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Abstract A non-cooperative m-person game which is related to the queue-
ing system M/M/m is considered. There are n competing transport com-
panies which serve the stream of customers with exponential distribution
with parameters µi, i = 1, 2, ..., m respectively. The stream forms the Pois-
son process with intensity λ. The problem of pricing and determining the
optimal intensity for each player in the competition is solved.
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1. Introduction

A non-cooperative n-person game which is related to the queueing system M/M/m
is considered. There are n competing transport companies, which serve the stream
of customers with exponential distribution with parameters µi, i = 1, 2, ...,m re-
spectively. The stream forms the Poisson process with intensity λ. Suppose that

λ <
m∑
i=1

µi. Let companies declare the price for the service. Customers choose the

service with minimal costs. This approach was used in the Hotelling’s duopoly
(Hotelling, 1929; D’Aspremont, Gabszewicz, Thisse, 1979; Mazalova, 2012) to de-
termine the equilibrium price in the market. But the costs of each customer are
calculated as the price for the service and expected time in queue. Thus, the in-
coming stream is divided into m Poisson flows with intensities λi, i = 1, 2, ...,m,

where
m∑
i=1

λi = λ. So the problem is following, what price for the service and

the intensity for the service is better to announce for the companies. Such ar-
ticles as (Altman, Shimkin, 1998; Levhari, Luski, 1978; Hassin, Haviv, 2003), and
(Mazalova, 2013; Koryagin 2008; Luski, 1976) are devoted to the similar game-
theoretic problems of queuing processes.

2. The competition of two players

Consider the following game. There are two competitive transport companies which
serve the stream of customers with exponential distribution with parameters µ1

and µ2 respectively. The transport companies declare the price of the service c1 and
c2 respectively. So the customers choose the service with minimal costs, and the
incoming stream is divided into two Poisson flows with intensities λ1 and λ2, where
λ1 + λ2 = λ. In this case the costs of each customer will be

ci +
λi

µi(µi − λi)
, i = 1, 2,
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where λi/µi(µi − λi) is the expected time of staying in a queue (Taha, 2011). So,
the balance equations for the customers for choosing the service are

c1 +
λ1

µ1(µ1 − λ1)
= c2 +

λ2
µ2(µ2 − λ2)

.

So, the payoff functions for each player are

H1(c1, c2) = λ1c1, H2(c1, c2) = λ2c2,

We are interested in the equilibrium in this game.

Nash equilibrium. For the fixed c2 the Lagrange function for finding the best
reply of the first player is defined by

L1 = λ1c1 + k

(
c1 +

λ1
µ1(µ1 − λ1)

− c2 −
λ2

µ2(µ2 − λ2)

)
+ γ(λ1 + λ2 − λ). (1)

For finding the local maxima by differentiating (1) we get

∂L1

∂c1
= λ1 + k = 0

∂L1

∂λ1
= c1 +

k

µ1(µ1 − λ1)
+

kλ1
µ1(µ1 − λ1)2

+ γ = 0

∂L1

∂λ2
= − k

µ2(µ2 − λ2)
− kλ2
µ2(µ2 − λ2)2

+ γ = 0

from which

c1 = λ1

(
1

µ1(µ1 − λ1)
+

1

µ2(µ2 − λ2)
+

λ1
µ1(µ1 − λ1)2

+
λ2

µ2(µ2 − λ2)2
)
,

Symmetric model. Start from the symmetric case, when the services are the
same, i. e. µ1 = µ2 = µ. It is obvious from the symmetry of the problem, that in
equilibrium c∗1 = c∗2 = c∗ and λ1 = λ2 = λ

2 . So

c∗ =
λ

2

(
2

µ(µ− λ
2 )

+
λ

µ(µ− λ
2 )

2

)
. (2)

So, if one of the players uses the strategy (2), the maximum of payoff of another
player is reached at the same strategy. That means that this set of strategies is
equilibrium.

Asymmetric model. Assume now, that transport services are not equal, i. e.
µ1 6= µ2, suppose that µ1 > µ2. Find the equilibrium in the pricing problem in this
case. The system of equations that determine the equilibrium prices of transport
companies is

c∗1 +
λ1

µ1(µ1 − λ1)
= c∗2 +

λ2
µ2(µ2 − λ2)

c∗1 = λ1

(
1

µ1(µ1 − λ1)
+

1

µ2(µ2 − λ2)
+

λ1
µ1(µ1 − λ1)2

+
λ2

µ2(µ2 − λ2)2
)
,
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c∗2 = λ2

(
1

µ1(µ1 − λ1)
+

1

µ2(µ2 − λ2)
+

λ1
µ1(µ1 − λ1)2

+
λ2

µ2(µ2 − λ2)2
)
,

λ1 + λ2 = λ.

In Table 1 the values of the equilibrium prices with different µ1, µ2 at λ = 10
and are given.

Table 1: The value of (c∗1, c
∗
2), (p

∗
1, p

∗
2) and (λ1, λ2) at λ = 10

µ2

µ1 6 7 8 9 10

7 (c1;c2) (5,41;5,1) (2,5;2,5)
(λ1;λ2) (5,15;4,85) (5;5)

8 (c1;c2) (4,04;3,64) (1,75;1,65) (1,11;1,11)
(λ1;λ2) (5,25;4,75) (5,14;4,86) (5;5)

9 (c1;c2) (3,4;2,98) (1,4;1,26) (0,87;0,82) (0,625;0,625)
(λ1;λ2) (5,33;4,67) (5,27;4,73) (5,14;4,86) (5;5)

10 (c1;c2) (3,06;2,62) (1,21;1,04) (0,73;0,66) (0,52;0,59) (0,4;0,4)
(λ1;λ2) (5,39;4,61) (5,36;4,64) (5.26;4,74) (5,13;4,87) (5;5)

3. The competition of m players.

Let us increase the number of players. There are m competitive transport companies
which serve the stream of customers with exponential distribution with parameters
µi, i = 1, 2, ...,m respectively. The transport companies declare the price of the ser-
vice ci, i = 1, 2, ...,m and the customers choose the service with minimal costs. The
incoming stream is divided into n Poisson flows with intensities λi, i = 1, 2, ...,m,

where
m∑
i=1

λi = λ. Thus, the balance equations for the customers for choosing the

service are

c1 +
λ1

µ1(µ1 − λ1)
= ci +

λi
µi(µi − λi)

, i = 1, ...,m.

The payoff functions for each player are

Hi(c1, ..., ci) = λici, i = 1, ...,m.

Find the equilibrium in this game.For the fixed ci, i = 2, ...,m the Lagrange function
for finding the best reply of the first player is defined by

L1 = c1λ1 +
m∑

i=2

ki

(
c1 +

λ1
µ1(µ1 − λ1)

− ci −
λi

µi(µi − λi)

)
+ γ(

m∑

i=1

λi − λ). (3)

Differentiating (3),we find

∂L1

∂c1
= λ1 +

m∑

i=2

ki = 0,
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∂L1

∂λ1
= c1 +

m∑
i=2

ki

µ1(µ1 − λ1)
+

m∑
i=2

kiλ1

µ1(µ1 − λ1)2
+ γ = 0,

∂L1

∂λi
= − ki

µi(µi − λi)
− kiλi
µi(µi − λi)2

+ γ = 0, i = 2, ...,m.

from which

c∗i = λi

(
1∑m

j=0,j 6=i(µj − λj)2
+

1

(µi − λi)2

)
,

c∗i +
λi

µi(µi − λi)
= c∗i+1 +

λi+1

µi+1(µi+1 − λi+1)
, i = 0, ...,m− 1 (4)

m∑

i=1

λi = λ.

4. The competition of 2 players on graph.

Fig. 1: Competition of 2 players on graph G1

Consider competition on the graph G1, which is equivalent to a part of the
Helsinki Metro. Let’s define the game as Γ =< I, II,G1, Z1, Z2, H1, H2 >, where I,
II are 2 competitive transport companies which serve the stream of customers with
exponential distribution with parameters µi, i = 1, 2 on graph G1 =< V,E >. V =
{1, 2, 3, 4} is the set of vertices, E = {e12, e23, e24} - the set of edges. Zi = {Ri

1, R
i
2}
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is the set of routes of player i. Each rout is a sequence of vertices. So there are two
routs Ri

1 = {1, 2, 3} and Ri
2 = {1, 2, 4}, i = 1, 2. The stream of passengers forms the

Poisson process with intensity Λ, where

0 λ12 λ13 λ14

Λ = 0 0 λ23 λ24

0 0 0 0
0 0 0 0

The transport companies declare the price of the service cikj , i = 1, 2, k = 1, 2,
j = 2, 3, 4, j 6= k and the customers choose the service with minimal costs. The
incoming stream Λ is divided into two Poisson flows with intensities λkj = λ1kj+λ

2
kj ,

k = 1, 2, j = 2, 3, 4, j 6= k. We are interested in equilibrium in this game.
The balance equations are

c112 + a11 = c212 + a21,

c123 + a12 = c223 + a22,

c124 + a13 = c224 + a23,

c113 + a11 + a12 = c213 + a21 + a22,

c114 + a11 + a13 = c214 + a21 + a23,

λkj = λ1kj + λ2kj , k = 1, 2, j = 2, 3, 4, j 6= k,

where

ai1 =
λi12 + λi13 + λi14

µi(µi − λi12 − λi13 − λi14)
,

ai2 =
λi13 + λi23

µi

2 (
µi

2 − λi13 − λi23)
,

ai3 =
λi14 + λi24

µi

2 (
µi

2 − λi14 − λi24)
.

The payoff functions for each player are

Hi((c
1
R1
, c1R2

, c2R1
, c2R2

) =

2∑

k=1

4∑

j=2,j 6=k

λikjc
i
kj , i = 1, 2.

The Lagrange function for finding the best reply of the first player is defined by

L1 =

2∑

k=1

4∑

j=2,j 6=k

λikjc
i
kj + k1

(
c112 + a11 − c212 − a21

)
+ k2

(
c123 + a12 − c223 − a22

)
+
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+k3
(
c124 + a13 − c224 − a23

)
+ k4

(
c113 + a11 + a12 − c213 − a21 − a22

)
+

+k5
(
c114 + a11 + a13 − c214 − a21 − a23

)
.

Differentiating this equation we find

∂L1

∂c112
= λ112 + k1 = 0,

∂L1

∂c123
= λ123 + k2 = 0,

∂L1

∂c124
= λ124 + k3 = 0,

∂L1

∂c113
= λ113 + k4 = 0,

∂L1

∂c114
= λ114 + k5 = 0.

Since λ1kj = λkj − λ2kj , k = 1, 2, j = 2, 3, 4, j 6= k, we get

∂L1

∂λ112
= c112 + (k1 + k4 + k5)

(
∂a11
∂λ112

+
∂a21
∂λ212

)
,

∂L1

∂λ123
= c123 + (k2 + k4)

(
∂a12
∂λ123

+
∂a22
∂λ223

)
,

∂L1

∂λ124
= c124 + (k3 + k5)

(
∂a13
∂λ124

+
∂a23
∂λ224

)
,

∂L1

∂λ113
= c113 + (k1 + k4 + k5)

(
∂a11
∂λ113

+
∂a21
∂λ213

)
+ (k2 + k4)

(
∂a12
∂λ113

+
∂a22
∂λ213

)
,

∂L1

∂λ114
= c114 + (k1 + k4 + k5)

(
∂a11
∂λ114

+
∂a21
∂λ214

)
+ (k3 + k5)

(
∂a12
∂λ114

+
∂a22
∂λ214

)
,

Symmetric model. Consider symmetric case, when the services are the same, i.
e. µ1 = µ2 = µ. It is obvious from the symmetry of the problem, that in equilibrium
c1∗kj = c2∗kj = c∗kj and λ1kj = λ2kj =

λkj

2 , k = 1, 2, j = 2, 3, 4, j 6= k. So

c∗12 =
λ12 + λ13 + λ14

µ
(
µ− λ12+λ13+λ14

2

) + (λ12 + λ13 + λ14)
2

2µ
(
µ− λ12+λ13+λ14

2

)2

c∗23 =
λ23 + λ13

µ
2

(
µ
2 − λ23+λ13

2

) + (λ23 + λ13)
2

µ
(
µ
2 − λ23+λ13

2

)2

c∗24 =
λ24 + λ14

µ
2

(
µ
2 − λ24+λ14

2

) + (λ24 + λ14)
2

µ
(
µ
2 − λ24+λ14

2

)2

c∗13 =
λ12 + λ13 + λ14

µ
(
µ− λ12+λ13+λ14

2

) + (λ12 + λ13 + λ14)
2

2µ
(
µ− λ12+λ13+λ14

2

)2+



220 Anna V. Melnik

+
λ23 + λ13

µ
2

(
µ
2 − λ23+λ13

2

) + (λ23 + λ13)
2

µ
(
µ
2 − λ23+λ13

2

)2

c∗14 =
λ12 + λ13 + λ14

µ
(
µ− λ12+λ13+λ14

2

) + (λ12 + λ13 + λ14)
2

2µ
(
µ− λ12+λ13+λ14

2

)2+

λ24 + λ14
µ
2

(
µ
2 − λ24+λ14

2

) + (λ24 + λ14)
2

µ
(
µ
2 − λ24+λ14

2

)2

In Table 2 the values of the equilibrium prices with different µ, at λ12 = 1,
λ23 = 1, λ24 = 2, λ13 = 3, λ14 = 1 are given.

Table 2: The value of equilibrium prices at λ12 = 1, λ23 = 1, λ24 = 2, λ13 = 3, λ14 = 1

µ

prices 10 11 12 13 14 15

c∗12 0,089 0,069 0,055 0,045 0,038 0,032
c∗23 0,44 0,327 0,25 0,198 0,16 0,13
c∗24 0,24 0,188 0,15 0,12 0,089 0,083
c∗13 0,53 0,396 0,305 0,243 0,199 0,16
c∗14 0,33 0,258 0,204 0,165 0,137 0,115

5. Conclusion

It is seen from the table, that the higher the intensity of service is, the lower price
this transport company declare. But the prices c23 and c24, that correspond to the
edges, where the pass is divided on two roads, are greater, that c12, because after
this division the intensity of service is divided too.
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