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Abstract For the so-called ‘new approach’ of coalition formation it is im-
portant that coalitional equilibria are unique. Uniqueness comes down to
existence and to semi-uniqueness, i.e. there exists at most one equilibrium.
Although conditions for existence are not problematic, conditions for semi-
uniqueness are. We provide semi-uniqueness conditions by deriving a new
equilibrium semi-uniqueness result for games in strategic form with higher
dimensional action sets. The result applies in particular to Cournot-like
games.
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1. Introduction

The analysis of coalition formation – in particular in the context of externalities –
has become an important topic in economics. Examples do not only include firms
that coordinate their output or prices in oligopolistic markets (cartels), jointly invest
in research assets (R&D-agreements) or completely merge (joint ventures), but also
countries that coordinate their tariffs (trade agreements and customs unions) or
their environmental policy (international environmental agreements).

Our article contributes to the so-called ‘new approach’ of coalition formation (see
for instance Yi(1997) and Bloch(2003) for an extensive overview). The goal of this
approach is to determine equilibrium coalition structures. As the approach consists
of modelling coalition formation as a 2-stage game with simultaneous actions in each
of both stages, it is important that for each possible coalition structure coalitional
equilibria, i.e. equilibria in the second stage, are unique.1

So for the new approach it is important to have results that guarantee uniqueness
of coalitional equilibria. Conditions should be such that they can be easily checked
for the base games that appeared so far in these models, like Cournot and public
good games. As far as we know, general uniqueness results for coalitional equilibria
1 Roughly speaking, in the first stage, the players choose a membership action which via

a given member-ship rule leads to a coalition structure. In the second stage, the players
are the coalitions in this coalition structure. Each of these coalitions chooses a ‘physical’
action for each of its members in a base game. See e.g. Finus and Rundshagen(2009) for
more. Also see Bartl(2012).
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of such games are not present in the literature. There it is just assumed that one
deals with a situation where coalitional equilibria are unique or that one deals with
a simple concrete example where uniqueness explicitly can be shown. Developing
an abstract general uniqueness result is the main objective of this article.

As shown in Section 3., a general equilibrium existence theorem guarantees for
various common cases existence of coalitional equilibria. So existence is not a real
issue, but equilibrium semi-uniqueness is. Especially as for coalitional equilibria one
has to leave the comfortable usual setting of one dimensional action sets. Indeed:
a coalition is formally treated as a meta-player whose action set is the Cartesian
product of the action sets of the players in this coalition.

In order to obtain our semi-uniqueness result for coalitional equilibria we develop
a semi-uniqueness result for Nash equilibria of games in strategic form with higher
dimensional action sets. This result, Theorem 1, can be considered as a variant
of a result in Folmer and von Mouche(2004) to higher dimensions. It can handle
various aggregative2 base-games with one-dimensional action sets. We identify a
class of such games which contains Cournot and public good games and give with
Corollary 3 a result that guarantees that for each possible coalition structure there
exists a unique coalitional equilibrium.

2. Coalitional equilibria

In this section, we fix the setting and notations and formally define the notion of
coalitional equilibrium.

2.1. Games in strategic form

A game in strategic form Γ is an ordered 3-tuple

Γ = (I, (Xi)i∈I , (fi)i∈I),

where I is a non-empty finite set, every Xi is a non-empty set and every fi is a
function

fi :
∏

j∈I

Xj → IR.

The elements of I are called players, Xi is called the action set of player i, the
elements of Xi are called actions of player i, fi is called the payoff function of
player i and the elements of

∏
j∈I Xj , being by I indexed families (xj)j∈I with

xj ∈ Xj, are called action profiles.
For i ∈ I, let

ı̂ := I \ {i}.

For i ∈ I and z = (zj)j∈ı̂ ∈
∏

j∈ı̂Xj , the conditional payoff function f
(z)
i : Xi → IR

is defined by

f
(z)
i (xi) := fi(xi; z);

here (xi; z) is the by I indexed family with xi for the element with index i and zj
for the element with index j 6= i. An action profile x = (xj)j∈I ∈

∏
j∈I Xj is a

2 I.e. games where the payoff function of each player i is a function of his own action xi

and of a weighted sum
∑

l γlxl of all actions.
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(Nash) equilibrium if, for all i ∈ N , writing again x = (xi; z), xi is a maximiser of
f
(z)
i . We denote by

E

the set of equilibria of Γ .
We need some further notations for the sequel. For C ⊆ I, let

XC :=
∏

j∈C

Xj .

So an element ξC of XC is a by C indexed family (ξC;i)i∈C with ξC;i ∈ Xi; for
i ∈ N , we identify X{i} with Xi. And an element of element of

∏
C∈C XC is a by C

indexed family
ξ = (ξC)C∈C = ((ξC;i)i∈C)C∈C.

2.2. Notion of coalitional equilibrium

Suppose given a game in strategic form Γ = (I, (Xi)i∈I , (fi)i∈I).
A coalition is a subset of I and a coalition structure of I is a partition of I, i.e.

a set with as elements non-empty disjoint coalitions whose union is I.
Given a coalition structure C, we denote for i ∈ I by Ci the unique element of

C with
i ∈ Ci

and define the mapping JC :
∏

C∈C XC →
∏

j∈I Xj by

JC((ξC)C∈C) := (ξCj ;j)j∈I
.

For a subset D of I the function fD :
∏

C∈C XC → IR is defined by

fD :=
∑

i∈D

fi ◦ JC .

Having these notations, the next definition formalizes the intended notion of
coalitional equilibrium (with base game Γ ) as outlined in section 1..

Definition 1. Given a game in strategic form Γ = (I, (Xi)i∈I , (fi)i∈I) and a coali-
tion structure C of I, the (with C associated) game in strategic form ΓC is defined
by

ΓC := (C, (XC)C∈C , (fC)C∈C). ⋄

A Nash equilibrium of ΓC also is called a coalitional equilibrium of Γ ; more precisely
we speak of a C-equilibrium of Γ . We also will refer to the elements of C as meta-
players. The action sets XC of ΓC are typically more dimensional. Note that if

C = {{1}, {2}, . . .{n}},

then ΓC = Γ and a C-equilibrium of Γ is nothing else than a Nash equilibrium of
Γ . And if

C = {I},
a C-equilibrium is nothing else than a maximizer of the total payoff function

∑
i∈I fi.
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3. Existence of coalitional equilibria

General equilibrium existence and semi-uniqueness results for games in strategic
form have immediate counterparts regarding coalitional equilibria if they allow for
higher-dimensional action sets.

A powerful standard existence result in Tan et al.(1995)Tan, Yu, and Yuan leads
to the following sufficient conditions for the game ΓC := (C, (XC)C∈C , (fC)C∈C) to
have a Nash equilibrium:

I. each action set XC is a compact convex subset of a Hausdorff topological linear
space;

II. each payoff function fC is upper-semi-continuous;
III. every fC is lower-semi-continuous in the variable related to XĈ ;
IV. every fC is quasi-concave in ξC ∈ XC .

It may be useful to note that if each function fi is quasi-concave in (its own
action) xi, this does not necessarily imply that IV holds. Even assuming that each
function fi is concave in each variable is not sufficient.3

A natural question is to ask for simple sufficient conditions such that for each
coalition structure C a C-equilibrium exists. As can be easily verified by the above
existence result, such conditions are for instance: each action set Xi is a segment of
IR, each payoff function fi is continuous and concave.

4. A higher dimensional equilibrium semi-uniqueness result

In this section we consider a game in strategic form Γ = (I, (Xi)i∈I , (fi)i∈I) where
each player i ∈ I has action set Xi =

∏
j∈Mi

Xi;j with Mi a non-empty set and the
Xi;j proper intervals of IR.

Theorem 1. For i ∈ I let Ei := {ei | e ∈ E} and Ei;j := {ei;j | e ∈ E} (j ∈ Mi).
Suppose the following conditions I-III hold.

I. The partial derivatives ∂fi
∂xi;j

(i ∈ I, j ∈Mi) exist at every e ∈ E as an element

of IR := IR ∪ {−∞,+∞}.
II. There exist functions

Φi : Ei → IR (i ∈ I), Θi : {(Φl(el))l∈I | e ∈ E} → IR (i ∈ I),

and, with Ψi : E → IR (i ∈ I) defined by Ψi(e) := Θi((Φl(el))l∈I), functions

Ti;j : Ei;j × Φi(Ei)× Ψi(E)→ IR (i ∈ I, j ∈Mi),

such that for all i ∈ I and j ∈Mi

a. ∂fi
∂xi;j

(e) = Ti;j(ei;j , Φi(ei), Ψi(e)) (e ∈ E);
b. Ti;j is decreasing in each of its three variables, and strictly decreasing in the

first or second.

3 It is worth noting that the sum of quasi-concave functions may fail to be quasi-concave
and a function that is concave in each of its variables may fail to be concave.
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III. a. For all i ∈ I: Φi and Θi are increasing.4

b. For all a,b ∈ E: Ψi(a) ≥ Ψi(b) (i ∈ I) or Ψi(b) ≥ Ψi(a) (i ∈ I).

1. For all a,b ∈ E: Ψi(a) = Ψi(b) (i ∈ I) and even Φi(ai) = Φi(bi) (i ∈ I).
2. If every Ti;j is strictly decreasing in the first variable, then #E ≤ 1. ⋄

Proof. 1. Suppose a,b ∈ E.

Step 1: Ψi(a) ≥ Ψi(b) (i ∈ I) ⇒ Φi(ai) ≤ Φi(bi) (i ∈ I).
Proof: by contradiction assume Ψi(a) ≥ Ψi(b) (i ∈ I) and for some m ∈ I

Φm(am) > Φm(bm).

With J the set of elements j ∈Mm for which am;j is a left boundary point of Xm;j

or bm;j is a right boundary point of Xm;j , we have

am;j ≤ bm;j (j ∈ J).

Now suppose j ∈ Mm \ J . Because a is an equilibrium and am;j is not a left
boundary point of Xm;j , it follows by condition I that Dm;jfm(a) ≥ 0. And, by the
same arguments, Dm;jfm(b) ≤ 0. So by condition IIa we have

Tm;j(am;j , Φm(am), Ψm(a)) ≥ 0 ≥ Tm;j(bm;j , Φm(bm), Ψm(b)). (1)

As Ψm(a) ≥ Ψm(b) and Φm(am) > Φm(bm), condition IIb implies

Tm;j(am;j , Φm(am), Ψm(a)) ≤ Tm;j(am;j , Φm(bm), Ψm(b)), (2)

with strict inequality if Tm;j is strictly decreasing in the second variable. (1) and
(2) imply

Tm;j(am;j , Φm(bm), Ψm(b)) ≥ Tm;j(bm;j, Φm(bm), Ψm(b)),

with strict inequality if Tm;j is strictly decreasing in the second variable. As Tm;j

is decreasing, and strictly decreasing in the first or second variable, it follows that
am;j ≤ bm;j . Hence, we proved

am;j ≤ bm;j (j ∈Mm), i.e. am ≤ bm.

By condition IIIa this implies Φm(am) ≤ Φm(bm), a contradiction.

Step 2: Ψi(a) ≥ Ψi(b) (i ∈ I) ⇒ Ψi(a) = Ψi(b) (i ∈ I)
Proof: suppose Ψi(a) ≥ Ψi(b) (i ∈ I). By Step 1: Φi(ai) ≤ Φi(bi) (i ∈ I). This

implies, as Θi is increasing, Ψi(a) ≤ Ψi(b). Thus Ψi(a) = Ψi(b).

Step 3: Ψi(a) = Ψi(b) (i ∈ I).
4 Given a finite product

∏

r∈J Zr of subsets of IR the relation ≥ (and its dual ≤) on
∏

r∈J
Zr is defined by: (ar)r∈J

≥ (br)r∈J
means ar ≥ br (r ∈ J). And a function

f :
∏

r∈J
Zr → IR is called increasing if for all a,b ∈

∏

r∈J
Zr one has a ≥ b ⇒

f(a) ≥ f(b).



56 Michael Finus, Pierre von Mouche, Bianca Rundshagen

Proof: by condition IIb we have Ψi(a) ≥ Ψi(b) (i ∈ I) or Ψi(b) ≥ Ψi(a) (i ∈ I).
Without loss of generality we may assume that Ψi(a) ≥ Ψi(b) (i ∈ I). Step 3 implies
Ψi(a) = Ψi(b) (i ∈ I).

Step 4: Φi(ai) = Φi(bi) (i ∈ I).
Proof: by Step 3 we have Ψi(a) = Ψi(b) (i ∈ I). Now apply Step 1.

2. By contradiction suppose #E ≥ 2. Fix a,b ∈ E and i ∈ I and j ∈ Mi such
that ai;j 6= bi;j . We may assume that ai;j > bi;j . By part 1, Ψi(a) = Ψi(b) =: yi and
Φi(ai) = Φi(bi) =: wi. As a is an equilibrium and ai;j is not a left boundary point
of Xi;j , it follows that Di;jfi(a) ≥ 0. And, by the same arguments, Di;jfi(b) ≤ 0.
By condition IIa

Ti;j(ai;j , wi, yi) ≥ 0 ≥ Ti;j(bi;j , wi, yi).

As Ti;j is strictly decreasing in its first variable, this implies a contradiction. ⊓⊔

Taking, in Theorem 1, mi = 1 (i ∈ I) and Φi = Id leads to:

Corollary 1. For i ∈ I let Ei := {ei | e ∈ E}. Sufficient for #E ≤ 1 is that the
following conditions I-III hold.

I. The partial derivatives ∂fi
∂xi

(i ∈ I) exist at every e ∈ E as an element of IR.
II. There exist functions

ϕi : E → IR (i ∈ I),
and functions

ti : Ei × ϕi(E)→ IR (i ∈ I),
such that for all i ∈ I
a. ∂fi

∂xi
(e) = ti(ei, ϕi(e)) (e ∈ E);

b. ti is decreasing in each of its two variables, and strictly decreasing in the
first.

III. a. Every ϕi is increasing.
b. For all a,b ∈ E: ϕi(a) ≥ ϕi(b) (i ∈ I) or ϕi(b) ≥ ϕi(a) (i ∈ I). ⋄

And here is a more practical variant of Theorem 1:

Corollary 2. For i ∈ I, let5 ti;j ≥ 0 (j ∈Mi), ri ≥ 0, si > 0, Wi :=
∑

j∈Mi
ti;jXi;j ,

Yi := si
∑

k∈I rkWk and define Φi : Xi → IR and Ψi : XI → IR by

Φi(xi) :=
∑

j∈Mi

ti;jxi;j , Ψi(x) := si
∑

k∈I

rkΦk(xk).

Suppose the following conditions I, IIa and IIb hold.

I. Each player i’s payoff function fi is partially differentiable with respect to each
variable xi;j.

II. There exist functions

Ti;j : Xi;j ×Wi × Yi → IR (i ∈ I, j ∈Mi),

such that for all i ∈ I and j ∈Mi

5 The sum in Wi and Yi is a Minkowski-sum.
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a. ∂fi
∂xi;j

(x) = Ti;j(xi;j , Φi(xi), Ψi(x)) (x ∈ XI);
b. Ti;j is decreasing in each of its three variables, and strictly decreasing in the

first or second.

1. For all a,b ∈ E: Ψi(a) = Ψi(b) (i ∈ I) and even Φi(ai) = Φi(bi) (i ∈ I).
2. If every Ti;j is strictly decreasing in the first variable, then #E ≤ 1. ⋄

5. Uniqueness of coalitional equilibria for Cournot-like games

In the following definition a class of games in strategic form is introduced for which
we provide sufficient conditions for uniqueness of coalitional equilibria.

Definition 2. A Cournot-like game is a game in strategic form

Γ = (N, (Ki)i∈N , (πi)i∈N )

where every Ki is a proper interval of IR with 0 ∈ Ki ⊆ IR+ and

πi(x) = ai(xi)− xβi

i bi(
∑

l∈N

γlxl)

where, with Y :=
∑

l∈N γlKl,

– ai : Ki → IR;
– βi ∈ {0, 1};
– γi > 0;
– bi : Y → IR. ⋄

In caseKi is bounded, i.e. whereKi = [0,mi] orKi = [0,mi [ we say that player i has
a capacity constraint. Note that some players may have a capacity constraint while
others may not have. The class of Cournot-like games contains various heterogeneous
Cournot oligopoly games: take every βi = 1. It contains6 all homogeneous Cournot
oligopoly games: take in addition all bi equal and each γ = 1. It also contains various
public good games: take every βi = 0. We call βl the type of player l.

In the next theorem and proposition we consider a Cournot-like game Γ and
fix a coalition structure C of N . We suppose that all players belonging to a same
coalition C ∈ C are of the same type βC . Also we suppose for every C ∈ C that
γl = γl′ (l, l

′ ∈ C) and in case βC = 1 that bl, bl′ (l, l′ ∈ C).
Theorem 2. Suppose that each function ai and bi is differentiable. Consider the
with the coalition structure C associated game

ΓC = (C, (KC)C∈C , (πC)C∈C).

For C ∈ C, let WC :=
∑

l∈C γlKl and define the functions TC;j : Kj ×WC × Y →
IR (j ∈ C) by

TC;j(xj , w, y) := Daj(xj)−
wβCγj

#C · βC + (1− βC)
∑

i∈C

Dbi(y)− βCbj(y).

Suppose every TC;j is decreasing in each of its three variables and strictly decreasing
in its first or second variable.
6 Disregarding Cournot oligopoly games with finite action sets.
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1. For all Nash equilibria η,µ of ΓC one has
∑

C∈C

∑

i∈C

ηC;i =
∑

C∈C

∑

i∈C

µC;i

and even
∑

i∈C ηC;i =
∑

i∈C µC;i (C ∈ C).
2. If every TC;j is strictly decreasing in its first variable, then ΓC has at most one

Nash equilibrium. ⋄
Proof. Let γl =: γC (l ∈ C) and in case βC = 1, let bl =: bC (l ∈ C).

Consider the game ΓC . The payoff function of player C ∈ C is

πC(ξ) =
∑

i∈C

(πi ◦ JC)(ξ) =
∑

i∈C

(
ai(ξC;i)− (ξC;i)

βCbi(
∑

m∈N

γmξCm;m)
)

=
∑

i∈C

(
ai(ξC;i)− (ξC;i)

βC bi(
∑

A∈C

∑

m∈A

γmξA;m)
)

=
∑

i∈C

(
ai(ξC;i)− (ξC;i)

βC bi(
∑

A∈C
γA
∑

m∈A

ξA;m)
)
.

If βC = 0, then πC(ξ) =
∑

i∈C ai(ξC;i)−
∑

i∈C bi(
∑

A∈C γA
∑

m∈A ξA;m) and there-
fore for j ∈ C

∂πC
∂ξC;j

(ξ) = Daj(ξC;j)− γj
∑

i∈C
Dbi(

∑

A∈C
γA
∑

m∈A

ξA;m).

If βC = 1, then

πC(ξ) =
∑

i∈C

ai(ξC;i)− (
∑

i∈C

ξC;i)bC(
∑

A∈C
γA
∑

m∈A

ξA;m)

and therefore for j ∈ C
∂πC
∂ξC;j

(ξ) = Daj(ξC;j)− bC(
∑

A∈C
γA
∑

m∈A

ξA;m)− γj(
∑

i∈C

ξC;i)DbC(
∑

A∈C
γA
∑

m∈A

ξA;m).

Noting that for the above functions TC;j one has

TC;j(xj , w, y) := Daj(xj)− γjpC(w, y)− βCbj(y)

where pC :WC × Y → IR is defined by

pC(w, y) =

{∑
i∈C Dbi(y) if βC = 0,
wDbC(y) if βC = 1,

we obtain
∂πC
∂ξC;j

(ξ) = TC;j(ξC;j ,
∑

i∈C

ξC;i,
∑

A∈C
γA
∑

m∈A

ξA;m).

Having the above, we can apply7 Corollary 2 which implies the desired results. ⊓⊔
7 Taking I = C, MC = C (C ∈ C), XC;j = Kj (C ∈ C, j ∈ C), XC =

∏

j∈MC
XC;j =

KC (C ∈ C), tC;j = 1 (C ∈ C, j ∈ MC), rC = γC (C ∈ C), sC = 1 (C ∈ C), fC =
∑

i∈C
πi◦J

C = πC (C ∈ C), TC;j = TC;j (C ∈ C, j ∈ MC), ΦC(ξC) =
∑

j∈MC
ξC;j (C ∈

C) and ΨC(ξ) =
∑

D∈C
γDΦD(ξD) (C ∈ C).
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Remark: sufficient for every TC;j to be decreasing in each of its three variables
and strictly decreasing in its first variable is that the following practical condition
holds:

every ai is strictly concave and every bi is increasing and convex.

Proposition 1. Consider the with the coalition structure C associated game

ΓC = (C, (KC)C∈C , (πC)C∈C).

Given C ∈ C, the following condition guarantees strict concavity of all conditional
payoff functions of player C: the function aC : KC → IR given by

aC(ξC) :=
∑

i∈C

ai(ξC;i)

is concave and

a. if βC = 0, then the function
∑

i∈C bi is strictly convex or aC is strictly concave;
b. if βC = 1, then the function y 7→ ybC(y) is convex, and this function is strictly

convex or aC is strictly concave. ⋄

Proof. With ξĈ ∈ KĈ , the conditional payoff function π(ξ
Ĉ
)

C : KC → IR reads

π
(ξ

Ĉ
)

C (ξC) =
∑

i∈C

ai(ξC;i) +
∑

i∈C

−(ξC;i)
βCbi(γC

∑

m∈C

ξC;m + z),

where z =
∑

A∈C\C γA
∑

m∈A ξA;m The first sum in this expression is by assumption
a concave function.

Case βC = 0: the second equals
∑

i∈C

−bi(γC
∑

m∈C

ξC;m + z)

and also is concave. As the first or second sum is strictly concave, π(ξ
Ĉ
)

C is strictly
concave. Case βC = 1: the second sum equals

−bC(γC
∑

m∈C

ξC;m + z)
∑

m∈C

ξC;m

and also is concave. As the first or second sum is strictly concave, π(ξ
Ĉ
)

C is strictly
concave. ⊓⊔

The last paragraph in Section 2, the remark after Theorem 2 and Proposition 1
imply:

Corollary 3. Let Γ be a Cournot-like game with compact action sets, βi = β (i ∈
N), γi = γi′ (i, i

′ ∈ N) and β = 1 ⇒ bi = bi′ (i, i
′ ∈ N). Suppose each function

ai is differentiable and strictly concave and each function bi is differentiable, in-
creasing and convex. Then for every coalition structure C the game Γ has a unique
C-equilibrium. ⋄
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