)

n∏

i=1

g(ui) du1...dun + ...+

+

u0∫

−∞

u1∫

−∞

α3(u1,u2)∫

u2

...

∞∫

π3(u1,...,un)

n∏

i=1

g(ui) du1...dun + ...+

+

u0∫

−∞

u1∫

−∞

u2∫

−∞

...

∞∫

π4(u1,...,un)

n∏

i=1

g(ui) du1...dun + ...+

+

∞∫

u0

∞∫

l2(u1)

∞∫

α3(u1,u2)

...

ωn−1(u1,...,un−1)∫

−∞

∞∫

πn(u1,...,un)

n∏

i=1

g(ui) du1...dun. (6)

There

π1 ∩ π2 = ω1 : (x1 + x2 + a)u1 + x3u3 + ...+ xnun =
1

2

(
n∑

i=1

x2i − a2
)
,

...
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π1 ∩ πi+1 = ωi : x1u1 + x2u2 + ...+ xi−1ui−1 + (xi + xi+1 + a)ui+

+xi+2ui+2 + ...+ xnun =
1

2

(
n∑

i=1

x2i − a2
)
,

...

π1 ∩ πn = ωn−1 : x1u1 + x2u2 + ...+ (xn−1 + xn + a)un =
1

2

(
n∑

i=1

x2i − a2
)
,

...

α1 ∩ α2 = l1 :

(
n−1∑

i=1

xi + a

)
u1 + xnun =

1

2

(
n∑

i=1

x2i − a2
)
,

α1 ∩ α3 = l2 : x1u1 +

(
n∑

i=2

xi + a

)
un =

1

2

(
n∑

i=1

x2i − a2
)

The function (6) has a maximum, depending on a, at the point x1 = x2 = ... =
xn = c. Suppose now that player I chooses a strategy (c, c, ..., c), while the offers of
the players with numbers i = 2, n remain the same: component ui of the vector for
player i is −a, the remaining components are equal to zero, and the player n + 1
offers (0, ..., 0,−b). We find the best response of player II to the strategies of players
with numbers i = 1 and i = 3, n+ 1. The space of projects is splits into subspaces.
Consider the boundary subspaces of V2:

π1 : (c+ a)u1 +

n∑

i=2

cui =
nc2 − a2

2
,

πn+1 : u1 = u2,

...

π2n−2 : u1 = un−1,

π2n−1 : un =
a

b
u1 −

b2 − a2
2b

.

The abscissa of the intersection point of these n planes is

m =

(
nc2 − a2

2c
+
b2 − a2

2b

)
· 1

a/b+ a/c+ n− 1
.

In the region under consideration player II wins, and his payoff is equal

H2(a) = a · µ(V2) =

= a ·
m∫

−∞

l1(u1)∫

u1

α1(u1,u2)∫

u2

...

ω1(u1,...,un−2)∫

u2

ρ(u1,...,un)∫

φ(u1)

n∏

i=1

g(ui) du1...dun. (7)

where

φ(u1) =
a

b
u1 −

b2 − a2
2b

,
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ρ(u1, ..., un−1) = −
c+ a

c
u1 −

n−1∑

i=2

ui +
nc2 − a2

2c
.

Using symmetry, we can conclude that the minimum of the function (7) is
reached when a = b. Thus, for large n the optimal parameters a and c can be
approximately estimated as follows:

a = b ≈ n+ 1

n
+ ε, ãäå ε > 0, c ≈ n+ 1

n
.

In equilibrium the players get payoffs

H1 ≈ 1, H2 = H3 = H4 ≈
1 + δ

n
, δ > 0

with probabilities, respectively

µ(V1) ≈ µ(V2) = µ(V3) = µ(V4) ≈
1

n+ 1
.

3. Conclusion

We present an extension of the model, proposed in (Mazalov and Tokareva, 2010),
on the three-dimensional and multi-dimensional cases. The optimal solutions is
found by the methods of numerical modeling. A similar approach has been widely
used for solving zero-sum game problems on the line. In the papers (Mazalov et al.,
2012; Kilgour, 1994) equilibriums in games involving one arbitrator are obtained,
and in the paper (Mazalov, 2010) involving arbitration committee. Under real con-
ditions of market the experts of competition committee act as the arbitrators. They
assess the expected project for each of the parameters, and on the basis of this
assessment the probability distribution, corresponding to the opinion of experts,
is formed. Then the players submit their proposals for the competition, and the
committee can immediately reject the projects, that are dominated by the other
projects.
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