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Abstract The proportional prenucleolus is defined on the class of all posi-
tive TU games with finite sets of players. The set of axioms used by Sobolev
(1975) for axiomatic justification of the prenucleolus is modified. It is proved
that the proportional prenucleolus is a unique value that satisfies 4 axioms:
efficiency, anonymity, proportionality, and proportional DM consistency. The
proof is a modification of the proof of Sobolev’s theorem.
For strictly increasing concave function U defined on (0,+∞) with range
equal to R1, a generalization of the proportional prenucleolus is called U–
prenucleolus. The axioms proportionality and proportional DM consistency
are generalized for its justification.
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1. Introduction

For cooperative TU games the nucleolus was defined by Schmeidler, 1969. First it
was used for constructive proof of existence of the bargaining set M i

1. The prenu-
cleolus was defined in Sobolev, 1975 and later in Maschler, Peleg, Shapley, 1979. A
unique axiomatic justification of the prenucleolus was given by Sobolev, 1975. He
proved that the prenucleolus is a unique value that satisfies 4 axioms: efficiency,
anonymity, covariance, and Davis-Maschler consistency. Since that time there ap-
peared only some weakening of his axioms (Orshan, 1993, Peleg and Sudholter,
2007).

For games with positive characteristic function, the proportional prenucleolus,
where excesses in the "classical" case are replaced by ratios of coalitional claims to
total shares of players in these coalitions, is natural. We propose a modiication of
Sobolev’s set of axioms, where covariance is replaced by proportionality and Davis-
Maschler consistency is replaced by proportional DM consistency. The proof is a
modification of the proof of Sobolev.

For strictly increasing concave function U , U–prenucleolus is a generalization
of the proportional prenucleolus, the generalization of the proportionality axiom is
called U–excess property, and the generalization of the proportional DM consistency
is called U–DM consistency. If U(t) = ln(t), then U–prenucleolus is the proportional
prenucleolus and the axioms for it justification coincide with axioms for justification
of the proportional prenucleolus.

The paper is organized as follows. Section 2 contains the main definitions and the
main statements of the paper. The results of Sobolev that will be used in the proof
are described in Section 3. The proof of axiomatic justification of U–prenucleolus is
given in Section 4.
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2. Definitions and main theorems

Consider a class of positive TU games

G+ = {(N, v) : |N | <∞, v(S) > 0 for ∅ 6= S ⊂ N}.

Avalue on G+ is a map that assigns to every (N, v) ∈ G+ a vector x ∈ R
|N |
++.

A preimputation of (N, v) ∈ G+ is a vector x ∈ R
|N |
++ such that

∑
i∈N xi = v(N).

For S ⊂ N , denote x(S) =
∑

i∈S xi.
For preimputation z of (N, v) ∈ G+, let the collection of coalitions {S : S ⊂

N,S 6= ∅} be enumerated such that z(Si)/v(Si) ≤ z(Si+1)/v(Si+1). Denote

θ((N, v), z) = {z(Si)/v(Si)}2
|N|−1

i=1 .

The preimputation y of (N, v) belongs to the proportional prenucleolus of (N, v) iff

θ((N, v), y) ≥lex θ((N, v), z) for all preimputations z of (N, v).

For each (N, v) ∈ G+, the proportional prenucleolus of (N, v) is a singleton. It
follows from the results of Vilkov, 1974, Justman, 1977, Sobolev, 1975.

The following axiomatization of the proportional prenucleolus is a modification
of Sobolev’s axiomatization of the prenucleolus (Sobolev, 1975, see also Peleg and
Sudholter, 2007).

Let a value f be defined on G+. Consider the following properties of f .
Efficiency.

∑
i∈N fi(N, v) = v(N).

Anonymity. Let for games (N, v) and (N ′, w) there exists a bijection π : N →
N ′ such that v(S) = w(πS) for all S ⊂ N . Then fi(N, v) = fπi(N

′, w).

Proportionality. For any games (N, v), (N,w) ∈ G+, any x, y ∈ R
|N |
++,

x(S)

v(S)
=
y(S)

w(S)
for all S ⊂ N

implies
x = f(N, v) iff y = f(N,w).

The proportionality property means that the value f depends only on the values
of proportional excesses. It was used in Yanovskaya, 2002 for axiomatization of some
proportional solutions instead of covariance property.

Proportional DM consistency. Let x = f(N, v), then for each S ⊂ N , S 6= ∅,
xS = f(S, vx,S), where

vx,S(P ) =

{
v(N)− x(N \ S) for P = S,

maxT⊂N\S
v(P∪T )x(P )

x(P∪T ) for P ⊂ S, P 6= S.

The proportional DM consistency is a modification of Davis-Maschler consistency.

Theorem 1. The proportional prenucleolus is a unique value defined on G+ that
satisfies efficiency, proportionality, anonymity, and proportional DM consistency
properties.
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The generalization of this theorem will be proved in Section 4.

Now consider a generalization of the proportional prenucleolus. Let U be a
strictly increasing concave function defined on (0,+∞) with U((0,+∞)) = R1.

For preimputation z of (N, v) ∈ G+, let the collection of coalitions {S : S ⊂
N,S 6= ∅} be enumerated such that

U(z(Si))− U(v(Si)) ≤ U(z(Si+1))− U(v(Si+1)).

Denote
θ((N, v), z) = {U(z(Si))− U(v(Si))}2

|N|−1
i=1 .

The preimputation y of (N, v) belongs to the U–prenucleolus of (N, v) iff

θ((N, v), y) ≥lex θ((N, v), z) for all preimputations z of (N, v).

As U is a concave function on (0,+∞), the functions U(x(S)) are continuous
for all S, hence for each (N, v) ∈ G+, the U–prenucleolus of (N, v) is a nonempty
set. Moreover, it is a singleton. The proof is the same as in the case of "classical"
prenucleolus.

The proportionality and the proportional DM consistency properties are gener-
alized as follows.

U–excess property. For any games (N, v), (N,w) ∈ G+, any x, y ∈ R
|N |
++,

U(x(S)) − U(v(S)) = U(y(S))− U(w(S)) for all S ⊂ N,S 6= ∅
implies

x = f(N, v) iff y = f(N,w).

The proportionality axiom is equvalent to ln–excess property.

U–DM consistency. Let x = f(N, v), then for each S ⊂ N , S 6= ∅, xS =
f(S, vx,S), where

vx,S(P ) =





0 for P = ∅,
v(N)− x(N \ S) for P = S,
U−1

(
U(x(P )) + maxT⊂N\S [U(v(P ∪ T ))− U(x(P ∪ T ))]

)

for P ⊂ S, P 6∈ {S, ∅}.
It means that

U(vx,S(P )) − U(x(P )) = max
T⊂N\S

[U(v(P ∪ T ))− U(x(P ∪ T ))].

Note that vx,S is well defined. Indeed, since U is a strictly increasing and continuous
function with range equal to R1, U−1(t) is well defined for all t ∈ R1.

U–DM consistency is a modification of Davis-Maschler consistency. The propor-
tional DM consistency is equivalent to ln–DM consistency.

Theorem 2. Let U be a strictly increasing concave continuous function defined on
(0,+∞) with U((0,+∞)) = R1.

The U–prenucleolus is a unique value defined on G+ that satisfies efficiency,
U–excess property, anonymity, and U–DM consistency conditions.

This theorem will be proved in Section 4.
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3. Sobolev’s construction.

Let N be a finite set of players.
A collection D of coalitions is a balanced collection on N if there exist positive

numbers {δS}S∈D satisfying
∑

S∈D:i∈S

δS = 1 for all i ∈ N.

The vector {δS}S∈D is called a vector of balancing weights of D.

A coalitional family is a pair (N, {Bl}l∈L), where
1) N and L are finite nonempty sets,
2) Bl ⊂ 2N for all l ∈ L,
3) Bl ∩ Bt = ∅ for l, t ∈ L, l 6= t.

Let H = (N, {Bl}l∈L) be a coalitional family. A permutation π of N is a sym-
metry of H if for every l ∈ L and every S ∈ Bl, π(S) ∈ Bl. H is transitive if for
every pair (i, j) ∈ N ×N there exists a symmetry π of H such that π(i) = j.

If N is a finite set, i ∈ N , and B ⊂ 2N , then denote Bi = {S ∈ B : i ∈ S}.
Let Hi = (Ni, {Bi,l}l∈Li

), i = 1, 2 be coalitional families. The product of H1 and
H2 is the coalitional family defined by
N⋆ = N1 ×N2,
L⋆ = {(1, l) : l ∈ L1} ∪ {(2, l) : l ∈ L2},
B(1,l) = {S ⊂ N⋆ : S = T ×N2, T ∈ B(1,l)} for all l ∈ L1,
B(2,l) = {S ⊂ N⋆ : S = N1 × T, T ∈ B(2,l)} for all l ∈ L2.

Let N be a set of players. Let Bk, k = 1, . . . , p be balanced on N collections of
coalitions such that

Bi ⊂ Bi+1 for all i < p and Bp = 2N \ {∅}.

Fix k ∈ {1, . . . , p}. The vector of balancing weights {δS}S∈Bk
of Bk can be

chosen such that δS = mS/m for S ∈ Bk, where the numbers m and mS are natural
numbers. Hence ∑

S∈Bi
k

mS = m for all i ∈ N.

Denote t =
∑

S∈Bk
mS .

The players i, j ∈ N are equivalent with respect to Bk if Bi
k = Bj

k.
Let Hi be the equivalence class of player i.
Denote r = max{|Hi| : i ∈ N}.
Sobolev, 1975 proved that there exists a coalitional family (N⋆

k ,B⋆
k) associated

with (N,Bk) with the following properties.
N ⊂ N⋆

k and |N⋆
k | = rCm

t .

B⋆
k = {T ⋆

S,q : S ∈ Bk, 1 ≤ q ≤ mS}.
The sets T ⋆

S,q, S ∈ Bk, 1 ≤ q ≤ mS are distinct.

T ⋆
S,q ∩N = S for all S ∈ Bk, 1 ≤ q ≤ mS ;
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|B⋆i
k | = m for each i ∈ N⋆

k ;

|H⋆
i | = r for each i ∈ N⋆

k ,

where H⋆
i = {j ∈ N⋆

k : B⋆i
k = B⋆j

k }.
Denote the product of coalitional families (N⋆

k ,B⋆
k), k = 1, . . . , p by

H =
(
N̂ , {B̂l}l∈{1,...,p}

)
.

Thus N̂ =
∏p

k=1N
⋆
k and for every k = 1, . . . , p,

B̂k = {Ŝ ⊂ N̂ : Ŝ = N⋆
1 × . . .×N⋆

k−1 × S ×N⋆
k+1 × . . .×N⋆

p for some S ∈ B⋆
k}.

Define B̂p+1 = 2N̂ \⋃p
k=1 B̂k,

Ĥ =
(
N̂ , {B̂l}l∈{1,...,p+1}

)
.

Sobolev proved that Ĥ is a transitive coalitional family. (see Sobolev, 1975, pp.137–
145 or Peleg and Sudholter, 2007, pp.109-114.)

4. Proof of the main theorem

4.1. Auxiliary results

Let (N, v) be a cooperative TU game, x be a preimputation of (N, v), U be a
function defined on R1. For every α ∈ R1, denote

D(U,N, v, x, α) = {S ⊂ N : U(x(S)) − U(v(S)) ≤ α, S 6= ∅}.

We use the following modification of the theorem proved by Kohlberg, 1971.

Theorem 3. Let (N, v) be a cooperative TU game, U be a strictly increasing con-
cave function defined on R1 or on (0,+∞). A preimputation x of (N, v) is the
U–prenucleolus of (N, v) if and only if each nonempty D(U,N, v, x, α) is a balanced
collection of coalitions on N .

Proof. Since U is a strictly increasing continuous concave function, the U–prenucleolus
exists and it is a singleton.

Formally, Kohlberg proved this theorem for the case U(t) = t, but the proof in
Maschler, Solan, Zamir, 2013 (pp.816-821) is valid for our case since U is a strictly
increasing function. ⊓⊔

Lemma 1. Let U be a strictly increasing concave function defined on (0,+∞) with
U((0,+∞)) = R1.

Then the U–prenucleolus satisfies efficiency, U–excess property, anonymity, and
U–DM consistency conditions.
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Proof. Efficiency and anonymity properties of the U–prenucleolus are evident. U–
excess property follows from Kohlberg theorem. Let us check U–DM consistency.

Let x be U–prenucleolus of (N, v), S ⊂ N . For α ∈ R1, denote

D(U, S, vx,S , xS , α) = {P ⊂ S : U(x(P )) − U(vx,S(P )) ≤ α, P 6= ∅}.

Let D(U, S, vx,S , xS , α) 6= ∅. By Kohlberg theorem, we need to prove that
D(U, S, vx,S , xS , α) is a balanced collection of coalitions on S. By the definition
of vx,S, D(α) = D(U,N, v, x, α) 6= ∅ and for each P ∈ D(U, S, vx,S, xS , α), there
exists Q ∈ D(α) such that Q ⊃ P . By Kohlberg theorem, D(α) is a balanced collec-
tion of coalitions on N . Let {δQ}Q∈D(α) be a vector of balancing weights of D(α)
on N . For P ∈ D(U, S, vx,S , xS , α), take

λP =
∑

Q∈D(α): Q⊃P

δQ,

then {λP }P∈D(U,S,vx,S,xS,α) is a vector of balancing weights of D(U, S, vx,S , xS , α).
⊓⊔

4.2. Proof of Theorem 2.

Proof. By Lemma 1, U–prenucleolus satisfies 4 axioms.
Let f be a value defined on G+ that satisfies efficiency, U–excess property,

anonymity, and U–DM consistency conditions. Let (N, v) ∈ G+ and x be the U–
prenucleolus of (N, v). We have to prove that f(N, v) = x. Define (N,w) by

w(S) =

{
0 for S = ∅,
U−1 [U(|S|) + U(v(S))− U(x(S))] for S 6= ∅.

Then

U(x(S)) − U(v(S)) = U(|S|)− U(w(S)) for all S ⊂ N,S 6= ∅.

In view of Kohlberg theorem, U–excess property of the U–prenucleolus implies that
the vector 1|N | = (1, 1, . . . , 1) ∈ R|N | is the U–prenucleolus of (N,w). By U–excess
property of f , it is sufficient to prove that f(N,w) = 1|N |.

Let {U(|S|)− U(w(S)) : S ⊂ N,S 6= ∅} = {µ1, . . . , µp}. Denote

Bk = {S ⊂ N : U(|S|)− U(w(S)) ≤ µk, S 6= ∅} for all k = 1, . . . , p.

By Kohlberg’s theorem, Bk is a balanced collection on N . Take Sobolev’s construc-
tion and notations for Bk, k = 1, . . . , p.

Define (N̂ , ŵ) as follows.

ŵ(S) =





0 if S = ∅,
|N̂ | if S = N̂,

U−1 [U(|S|)− µk] if S ∈ B̂k \ {∅, N̂} for k = 1, . . . , p,

U−1 [U(|S|)− µp] if S ∈ B̂p+1 \ {∅, N̂}.

As Ĥ is transitive, for each i, j ∈ N̂ there exists a permutation π of N̂ such that
π(i) = j and S ∈ B̂k implies π(S) ∈ B̂k for all k = 1, . . . , p + 1. As |S| = |π(S)|,
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ŵ(S) = ŵ(π(S)) for all S ⊂ N̂ , therefore by efficiency and anonymity properties of
f , we get

f(N̂, ŵ)i = 1 for all i ∈ N̂ .
Let

N̂0 = {̂i = (i, . . . , i) ∈ N̂ : i ∈ N}.

Consider (N̂0, ŵ0), where

ŵ0(P ) =





0 for P = ∅,
|N̂0| for P = N̂0,

U−1
(
U(|P |) + maxT⊂N̂\N̂0 [U(ŵ(P ∪ T ))− U(|P ∪ T |)]

)

for P ⊂ N̂0, P 6= N̂0, ∅.

Then by U–DM consistency, f(N̂0, ŵ0) = (1, . . . , 1) ∈ R|N |.

Let S ⊂ N , denote Ŝ = {̂i = (i, . . . , i) ∈ N̂ : i ∈ S}. We prove that

w(S) = ŵ0(Ŝ). (1)

If S ∈ {N, ∅} then (1) is valid. Let S 6= N, ∅.
Step 1. Let us prove that ŵ0(Ŝ) ≥ w(S). There exists k ≤ p such that µk =

U(|S|) − U(w(S)), i.e., S ∈ Bk. By the definition of B⋆
k, there exists S⋆ ∈ B⋆

k such
that S⋆ ∩N = S. Take

Q̂ = N⋆
1 × . . .×N⋆

k−1 × S⋆ ×N⋆
k+1 × . . .×N⋆

p ,

then Q̂ ∈ B̂k and ŵ(Q̂) = U−1
[
U(|Q̂|)− µk

]
. As Ŝ ⊂ Q̂ and U is a strictly increas-

ing function,

U(ŵ0(Ŝ)) ≥ U(|Ŝ|) + U(ŵ(Q))− U(|Q̂|) = U(|S|)− µk = U(w(S)),

hence ŵ0(Ŝ) ≥ w(S).

Step 2. We prove that ŵ0(Ŝ) ≤ w(S). Let T̂ ⊂ N̂ \ N̂0 and

U(ŵ0(Ŝ)) = U(|Ŝ|) + U(ŵ(Ŝ ∪ T̂ ))− U(|Ŝ ∪ T̂ |). (2)

Let k0 = min{k : S ∈ Bk}.
If Ŝ ∪ T̂ ∈ B⋆

p+1 then

U(|Ŝ ∪ T̂ |)− U(ŵ(Ŝ ∪ T̂ )) = µp ≥ µk0 = U(|S|)− U(w(S)),

and, by (5), this implies ŵ0(Ŝ) ≤ w(S).

Now suppose that Ŝ ∪ T̂ ∈ B⋆
k, where k ≤ p. Then there exists S⋆ ∈ B⋆

k such
that

Ŝ ∪ T̂ = N⋆
1 × . . .×N⋆

k−1 × S⋆ ×N⋆
k+1 × . . .×N⋆

p .

Then S = S⋆ ∩N .
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Indeed, if i ∈ S then

î = (i, . . . , i) ∈ Ŝ ⊂ Ŝ ∪ T̂ ,

hence i ∈ S⋆, so S ⊂ S⋆ ∩N .
If j ∈ S⋆ ∩N then ĵ = (j, . . . , j) ∈ Ŝ ∪ T̂ , but T̂ ⊂ N̂ \ N̂0 implies ĵ 6∈ T̂ , hence

ĵ ∈ S and S⋆ ∩N ⊂ S.
As S = S⋆ ∩N and S⋆ ∈ B⋆

k, we have S ∈ Bk, hence k0 ≤ k. Then

U(|Ŝ ∪ T̂ |)− U(ŵ(Ŝ ∪ T̂ )) = µk ≥ µk0 = U(|S|)− U(w(S)),

and by (2) this implies ŵ0(Ŝ) ≤ w(S).
Thus, w(S) = ŵ0(Ŝ) for all S ⊂ N .
Take the following bijection π : N → N̂0. π(i) = (i, . . . , i) ∈ R|N |. As was

proved above, w(S) = ŵ0(πS) for all S ⊂ N Anonymity of f and f(N̂0, ŵ0) =
(1, . . . , 1) ∈ R|N | implies f(N,w)i = 1 for all i ∈ N . This completes the proof of
Theorem 2. ⊓⊔
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