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Abstract We formulate and study a class of stochastic positional games
using a game-theoretical concept to finite state space Markov decision pro-
cesses with an average and expected total discounted costs optimization cri-
teria. Nash equilibria conditions for the considered class of games are proven
and some approaches for determining the optimal strategies of the players
are analyzed. The obtained results extend Nash equilibria conditions for de-
terministic positional games and can be used for studying Shapley stochastic
games with average payoffs.
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1. Introduction

In this paper we consider a class of stochastic positional games that extends deter-
ministic positional games studied by Moulin,1976, Ehrenfeucht and Mycielski, 1979,
Gurvich at al., 1988, Condon, 1992, Lozovanu and Pick, 2006, 2009. The considered
class of games we formulate and study applying the concept of positional games to
finite state space Markov decision processes with average and expected total dis-
counted costs optimization criteria. We assume that the Markov process is controlled
by several actors (players) as follows: The set of states of the system is divided into
several disjoint subsets which represent the corresponding position sets of the play-
ers. Additionally the cost of system’s transition from one state to another is given
for each player separately. Each player has to determine which action should be
taken in each state of his position set of the Markov process in order to minimize
his own average cost per transition or the expected total discounted cost. In these
games we are seeking for a Nash equilibrium.

The main results of the paper are concerned with the existence of Nash equilib-
ria for the considered class of games and determining the optimal strategies of the
players. Necessary and sufficient conditions for the existence of Nash equilibria in
stochastic positional games that extend Nash equilibria conditions for deterministic
positional games are proven. Based on the constructive proof of these results we
propose some approaches for determining the optimal strategies of the players. Ad-
ditionally we show that the stochastic positional games are tightly connected with
Shapley stochastic games (Shapley, 1953) and the obtained results can be used for
studying a special class of Shapley stochastic games with average payoffs.
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2. Formulation of the Basic Game Models and Some Preliminary
Results

We consider two game-theoretic models. We formulate the first game model for
Markov decision processes with average cost optimization criterion and call it the
stochastic positional game with average payoffs. We formulate the second one for
Markov decision processes with discounted cost optimization criterion and call it
stochastic positional game with discounted payoffs. Then we show the relationship
of these games with Shapley stochastic games.

2.1. Stochastic Positional Games with Average Payoffs

To formulate the stochastic positional game with average payoffs we shall use the
framework of a Markov decision process (X,A, p, c) with a finite set of states X ,
a finite set of actions A, a transition probability function p : X ×X ×A→ [0, 1]
that satisfies the condition

∑

y∈X

pax,y = 1, ∀x ∈ X, ∀a ∈ A

and a transition cost function c : X ×X → R which gives the costs cx,y of states
transitions of the dynamical system from an arbitrary x ∈ X to another state
y ∈ X (see Howard, 1960; Puterman, 2005). For the noncooperative game model
with m players we assume that m transition cost functions

ci : X ×X → R, i = 1, 2, . . . ,m

are given, where cix,y expresses the cost of the system’s transition from the state
x ∈ X to the state y ∈ X for the player i ∈ {1, 2, . . . ,m}. In addition we assume
that the set of states X is divided into m disjoint subsets X1, X2, . . . , Xm

X = X1 ∪X2 ∪ · · · ∪Xm (Xi ∩Xj = ∅, ∀i 6= j),

where Xi represents the positions set of the player i ∈ {1, 2, . . . ,m}. So, the Markov
process is controlled by m players, where each player i ∈ {1, 2, . . . ,m} fixes actions
in his positions x ∈ Xi. We assume that each player fixes actions in the states from
his positions set using stationary strategies, i.e. we define the stationary strategies
of the players as m maps:

si : x→ a ∈ Ai(x) for x ∈ Xi, i = 1, 2, . . . ,m,

where Ai(x) is the set of actions of the player i in the state x ∈ Xi. Without loss of
generality we may consider |Ai(x)| = |Ai| = |A|, ∀x ∈ Xi, i = 1, 2, . . . ,m. In order
to simplify the notation we denote the set of possible actions in a state x ∈ X for
an arbitrary player by A(x). A stationary strategy si, i ∈ {1, 2, . . . ,m} in the state
x ∈ Xi means that at every discrete moment of time t = 0, 1, 2, . . . the player i uses
the action a = si(x). Players fix their strategy independently and do not inform
each other which strategies they use in the decision process.

If the players 1, 2, . . . ,m fix their stationary strategies s1, s2, . . . , sm, respec-
tively, then we obtain a situation s = (s1, s2, . . . , sm). This situation corresponds

to a simple Markov process determined by the probability distributions ps
i(x)

x,y in
the states x ∈ Xi for i = 1, 2, . . . ,m. We denote by P s = (psx,y) the matrix of
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probability transitions of this Markov process. If the starting state x0 is given, then
for the Markov process with the matrix of probability transitions P s we can deter-
mine the average cost per transition ωi

x0
(s1, s2, . . . , sm) with respect to each player

i ∈ {1, 2, . . . ,m} taking into account the corresponding matrix of transition costs
Ci = (cix,y). So, on the set of situations we can define the payoff functions of the
players as follows:

F i
x0
(s1, s2, . . . , sm) = ωi

x0
(s1, s2, . . . , sm), i = 1, 2, . . . ,m.

In such a way we obtain a discrete noncooperative game in normal form which is
determined by a finite set of strategies S1, S2, . . . , Sm of m players and the payoff
functions defined above. In this game we are seeking for a Nash equilibrium (see
Nash, 1951), i.e., we consider the problem of determining the stationary strategies

s1
∗
, s2

∗
, . . . , si−1∗, si

∗
, si+1∗, . . . , sm∗

such that

F i
x0
(s1

∗
, s2

∗
, . . . , si−1∗, si

∗
, si+1∗, . . . , sm∗)

≤ F i
x0
(s1

∗
, s2

∗
, . . . , si−1∗, si, si+1∗, . . . , sm∗), ∀si ∈ Si, i = 1, 2, . . . ,m.

The game defined above is determined uniquely by the set of states X , the
position sets X1, X2, . . . , Xm, the set of actions A, the cost functions ci : X×X →
R, i = 1, 2, . . . ,m, the probability function p : X ×X ×A→ [0, 1] and the starting
position x0. Therefore, we denote this game by (X, A, {Xi}i=1,m, {ci}i=1,m, p, x0).

In the case m = 2 and c2 = −c1 we obtain an antagonistic stochastic posi-
tional game. If pax,y = 0 ∨ 1, ∀x, y ∈ X, ∀a ∈ A the stochastic positional
game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x0) is transformed into the cyclic
game (Ehrenfeucht and Mycielski, 1979, Gurvich at al., 1988, Condon, 1992,
Lozovanu and Pick, 2006). Some results concerned with the existence of Nash equi-
libria for stochastic positional games with average payoffs have been derived by
Lozovanu at al., 2011. In particular the following theorem has been proven.

Theorem 1. If for an arbitrary situation s = (s1, s2, . . . , sm) of the stochastic
positional game with average payoffs the matrix of probability transitions P s = (psx,y)
induces an ergodic Markov chain then for the game there exists a Nash equilibrium.

If the matrix P s for some situations do not correspond to an ergodic Markov
chain then for the stochastic positional game with average payoffs a Nash equi-
librium may not exist. This follow from the constructive proof of this theorem
(see Lozovanu at al., 2011). An example of a deterministic positional game with
average payoffs for which Nash equilibrium does not exist has been constructed
by Gurvich at al., 1988. However, in the case of antagonistic stochastic positional
games saddle points always exist (Lozovanu and Pickl, 2014), i.e. in this case the
following theorem holds.

Theorem 2. For an arbitrary antagonistic positional game there exists a saddle
point.

The existence of saddle points for deterministic positional games with average
payoffs have been proven by Ehrenfeucht and Mycielski, 1979, Gurvich at al., 1988.
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2.2. Stochastic Positional Games with Discounted Payoffs

We formulate the stochastic positional game with discounted payoffs in a similar way
as the game from Section 2.. We assume that for the Markov process m transition
cost functions ci : X ×X → R, i = 1, 2, . . . ,m, are given and the set of states X is
divided into m disjoint subsets X1, X2, . . . , Xm, where Xi represents the positions
set of the player i ∈ {1, 2, . . . ,m}. The Markov process is controlled by m players,
where each player i ∈ {1, 2, . . . ,m} fixes actions in his positions x ∈ Xi using
stationary strategies, i.e. the stationary strategies of the players in this game are
defined as m maps:

si : x→ a ∈ A(x) for x ∈ Xi; i = 1, 2, . . . ,m.

Let s1, s2, . . . , sm be a set of stationary strategies of the players that determine the
situation s = (s1, s2, . . . , sm). Consider the matrix of probability transitions P s =
(psx,y) which is induced by the situation s, i.e., each row of this matrix corresponds to

a probability distribution ps
i(x)

x,y in the state x where x ∈ Xi. If the starting state x0 is
given, then for the Markov process with the matrix of probability transitions P s we
can determine the discounted expected total cost σi

x0
(s1, s2, . . . , sm) with respect

to each player i ∈ {1, 2, . . . ,m} taking into account the corresponding matrix of
transition costs Ci = (cix,y). So, on the set of situations we can define the payoff
functions of the players as follows:

F̂ i
x0
(s1, s2, . . . , sm) = σi

x0
(s1, s2, . . . , sm), i = 1, 2, . . . ,m.

In such a way we obtain a new discrete noncooperative game in normal form which
is determined by the sets of strategies S1, S1, . . . , Sm of m players and the payoff
functions defined above. In this game we are seeking for a Nash equilibrium. We de-
note the stochastic positional game with discounted payoffs by (X, A, {Xi}i=1,m,

{ci}i=1,m, p, γ, x0).

For this game the following result has been proven (Lozovanu, 2011).

Theorem 3. For an arbitrary stochastic positional game (X, A, {Xi}i=1,m,

{ci}i=1,m, p, γ, x0) with given discount factor 0 < γ < 1 there exists a Nash
equilibrium.

Based on a constructive proof of Theorems 1,3 some iterative procedures for
determining Nash equilibria in the considered positional games have been proposed
(see Lozovanu at al., 2011).

2.3. The Relationship of Stochastic Positional Games with Shapley
Stochastic Games

A stochastic game in the sense of Shapley (see Shapley, 1953) is a dynamic game
with probabilistic transitions played by several players in a sequence of stages, where
the beginning of each stage corresponds to a state of the dynamical system. The
game starts at a given state from the set of states of the system. At each stage
players select actions from their feasible sets of actions and each player receives a
stage payoff that depends on the current state and the chosen actions. The game
then moves to a new random state the distribution of which depends on the previous
state and the actions chosen by the players. The procedure is repeated at a new
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state and the play continues for a finite or infinite number of stages. The total
payoff of a player is either the limit inferior of the average of the stage payoffs or
the discounted sum of the stage payoffs.

So, an average Shapley stochastic game with m players consists of the following
elements:

1. A state space X (which we assume to be finite);

2. A finite set Ai(x) of actions with respect to each player i ∈ {1, 2, . . . ,m}
for an arbitrary state x ∈ X ;

3. A stage payoff f i(x, a) with respect to each player i ∈ {1, 2, . . . ,m}
for each state x ∈ X and for an arbitrary action vector a ∈∏iA

i(x);

4. A transition probability function p : X ×∏x∈X

∏
iA

i(x)×X → [0, 1]
that gives the probability transitions pax,y from an arbitrary x ∈ X
to an arbitrary y ∈ Y for a fixed action vector a ∈ ∏iA

i(x), where∑
y∈X pax,y = 1, ∀x ∈ X, a ∈ ∏iA

i(x);

5. A starting state x0 ∈ X .

The stochastic game starts in state x0. At stage t players observe state xt and
simultaneously choose actions ait ∈ Ai(xt), i = 1, 2, . . . ,m. Then nature selects
a state xt+1 according to probability transitions pat

xt,y for fixed action vector at =
(a1t , a

2
t , . . . , a

m
t ). A play of the stochastic game x0, a0, x1, a1, . . . , xt, at, . . . defines

a stream of payoffs f i
0, f

i
1, f

i
2, . . . , where f i

t = f i(xt, at), t = 0, 1, 2, . . . . The t-stage
average stochastic game is the game where the payoff of player i ∈ {1, 2, . . . ,m} is

F i
t =

1

t

t−1∑

τ=1

f i
τ .

The infinite average stochastic game is the game where the payoff of player i ∈
{1, 2, . . . ,m} is

F
i
= lim

t→∞
F i
t .

In a similar a Shapley stochastic game with expected discounted payoffs of the
players is defined. In such a game along to the elements described above also a
discount factor λ (0 < λ < 1) is given and the total payoff of a player represents
the expected discounted sum of the stage payoffs.

By comparison for Shapley stochastic games with stochastic positional games
we can observe the following. The probability transitions from a state to another
state as well as the stage payoffs of the players in a Shapley stochastic game depend
on the actions chosen by all players, while the probability transitions from a state
to another state as well as the stage payoffs (the immediate costs of the players) in
a stochastic positional game depend only on the action of the player that controls
the state in his position set. This means that a stochastic positional game can be
regarded as a special case of the Shapley stochastic game. Nevertheless we can see
that stochastic positional games can be used for studying some classes of Shapley
stochastic games.

The main results concerned with determining Nash equilibria in Shapley stochas-
tic games have been obtained by Gillette, 1957, Mertens and Neyman, 1981,
Filar and Vrieze, 1997, Lal and Sinha, 1992, Neyman and Sorin, 2003. Existence
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of Nash equilibria for such games are proven in the case of stochastic games with
a finite set of stages and in the case of the games with infinite stages if the to-
tal payoff of each player is the discounted sum of stage payoffs. If the total payoff
of a player represents the limit inferior of the average of the stage payoffs then
the existence of a Nash equilibrium in Shapley stochastic games is an open ques-
tion. Based on the results mentioned in previous sections we can show that in the
case of the average non-antagonistic stochastic games a Nash equilibrium may not
exist. In order to prove this we can use the average stochastic positional game
(X, A, {Xi}i=1,m, {ci}i=1,m, p, x0) from section 2. It is easy to observe that this
game can be regarded as a Shapley stochastic game with average payoff functions
of the players, where for a fixed situation s = (s1, s2, . . . , sm) the probability tran-
sition psx,y from a state x = x(t) ∈ Xi to a state y = x(t + 1) ∈ X depends only
on a strategy si of player i and the corresponding stage payoff in the state x of
player i ∈ {1, 2, . . . ,m} is equal to

∑
y∈X psx,yc

i
x,y. Taking into account that the

cyclic game represents a particular case of the average stochastic positional game
and for the cyclic game Nash equilibrium may not exist (see Gurvich at al., 1988)
we obtain that for the average non-antagonistic Shapley stochastic game a Nash
equilibrium may not exist. However in the case of average payoffs Theorem 1 can
be extended for Shapley stochastic games.

3. Nash Equilibria Conditions for Stochastic Positional Games with
Average Payoffs

In this section we formulate Nash equilibria conditions for stochastic positional
games in terms of bias equations for Markov decision processes. We can see that
Nash equilibria conditions in such terms may be more useful for determining the
optimal strategies of the players.

Theorem 4. Let (X,A, {Xi}i=1,m, {ci}i=1,m, p, x) be a stochastic positional game
with a given starting position x ∈ X and average payoff functions

F 1
x (s

1, s2, . . . , sm), F 2
x (s

1, s2, . . . , sm), . . . , Fm
x (s1, s2, . . . , sm)

of the players 1, 2, . . . ,m, respectively. Assume that for an arbitrary situation s =
(s1, s2, . . . , sm) of the game the transition probability matrix P s = (psx,y) corresponds
to an ergodic Markov chain. Then there exist the functions

εi : X → R, i = 1, 2, . . . ,m

and the values ω1, ω2, . . . , ωm that satisfy the following conditions:

1) µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

where µi
x,a =

∑
y∈X

pax,yc
i
x,y;

2) min
a∈A(x)

{µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on each position set Xi, i ∈ {1, 2, . . . ,m} there exists a map si∗ : Xi → A such
that

si
∗
(x) = a∗ ∈ Arg min

a∈A(x)

{
µi
x,a +

∑

y∈X

pax,yε
i
y − εix − ωi

}
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and
µj
x,a∗ +

∑

y∈X

pa
∗

x,yε
j
y − εjx − ωj = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m.

The set of maps s1∗, s2∗, . . . , sm∗ determines a Nash equilibrium situation s∗ =
(s1

∗
, s2

∗
, . . . , sm∗) for the stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m,

p, x
)

and

F i
x(s

1∗, s2
∗
, . . . , sm∗) = ωi, ∀x ∈ X, i = 1, 2, . . . ,m.

Moreover, the situation s∗ = (s1
∗
, s2

∗
, . . . , sm∗) is a Nash equilibrium for an arbi-

trary starting position x ∈ X.

Proof. Let a stochastic positional game with average payoffs be given and assume
that for an arbitrary situation s of the game the transition probability matrix
P s = (psx,y) corresponds to an ergodic Markov chain. Then according to Theorem 1
for this game there exists a Nash equilibrium s∗ = (s1

∗
, s2

∗
, . . . , sm∗) and we can

set
ωi = F i

x(s
1∗, s2

∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . ,m.

Let us fix the strategies s1∗, s2∗, . . . , si−1∗, si+1∗, . . . , sm∗ of the players 1, 2, . . . , i−
1, i+1, . . . ,m and consider the problem of determining the minimal average cost per
transition with respect to player i. Obviously, if we solve this decision problem then
we obtain the strategy si∗. We can determine the optimal strategy of this decision
problem with an average cost optimization criterion using the bias equations with
respect to player i. This means that there exist the functions ǫi : X → R and the
values ωi, i = 1, 2, . . . ,m that satisfy the conditions:

1) µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x);

2) min
a∈A(x)

{
µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi

}
= 0, ∀x ∈ Xi.

Moreover, for fixed strategies s1∗, s2∗, . . . , si−1∗, si+1∗, . . . , sm∗ of the corresponding
players 1, 2, . . . , i− 1, i+ 1, . . . ,m we can select the strategy si∗ of player i where

si
∗
(x) ∈ Arg min

a∈A(x)

{
µi
x,a +

∑

y∈X

pax,yε
i
y − εix − ωi

}

and ωi = F i
x(s

1∗, s2
∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . ,m. This means that conditions

1)–3) of the theorem hold.

Corollary 1. If for a stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m,

p, x) with average payoffs there exist a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sm∗)

which is a Nash equilibrium for an arbitrary starting position of the game x ∈ X and
for arbitrary two different starting positions x, y ∈ X holds F i

x(s
1∗, s2

∗
, . . . , sm∗) =

F i
y(s

1∗, s2
∗
, . . . , sm∗) then there exists the functions

εi : X → R, i = 1, 2, . . . ,m
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and the values ω1, ω2, . . . , ωm that satisfy the conditions 1) − 3) from Theorem 4.
So, ωi = F i

x(s
1∗, s2

∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . ,m and an arbitrary Nash

equilibrium can be found by fixing

si
∗
(x) = a∗ ∈ Arg min

a∈A(x)

{
µi
x,a +

∑

y∈X

pax,yε
i
y − εix − ωi

}
.

Using the elementary properties of non ergodic Markov decision processes with
average cost optimization criterion the following lemma can be gained.

Lemma 1. Let (X, A, {Xi}i=1,m, {ci}i=1,m, p, x) be an average stochastic
positional game for which there exists a Nash equilibrium s∗ = (s1

∗
, s2

∗
, . . . , sm∗),

which is a Nash equilibrium for an arbitrary starting position of the game with
ωi
x = F i

x(s
1∗, s2

∗
, . . . , sm∗). Then s∗ = (s1

∗
, s2

∗
, . . . , sm∗) is a Nash equilibrium

for the average stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x),
where

cix,y = cix,y − ωi
x, ∀x, y ∈ X, i = 1, 2, . . . ,m

and
F

i

x(s
1∗, s2

∗
, . . . , sm∗) = 0, ∀x ∈ X, i = 1, 2, . . . ,m.

Now using Corollary 1 and Lemma 1 we can prove the following results.

Theorem 5. Let (X,A, {Xi}i=1,m, {ci}i=1,m, p, x) be an average stochastic posi-
tional game. Then in this game there exists a Nash equilibrium for an arbitrary
starting position x ∈ X if and only if there exist the functions

εi : X → R, i = 1, 2, . . . ,m

and the values ω1
x, ω

2
x, . . . , ω

m
x for x ∈ X that satisfy the following conditions:

1) µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi

x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

where µi
x,a =

∑
y∈X

pax,yc
i
x,y;

2) min
a∈A(x)

{µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi

x} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on each position set Xi, i ∈ {1, 2, . . . ,m} there exists a map si∗ : Xi → A such
that

si
∗
(x) = a∗ ∈ Arg min

a∈A(x)

{
µi
x,a +

∑

y∈X

pax,yε
i
y − εix − ωi

}

and
µj
x,a∗ +

∑

y∈X

pa
∗

x,yε
j
y − εjx − ωj = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m.

If such conditions hold then the set of maps s1∗, s2∗, . . . , sm∗ determines a Nash
equilibrium of the game for an arbitrary starting position x ∈ X and

F i
x(s

1∗, s2
∗
, . . . , sm∗) = ωi

x, i = 1, 2, . . . ,m.
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Proof. The sufficiency condition of the theorem is evident. Let us prove the necessity
one. Assume that for the considered average stochastic positional game there exists
a Nash equilibrium s∗ = (s1

∗
, s2

∗
, . . . , sm∗) which is a Nash equilibrium for an

arbitrary starting position of the game. Denote

σi
x = F̂ i

x(s
1∗, s2

∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . ,m

and consider the following auxiliary game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x),
where

cix,y = cix,y − ωi
x, ∀x, y ∈ X, i = 1, 2, . . . ,m.

Then according to Lemma 1 the auxiliary game has the same Nash equilibrium s∗ =
(s1

∗
, s2

∗
, . . . , sm∗) as initial one. Moreover, this equilibrium is a Nash equilibrium

for an arbitrary starting position of the game and

F
i

x(s
1∗, s2

∗
, . . . , sm∗) = 0, ∀x ∈ X, i = 1, 2, . . . ,m.

Therefore, according to Corollary 1, for the auxiliary game there exist the functions

εi : X → R, i = 1, 2, . . . ,m

and the values ω1, ω2, . . . , ωm (ωi = 0, i = 1, 2, . . . ,m), that satisfy the conditions
of Theorem 4, i.e.

1) µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi

x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

where µi
x,a =

∑
y∈X

pax,yc
i
x,y;

2) min
a∈A(x)

{µi
x,a +

∑
y∈X

pax,yε
i
y − εix − ωi

x} = 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on each position set Xi, i ∈ {1, 2, . . . ,m} there exists a map si∗ : Xi → A such
that

si
∗
(x) = a∗ ∈ Arg min

a∈A(x)

{
µi
x,a +

∑

y∈X

pax,yε
i
y − εix − ωi

}

and
µj
x,a∗ +

∑

y∈X

pa
∗

x,yε
j
y − εjx − ωj = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m.

Taking into account that ωi
x = 0, and µi

x,a = µi
x,a − ωi

x (because cix,y = cx,y − ωi
x )

we obtain conditions 1− 3 of the theorem.

4. Nash Equilibria Conditions for Stochastic Positional Games with
Discounted Payoffs

Now we formulate Nash equilibria conditions in the terms of bias equations for
stochastic positional games with discounted payoffs.

Theorem 6. Let a stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m, p,
γ, x) with a discount factor 0 < γ < 1 be given. Then there exist the values
σi
x, i = 1, 2, . . . ,m, for x ∈ X that satisfy the following conditions:
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1) µi
x,a + γ

∑
y∈X

pax,yσ
i
y − σi

x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m,

where µi
x,a =

∑
y∈X

pax,yc
i
x,y.

2) min
a∈A(x)

{
µi
x,a + γ

∑
y∈X

pax,yσ
i
y − σi

x

}
= 0, ∀x ∈ Xi, i = 1, 2, . . . ,m;

3) on each position set Xi, i ∈ {1, 2, . . . ,m} there exists a map si∗ : Xi → A such
that

si
∗
(x) = a∗ ∈ Arg min

a∈A(x)

{
µi
x,a + γ

∑

y∈X

pax,yσ
i
y − σi

x

}
, ∀x ∈ Xi

and
µj
x,a∗ + γ

∑

y∈X

pa
∗

x,yσ
j
y − σj

x = 0, ∀x ∈ Xi, j = 1, 2, . . . ,m.

The set of maps s1
∗
, s2

∗
, . . . , sm∗ determines a Nash equilibrium situation s∗ =

(s1
∗
, s2

∗
, . . . , sm∗) for the stochastic positional game with discounted payoffs, where

F̂ i
x(s

1∗, s2
∗
, . . . , sm∗) = σi

x, ∀x ∈ X, i = 1, 2, . . . ,m.

Moreover, the situation s∗ = (s1
∗
, s2

∗
, . . . , sm∗) is a Nash equilibrium for an arbi-

trary starting position x ∈ X.

Proof. According to Theorem 3 for the discounted stochastic positional game
(X, A, {Xi}i=1,m, {ci}i=1,m, p, γ, x) there exists a Nash equilibrium s∗ =

(s1
∗
, s2

∗
, . . . , sm∗) which is a Nash equilibrium for an arbitrary starting position

x ∈ X of the game. Denote

σi
x = F̂ i

x(s
1∗, s2

∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . ,m.

Let us fix the strategies s1∗, s2∗, . . . , si−1∗, si+1∗, . . . , sm∗ of the players 1, 2, . . . , i−
1, i + 1, . . . ,m and consider the problem of determining the expected total dis-
counted cost with respect to player i. Obviously, the optimal stationary strat-
egy for this problem is si∗. Then according to the properties of the bias equa-
tions for this Markov decision problem with discounted costs there exist the values
σi
x, i = 1, 2, . . . ,m, for x ∈ X that satisfy the conditions:

1) µi
x,a + γ

∑
y∈X

pax,yσ
i
y − σi

x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1, 2, . . . ,m;

2) min
a∈A(x)

{
µi
x,a + γ

∑
y∈X

pax,yσ
i
y − σi

x

}
= 0, ∀x ∈ Xi i = 1, 2, . . . ,m.

Moreover, for fixed strategies s1
∗
, s2

∗
, . . . , si−1∗, si

∗
, si+1∗, . . . , sm∗ of the corre-

sponding players 1, 2, . . . , i − 1, i + 1, . . . ,m we can select the strategy si
∗ of the

player i where

si
∗
(x) ∈ Arg min

a∈A(x)

{
µi
x,a + γ

∑

y∈X

pax,yσ
i
y − σi

x

}

and
F̂ i
x(s

1∗, s2
∗
, . . . , sm∗) = σi

x, ∀x ∈ X, i = 1, 2, . . . ,m.

This means that the conditions 1)–3) of the theorem hold.
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5. Saddle Point Conditions for Antagonistic Stochastic Positional
Games

The antagonistic stochastic positional game with the average payoff corresponds to
the case of the game from Section 2 in the case m = 2 when c = c1 = −c2. So, we
have a game (X,A,X1, X2, c, p, x) where the stationary strategies s1 and s2 of the
players are defined as two maps

s1 : x→ a ∈ A1(x) for x ∈ X1; s2 : x→ a ∈ A1(x) for x ∈ X2.

and the payoff function Fx(s
1, s2) of the players is determined by the values of av-

erage costs ωs
x in the Markov processes with the corresponding probability matrices

P s induced by the situations s = (s1, s2) ∈ S. For this game saddle points s1∗, s2∗

always exists (Lozovanu and Pickl, 2014) , i.e. for a given starting position x ∈ X
holds

Fx(s
1∗, s2

∗
) = min

s1∈S1
max
s2∈S2

Fx(s
1, s2) = max

s2∈S2
min
s1∈S1

Fx(s
1, s2).

Theorem 7. Let (X, A, X1, X2, c, p, x) be an arbitrary antagonistic stochastic
positional game with an average payoff function Fx(s1, s2). Then the system of
equations 




εx + ωx = max
a∈A(x)

{
µx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X1;

εx + ωx = min
a∈A(x)

{
µx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X2;

has solution under the set of solutions of the system of equations




ωx = max
a∈A(x)

{ ∑
y∈X

pax,yωx

}
, ∀x ∈ X1;

ωx = min
a∈A(x)

{ ∑
y∈X

pax,yωx

}
, ∀x ∈ X2,

i.e. the last system of equations has such a solution ω∗
x, x ∈ X for which there

exists a solution ε∗x, x ∈ X of the system of equations




εx + ω∗
x = max

a∈A(x)

{
µx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X1;

εx + ω∗
x = min

a∈A(x)

{
µx,a +

∑
y∈X

pax,yεy

}
, ∀x ∈ X2.

The optimal stationary strategies of the players

s1
∗ : x → a1 ∈ A(x) for x ∈ X1;

s2
∗ : x → a2 ∈ A(x) for x ∈ X2

in the antagonistic stochastic positional game can be found by fixing arbitrary maps
s1

∗(x) ∈ A(x) for x ∈ X1 and s2∗(x) ∈ A(x) for x ∈ X2 such that
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s1
∗(x) ∈

(
Arg max

a∈A(x)

{ ∑
y∈X

pax,yω
∗
x

})⋂(
Arg max

a∈A(x)

{
µx,a +

∑
y∈X

pax,yε
∗
y

})
,

∀x ∈ X1

and

s2
∗(x) ∈

(
Arg min

a∈A(x)

{ ∑
y∈X

pax,yω
∗
x

})⋂(
Arg min

a∈A(x)

{
µx,a +

∑
y∈X

pax,yε
∗
y

})
.

∀x ∈ X2

For the strategies s1∗, s2∗ the corresponding values of the payoff function Fx(s
1∗, s2

∗
)

coincides with the values ω∗
x for x ∈ X and

Fx(s
1∗, s2

∗
) = min

s1∈S1
max
s2∈S2

Fx(s
1, s2) = max

s2∈S2
min
s1∈S1

Fx(s
1, s2) ∀x ∈ X.

.

Based on the constructive proof of this theorem (see Lozovanu and Pickl, 2014)
an algorithm for determining the saddle points in antagonistic stochastic positional
games has been elaborated. The saddle point conditions for antagonistic stochastic
positional games with a discounted payoff can be derived from Theorem 6.

6. Conclusion

Stochastic positional games with average and discounted payoffs represent a spe-
cial class of Shapley stochastic games that extends deterministic positional games.
For the considered class of games Nash equilibria conditions have been formulated
and proven. Based on these results new algorithms for determining the optimal
stationary strategies of the players can be elaborated.
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