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Abstract This paper highlights the role of a significant property for the
core of Stackelberg Oligopoly cooperative games arising from the non-
cooperative Stackelberg Oligopoly situation with linearly decreasing demand
functions. Generally speaking, it is shown that the so-called 1-concavity
property for the dual of a cooperative game is a sufficient and necessary
condition for the core of the game to coincide with its imputation set. Par-
ticularly, the nucleolus of such dual 1-concave TU-games agree with the
center of the imputation set. Based on the explicit description of the charac-
teristic function for the Stackelberg Oligopoly game, the aim is to establish,
under certain circumstances, the 1-concavity of the dual game of Stackelberg
Oligopoly games. These circumstances require the intercept of the inverse
demand function to be bounded below by a particular critical number arising
from the various cost figures.
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1. Introduction of game theoretic notions

A cooperative savings game (with transferable utility) is given by a pair 〈N,w〉,
where its characteristic function w : P(N)→ R is defined on the power set P(N) =
{S | S ⊆ N} of the finite set N , of which the elements are called players, while the
elements of the power set are called coalitions. The so-called real-valued worth w(S)
of coalition S ⊆ N in the game 〈N,w〉 represents the maximal amount of monetary
benefits due to the mutual cooperation among the members of the coalition, on the
understanding that there are no benefits by absence of players, that is w(∅) = 0. In
the framework of the division problem of the benefits w(N) of the grand coalition
N among the potential players, any allocation scheme of the form x = (xi)i∈N ∈
RN is supposed to meet, besides the efficiency principle

∑
i∈N xi = w(N), the

so-called individual rationality condition in that each player is allocated at least
the individual worth, i.e., xi > w({i}) for all i ∈ N . Concerning the development
of the solution part, a (multi- or single-valued) solution concept σ assigns to any
cooperative game 〈N,w〉 a (possibly empty) subset of its imputation set I(N,w),
that is σ(N,w) ⊆ I(N,w), where
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I(N,w) = {(xi)i∈N ∈ RN |
∑

i∈N

xi = w(N) and xi > w({i}) for all i ∈ N}.

The best known multi-valued solution concept called core requires the group ratio-
nality condition in that the aggregate allocation to the members of any coalition is
at least its coalitional worth, that is

CORE(N,w) = {−→x ∈ I(N,w) |
∑

i∈S

xi > w(S)

for all S ⊆ N , S 6= N , S 6= ∅} (1.1)

Of significant importance is the upper core bound composed of the marginal con-
tributions mw

i = w(N) − w(N\{i}), i ∈ N , with respect to the formation of the
grand coalition N in the game 〈N,w〉. Obviously, xi 6 mw

i for all i ∈ N and all−→x ∈ CORE(N,w). In this context, we focus on the following core catcher called
CoreCover

CC(N,w) = {(xi)i∈N ∈ RN |
∑

i∈N

xi = w(N) and xi 6 mw
i

for all i ∈ N} (1.2)

In the framework of the core, a helpful tool appears to be the so-called gap function
gw : P(N)→ R defined by gw(S) =

∑
i∈S m

w
i − w(S) for all S ⊆ N , S 6= ∅, where

gw(∅) = 0. So, the gap gw(S) of any coalition S measures how much the coalitional
worth w(S) differs from the aggregate allocation based on the individually marginal
contributions. The interrelationship between the gap function and the general in-
clusion CORE(N,w) ⊆ CC(N,w) is the following equivalence (Driessen, 1988):

CORE(N,w) = CC(N,w) ⇐⇒ 0 6 gw(N) 6 gw(S)

for all S ⊆ N , S 6= ∅ (1.3)

In words, the core catcher CC(N,w) coincides with the core CORE(N,w) only if
the non-negative gap function gw attains its minimum at the grand coalition N . If
the latter property (1.3) holds, the savings game 〈N,w〉 is said to be 1-convex.

With every cooperative savings game 〈N,w〉 there is associated its dual game
〈N,w∗〉 defined by w∗(S) = w(N) − w(N\S) for all S ⊆ N . That is, the worth of
any coalition in the dual game is given by the coalitionally marginal contribution
with respect to the formation of the grand coalition N in the original game. Partic-
ularly, w∗(∅) = 0, w∗(N) = w(N), and so, m(w∗)

i = w∗(N) − w∗(N\{i}) = w({i})
for all i ∈ N . We arrive at the first main result.

Proposition 1.1. Three equivalent statements for any cooperative savings game
〈N,w〉.

I(N,w) 6= ∅ ⇐⇒ w(N) >
∑

i∈N

w({i}) ⇐⇒ g(w
∗)(N) 6 0 (1.4)



36 Theo Driessen, Aymeric Lardon, Dongshuang Hou

In fact, the dual game 〈N,w∗〉 of any cooperative savings game 〈N,w〉 is treated
as a cost game such that the core equality CORE(N,w∗) = CORE(N,w) holds,
on the understanding that the core of any cost game is defined through the reversed
inequalities of (1.1). Thus, −→x ∈ CORE(N,w∗) iff −→x ∈ CORE(N,w). As the
counterpart to 1-convex savings games (with non-negative gap functions), we deal
with so-called 1-concave cost games (with non-positive gap functions).

Definition 1.2. A cooperative cost game 〈N,w〉 is said to be 1-concave if its non-
positive gap function attains its maximum at the grand coalition N , i.e.,

gw(S) 6 gw(N) 6 0 for all S ⊆ N , S 6= ∅. (1.5)

Theorem 1.3. Three equivalent statements for any cooperative savings game 〈N,w〉.

(i) The dual game 〈N,w∗〉 is 1-concave, that is (1.5) applied to 〈N,w∗〉 holds

(ii)

w(N) >
∑

i∈N

w({i}) and w(S) 6
∑

i∈S

w({i})

for all S ⊆ N , S 6= N , S 6= ∅ (1.6)

(iii) I(N,w) 6= ∅ and CORE(N,w) = I(N,w)

Proof. In view of Proposition 1.1, together with CORE(N,w) ⊆ I(N,w), it remains
to prove the implication (iii) =⇒ (ii). By contra-position, suppose (ii) does not hold
in that there exists S ⊆ N , S 6= N , S 6= ∅ with w(S) >

∑
i∈S w({i}). Define the

allocation −→x = (xi)i∈N ∈ RN by xi = w({i}) for all i ∈ S and xi = w({i}) + 1
n−s ·[

w(N) − ∑
j∈N

w({j})
]

for all i ∈ N\S. Obviously, −→x ∈ I(N,w)\CORE(N,w). ✷

2. The Stackelberg oligopoly game

The normal form game of the non-cooperative Stackelberg oligopoly situation1 is
modeled as a cooperative TU-game as follows.

Throughout the paper we fix the set N of firms with (possibly identical) strategy
sets Xi = [0, wi), i ∈ N , with reference to (possibly unlimited) capacities wi ∈
[0,∞], i ∈ N , (possibly distinct) marginal costs ci > 0, i ∈ N , and the inverse
demand function p(x) = a − x for all x 6 a and p(x) = 0 for all x > a. In this
framework, the corresponding individual profit functions πi : Πk∈NXk → R, i ∈ N ,
and coalitional profit functions πT : Πk∈NXk → R, T ⊆ N , T 6= ∅, are defined by

πi((xk)k∈N ) = (a−X(N)− ci) · xi and πT ((xk)k∈N ) =
∑

j∈T

πj((xk)k∈N ) (2.7)

where X(N) =
∑

k∈N xk ∈ R represents the aggregate production and a > 2 · n ·
maxi∈N ci.
The Stackelberg oligopoly model is based on a two-stage procedure. Given that the
1 For a description of the oligopoly situation, we refer to the PhD thesis of Aymeric Lardon

(Lardon, 2011).
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members of the coalition S are supposed to perform their leadership in the first stage
maximizing its coalitional profit by taking into account the best responses of individ-
ual followers j ∈ N\S (i.e., the non-members of S) during the second stage. So, the
second stage is devoted to the maximization problems maxxj∈Xj

πj(xj , (xk)k∈N\{j})
for all j ∈ N\S.

Theorem 2.1. Let S ⊆ N , S 6= N . Write cT =
∑
k∈T

ck for all T ⊆ N , T 6= ∅.
(i) The best response of any individual i ∈ N\S during the second stage is given by

yi =
cN\S +X(N\S)

n− s − ci =
a−X(S) + cN\S

n+ 1− s − ci

(ii) The worth v(S) of coalition S is determined by

v(S) =
(x∗iS )

2

n+ 1− s where x∗iS = 1
2 ·
[
a+ cN\S − (n+ 1− s) · ciS

]

is the maximizer of the profit function of player iS ∈ S with the smallest marginal
contribution among members of S, supposing other members of S produce nothing.
Note that x∗i,S > 0 because of a > n ·maxi∈N ci.

Proof. Fix coalition S 6= N . For all i ∈ N\S the maximization problem of the
player’s profit function πi((xk)k∈N ) = (a−X(N)− ci) · xi = −(xi)2 + xi · (a− ci −
X(N\{i})) is solved through its first order condition ∂πi

∂xi
= 0, yielding

xi =
1
2 ·
[
a− ci −X(N\{i})

]
or equivalently, xi = a− ci −X(N)

Summing up the latter equations over all i ∈ N\S yields

X(N\S) = (n− s) · a− cN\S − (n− s) ·X(N)

and so, a−X(N) =
cN\S +X(N\S)

n− s
Hence, by substitution, it holds for all i ∈ N\S

yi = (a−X(N))− ci =
cN\S +X(N\S)

n− s − ci =
a−X(S) + cN\S

n+ 1− s − ci

This proves part (i). Given these best responses by players in N\S, the maximiza-
tion problem of the coalitional profit function πS is, due to unlimited capacities,
equivalent to the maximization problem of the profit function of the firm iS ∈ S
with smallest marginal cost among members of S, (i.e., ciS 6 ci for all i ∈ S),
supposing that the other members of S produce nothing. In this framework,

yi =
a− xiS + cN\S
n+ 1− s − ci for all i ∈ N\S and thus,

y(N\S) = n− s
n+ 1− s ·

[
a− xiS + cN\S

]
− cN\S

= a− xis −
1

n+ 1− s ·
[
a− xiS + cN\S

]
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Hence, we focus on the player’s profit function of the form

πiS ((yi)i∈N\S , xiS , (
−→
0 )i∈S\{iS})

=

[
a−X(N)− ciS

]
· xiS =

[
a− xiS − y(N\S)− ciS

]
· xiS

=

[
1

n+ 1− s ·
[
a− xiS + cN\S

]
− ciS

]
· xiS

=
1

n+ 1− s ·
[
a+ cN\S − (n+ 1− s) · ciS − xiS

]
· xiS

The first order condition yields that the maximizer of this quadratic profit func-
tion is given by

x∗iS = 1
2 ·
[
a+ cN\S − (n+ 1− s) · ciS

]
and finally,

v(S) = πiS ((yi)i∈N\S , x
∗
iS , (
−→
0 )i∈S\{iS})

=
1

n+ 1− s ·
[
a+ cN\S − (n+ 1− s) · ciS − x∗iS

]
· x∗iS

=
1

n+ 1− s ·
[
2 · x∗iS − x∗iS

]
· x∗iS =

(x∗iS )
2

n+ 1− s

It remains to check the non-negativity constraint for the maximizer x∗iS (since
production levels are supposed to be non-negative). Of course, the non-negativity
constraint also applies to any player j ∈ N\S. For that purpose, choose a sufficiently
large in that a > 2 · n ·maxi∈N ci (or to be exact, a > 2 · n ·maxi∈N ci). Recall that
production levels of all firms are supposed to be unlimited. This proves part (ii). ✷

In the context of the resulting cooperative TU game, the following significant
notions appear. For any non-trivial coalition T ⊆ N , T 6= ∅, let cT , c̄T , and cT
respectively, denote the aggregate, average, and minimal cost of coalition T , that is

cT =
∑

k∈T

ck c̄T =
cT
|T | cT = min{ck | k ∈ T }. Moreover, (2.8)

c̄c̄T =
1

|T | ·
∑

k∈T

(ck)
2 Note that

∑

k∈T

[
ck − c̄T

]2
=
∑

k∈T

(ck)
2 − |T | · (c̄T )2(2.9)

Generally speaking, c̄T > cT and moreover, the equality is met only by identical
marginal costs, that is, for any coalition, the average cost equals the minimum cost if
and only if all the marginal costs of its members do not differ. By (2.9), c̄c̄T > (c̄T )

2,
that is the average of the squares of marginal costs covers the square of the average
cost.
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Theorem 2.2. Given the normal form game 〈N, (ck)k∈N , (wk)k∈N , a〉 of the non-
cooperative Stackelberg oligopoly situation with unlimited capacities (wi = +∞ for
all i ∈ N) and possibly distinct marginal costs, then the corresponding cooperative
n-person Stackelberg oligopoly game 〈N, v〉 is determined by v(∅) = 0 and for all
S ⊆ N , S 6= ∅,

v(S) =

[
a+ cN\S − (n+ 1− s) · cS

]2

4 · (n+ 1− s) =
n+ 1− s

4
·
[
a+ cN\S
n+ 1− s − cS

]2
(2.10)

Here c∅ = 0. In case all marginal costs are identical, say ci = c for all i ∈ N ,
then (2.10) reduces to v(S) = (a−c)2

4 · 1
n+1−s for all S ⊆ N , S 6= ∅, and so, the

Stackelberg oligopoly game is a multiple of the symmetric n-person cooperative
game v(s) = 1

n+1−s , the imputation set of which degenerates into the single core
allocation 1

n · (1, 1, . . . , 1) ∈ Rn.

3. 1-Concavity of the dual game of Stackelberg oligopoly games

Assuming non-emptiness of its core, our goal is to study whether or not the 1-
convexity property applies to the Stackelberg oligopoly game. For that purpose,
we are interested in the structure of the corresponding non-negative gap function.
Generally speaking, the validity of the inequality v(S) 6

∑
k∈S v({k}) is equivalent

to the reversed inequality gv(S) >
∑

k∈S g
v({k}) for all S ⊆ N , S 6= N , S 6= ∅.

Together with the non-negativity of the gap function gv, it follows that gv(S) >

gv({i}) whenever i ∈ S. In words, the gap function gv of the Stackelberg oligopoly
game attains among non-trivial coalitions containing a given player its minimum
either at the one-person coalition or the grand coalition N . According to the next
proposition, the gap of the grand coalition is not minimal and hence, the 1-convexity
property fails to hold for the Stackelberg oligopoly games. However, the solution
concept called τ -value (cf. Tijs, 1981) agrees, concerning its allocation to any player
i, with the efficient compromise between the marginal contribution mv

i = v(N) −
v(N\{i}) and the stand-alone worth v({i}), i ∈ N (treated as upper and lower core
bounds respectively).

Proposition 3.1. Given the non-emptiness of the core of the Stackelberg oligopoly
game 〈N, v〉, the corresponding gap function gv satisfies gv(N) > gv({i}) for all
i ∈ N .

Proof. Fix i ∈ N . Recall that gv(N\{k}) = gv(N) for all k ∈ N . Fix j ∈ N , j 6= i.
Due to the non-emptiness of the core, mv

k > v({k}) for all k ∈ N . We conclude that

gv(N)− gv({i}) = gv(N\{j})−mv
i + v({i})

=
∑

k∈N\{i,j}
mv

k − v(N\{j}) + v({i})

>
∑

k∈N\{i,j}
mv

k −
∑

k∈N\{j}
v({k}) + v({i})

=
∑

k∈N\{i,j}
(mv

k − v({k})) > 0
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Here we applied the inequality v(S) 6
∑

k∈S v({k}) to S = N\{j}). ✷

Now we arrive at the main result stating that the core of any Stackelberg oligopoly
game coincides with its imputation set, provided its non-emptiness. By Theorem
1.3, the class of dual games of Stackelberg oligopoly savings games is a significant
class of 1-concave (cost) games. The proof proceeds by checking the validity of
(1.6). Note that the worth of any single player i ∈ N and the grand coalition N
respectively, are given as follows:

v({i}) =

[
a+ cN − (n+ 1) · ci

]2

4 · n for all i ∈ N , and v(N) =
(a− cN )2

4
(3.11)

Theorem 3.2. The dual game 〈N, v∗〉 of the cooperative n-person Stackelberg oligopoly
game 〈N, v〉 of the form (2.10) with distinct marginal costs is 1-concave only if the
intercept a > 0 of the inverse demand function is large enough. On the one hand,

g(v
∗)(N) 6 0 if and only if a >

L1

2
− cN (3.12)

where the critical number L1 represents the lower bound given by

L1 =

[
c̄N − cN

]−1

·
[
(n+ 1)2 · c̄c̄N − [cN + cN ]2

]
On the other, (3.13)

g(v
∗)(S) 6 g(v

∗)(N) for all S ⊆ N , S 6= ∅ (3.14)

Proof of Theorem 3.2. (The full proof consists of two parts.) Part 1.
Firstly, we check g(v

∗)(N) 6 0 or equivalently, by Proposition (1.1) 1.1, v(N) >∑
i∈N v({i}). Put the substitution x = a+ cN . By using (3.11), it holds that 4 · n ·

v({i}) = [x − (n + 1) · ci]2 for all i ∈ N as well as 4 · n · v(N) = n · [a − cN ]2 =
n · [x− (cN + cN )]2. Thus, we obtain the following chain of equalities:

4 · n ·
[
v(N)−

∑

i∈N

v({i})
]

= n ·
[
x− (cN + cN )

]2
−
∑

i∈N

[
x− (n+ 1) · ci

]2

= n ·
[
x2 − 2 · x · (cN + cN ) +

[
cN + cN

]2]

−
∑

i∈N

[
x2 − 2 · x · (n+ 1) · ci + (n+ 1)2 · (ci)2

]

= 2 · x ·
[
(n+ 1) · cN − n · (cN + cN )

]
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+ n ·
[
cN + cN

]2
− (n+ 1)2 ·

∑

i∈N

(ci)
2

= 2 · x ·
[
cN − n · cN

]
+ n ·

[
cN + cN

]2
− (n+ 1)2 · n · c̄c̄N

= n ·
[
2 · x ·

[
c̄N − cN

]
+

[
cN + cN

]2
− (n+ 1)2 · c̄c̄N

]

So far, we conclude that g(v
∗)(N) 6 0 if and only if

2 · x ·
[
c̄N − cN

]
> (n+ 1)2 · c̄c̄N −

[
cN + cN

]2
where x = a+ cN (3.15)

or equivalently, a > L1

2 − cN where the critical lower bound L1 is given by (3.13).
Notice that the quadratic term x2 vanishes in the inequality (3.15). ✷

Remark 3.3. For future convenience, we treat an alternative proof of part 1 of
Theorem 3.2 in the appendix. They differ in that this second proof is based on the
variable a itself instead of the variable x. In the new setting, the description of the
critcal lower bound (3.15) has to be replaced by a similar inequality:

2 · a ·
[
c̄N − cN

]
> (n2 + 2 · n) ·

[
c̄c̄N − (c̄N )2

]
+ c̄c̄N − (cN )2 (3.16)

This second approach yields an alternative description of the same lower bound of
the form

L2 =

[
c̄N − cN

]−1

·
[
(n2 + 2 · n) ·

[
c̄c̄N − (c̄N )2

]
+ c̄c̄N − (cN )2

]
(3.17)

It is left to the reader to verify the validity of the equality L2 = L1 − 2 · cN . ✷

Proof of Theorem 3.2. (The full proof consists of two parts.) Part 2.

Secondly, we check g(v
∗)(S) 6 g(v

∗)(N) for all S ⊆ N , S 6= ∅, or equivalently,
by Theorem 1.3, v(S) 6

∑
i∈S v({i}) for all S ⊆ N , S 6= N , S 6= ∅. Put the

fundamental substitutions

x := a+ cN as well as AS := cS + (n+ 1− s) · cS

From (2.10), we derive the following shortened notation for the worth of any multi-
person coalition S as well as the one-person coalitions respectively, in the Stackel-
berg oligopoly game.
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4 · n · v(S) =
n ·
[
x−AS

]2

n+ 1− s =

n ·
[
x2 − 2 · x ·AS + (AS)

2

]

n+ 1− s for all S ⊆ N ,

4 · n · v({i}) =
[
x− (n+ 1) · ci

]2
for all i ∈ N , and next

4 · n ·
∑

i∈S

v({i}) =
∑

i∈S

[
x2 − 2 · x · (n+ 1) · ci + (n+ 1)2 · (ci)2

]

= s · x2 − 2 · x · (n+ 1) · cS + (n+ 1)2 ·
∑

i∈S

(ci)
2

4 · n ·
[∑

i∈S

v({i})− v(S)
]
= α2 · x2 + α1 · x+ α0 (3.18)

Our main goal is to describe the coalitional notion of surplus in terms of a
quadratic function of the variable x, say f(x) = α2 · x2 + α1 · x+ α0 where α2 > 0.

Definition 3.4. The three real numbers αk, k = 0, 1, 2, are given as follows:

α2 = s− n

n+ 1− s =
(n− s) · (s− 1)

n+ 1− s (3.19)

α1 =
1

n+ 1− s ·
[
−2 · (n+ 1− s) · (n+ 1) · cS + 2 · n · AS

]
(3.20)

=
1

n+ 1− s ·
[
2 ·
[
n− (n+ 1) · (n+ 1− s)

]
· cS + 2 · n · (n+ 1− s) · cS

]
(3.21)

α0 =
1

n+ 1− s ·
[
(n+ 1− s) · (n+ 1)2 ·

∑

i∈S

(ci)
2 − n · (AS)

2

]
(3.22)

Clearly, α2 > 0 since s 6= n, s 6= 1. Further, it holds that α1 < 0 due to c̄S > cS
as well as

n · (n+ 1− s) < s ·
[
(n+ 1) · (n+ 1− s)− n

]
or equivalently, n < s · (n+ 1− s)

So far, we conclude that the quadratic function f(x) = α2 · x2 + α1 · x+ α0 attains
its minimum at x = −α1

2·α2
and the corresponding minimal function values f(−α1

2·α2
) =

−(α1)
2

4·α2
+ α0. This minimal function value is non-negative if and only if 4 · α0 · α2 >

(α1)
2. For the sake of the forthcoming computational matters, recall that c̄T = cT

t
for all T ⊆ N , T 6= ∅, as well as (2.9). In order to apply shortened notation, put the
substitution δs = n− (n+ 1) · (n+ 1− s). As one out of two options for a possible
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representation of α1, we choose (3.21) to evaluate the square of α1, as well as the
product 4 · α2 · α0 . Finally, we arrive at a reasonable description of their difference
as stated in the next lemma.

Lemma 3.5. Consider the setting of Definition 3.4. Then the following equality
holds:

(i)

α2 · α0 −
(α1)

2

4
= s · (s− 1) · (n− s) · (n+ 1)2 ·

[
c̄c̄S − (c̄S)

2

]

− s · n · (n+ 1− s)2 ·
[
cS − c̄S

]2
(3.23)

(ii) Moreover, a sufficient condition for 4·α2 ·α0−(α1)
2 > 0 is given by the following

inequality:

(s− 1) · (n− s) · (n+ 1)2 ·
[
c̄c̄S − (c̄S)

2

]
> n · (n+ 1− s)2 ·

[
cS − c̄S

]2
(3.24)

(iii) The sufficient condition (3.24) holds.

Proof of Lemma 3.5. The current approach proceeds as follows. Firstly, we
evaluate the square (α1)

2 and secondly, we study the two contributions within the
product α2 ·α0, particularly the main contribution − (n−s)·(s−1)

n+1−s ·n · (AS)
2, while its

second contribution will not be changed at all and kept till the end in the form

(n+ 1)2 · (n− s) · (s− 1)

n+ 1− s ·
∑

i∈S

(ci)
2 that is (n+ 1)2 · (n− s) · (s− 1)

n+ 1− s · s · c̄c̄S

In order to apply shortened notation, put ρs = 1
n+1−s . Firstly, straightforward

calculations involving the relevant square (α1)
2 and secondly, straightforward cal-

culations involving the remaining part of the product α2 · α0, yield the following:

(α1)
2

4
= (ρs)

2 ·
[
δs · cS + n · (n+ 1− s) · cS

]2

= (ρs)
2 ·
[
(δs)

2 · (cS)2 + n2 · (n+ 1− s)2 · (cS)2 + 2 · δs · cS · n · (n+ 1− s) · cS
]

= (ρs)
2 ·
[
(δs)

2 ·s2 · (c̄S)2+n2 · (n+1−s)2 · (cS)2+2 ·δs ·s ·n · (n+1−s) · c̄S · cS
]

(3.25)
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In addition,

+
(n− s) · (s− 1)

n+ 1− s · n · (AS)
2

n+ 1− s = (ρs)
2 · (n− s) · (s− 1) ·n ·

[
cS +(n+1− s) · cS

]2

=(ρs)
2 ·(n− s)·(s− 1)·n·

[
s2 ·(c̄S)2 + (n+ 1− s)2 ·(cS)2 + 2·s·(n+ 1− s)·c̄S ·cS

]

(3.26)

Summing up the two negative expressions (3.25)–(3.26) to be multiplied by the
square (ρs)

2 yields

s2 ·
[
(δs)

2 + (n− s) · (s− 1) · n
]
· (c̄S)2 (3.27)

+ (n+ 1− s)2 ·
[
n2 + (n− s) · (s− 1) · n

]
· (cS)2 (3.28)

+ 2 · s · n · (n+ 1− s) ·
[
δs + (n− s) · (s− 1)

]
· c̄s · cS (3.29)

In order to simplify these calculations, we use the following simple equalities:

(n− s) · (s− 1) + n = s · (n+ 1− s)

(n− s) · (s− 1) · n+ n2 = s · n · (n+ 1− s)

δs + (n− s) · (s− 1) = −(n+ 1− s)2

−s2
[
(δs)

2+(n−s)(s−1)n
]
+n·s ·(n+1−s)3=−(n+1−s)(n+1)2(n−s)(s−1)s(3.30)

The final computations are as follows:

(ρs)
−2 ·

[
α2 · α0 −

(α1)
2

4

]
= −s · n · (n+ 1− s)3 · (cS)2

+ 2 · s · n · (n+ 1− s)3 · c̄S · cS

− s2 ·
[
(δs)

2 + (n− s) · (s− 1) · n
]
· (c̄S)2

+ (n+ 1− s) · (n+ 1)2 · (n− s) · (s− 1) · s · c̄c̄S

= −n · s · (n+ 1− s)3 ·
[
cS − c̄S

]2
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−s2 ·
[
(δs)

2 + (n− s)·(s− 1) · n
]
·(c̄S)2 +

[
n·s·(n+ 1− s)3

]]
·(c̄S)2

+ (n+ 1− s) · (n+ 1)2 · (n− s) · (s− 1) · s · c̄c̄S

= −n · s · (n+ 1− s)3 ·
[
cS − c̄S

]2

+ (n+ 1− s) · (n+ 1)2 · (n− s) · (s− 1) · s · (c̄c̄S − (c̄S)
2)

The last equality is due to (3.30). ✷

4. APPENDIX: Alternative Proofs.

Alternative proof of Theorem 3.2. The full proof consists of two parts. Part
1.

Firstly, we check g(v
∗)(N) 6 0 or equivalently, by Proposition 1.1, v(N) >∑

i∈N v({i}). By using (3.11), we obtain the following chain of equalities:

4 · n ·
[
v(N)−

∑

i∈N

v({i})
]

= n ·
[
a− cN

]2
−
∑

i∈N

[
a+ cN − (n+ 1) · ci

]2

= n ·
[
a− cN

]2
−
∑

i∈N

[
a2 + 2 · a ·

[
cN − (n+ 1) · ci

]
+

[
cN − (n+ 1) · ci

]2]

= n ·
[
a2 − 2 · a · cN + (cN )2

]
− n · a2 − 2 · a ·

[
n · cN − (n+ 1) · cN

]

−
∑

i∈N

[
(cN )2 − 2 · (n+ 1) · cN · ci + (n+ 1)2 · (ci)2

]

= 2 · a ·
[
cN − n · cN

]
+ n · (cN )2 −

[
n− 2 · (n+ 1)

]
· (cN )2 − (n+ 1)2 ·

∑

i∈N

(ci)
2

= 2 · a · n ·
[
c̄N − cN

]
+ n · (cN )2 + (n+ 2) · (cN )2 − (n+ 1)2 · n · c̄c̄N

= n ·
[
2 · a ·

[
c̄N − cN

]
+ (cN )2 + n · (n+ 2) · (c̄N )2 − (n+ 1)2 · c̄c̄N

]

So far, we conclude that g(v
∗)(N) 6 0 if and only if

2 · a ·
[
c̄N − cN

]
> (n+ 1)2 · c̄c̄N − (cN )2 − n · (n+ 2) · (c̄N )2 (4.31)
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or equivalently,

a >
1

2
·
[
c̄N − cN

]−1

·
[
(n+ 1)2 · c̄c̄N − (cN )2 − n · (n+ 2) · (c̄N )2

]
=
L2

2

Here the critical number L2 represents the lower bound given by

L2 =

[
c̄N − cN

]−1

·
[
(n+ 1)2 · c̄c̄N − (cN )2 − n · (n+ 2) · (c̄N )2

]
Notice that

L2 =

[
c̄N − cN

]−1

·
[
(n2 + 2 · n) ·

[
c̄c̄N − (c̄N )2

]
+ c̄c̄N − (cN )2

]
while (4.32)

L1 =

[
c̄N − cN

]−1

·
[
(n+ 1)2 · c̄c̄N −

[
cN + cN

]2]
(4.33)

Recall that c̄c̄N > (c̄N )2 > (cN )2. Thus, L2 > 0. In fact, it is left to the reader
to verify the validity of the equality L2

2 = L1

2 − cN , that is L2 = L1 − 2 · cN . ✷

Alternative proof of Theorem 3.2. The full proof consists of two parts. Part
1.

Secondly, we check g(v
∗)(S) 6 g(v

∗)(N) for all S ⊆ N , S 6= ∅, or equivalently, by
Theorem 1.3, v(S) 6

∑
i∈S v({i}) for all S ⊆ N , S 6= N , S 6= ∅. This second proof

differs from the first one in that it uses different fundamental substitutions

yS := a+ cN\S as well as c(S, i) := cS − (n+ 1) · ci for all i ∈ S,
instead of x = a+ cN

Fix S ⊆ N , S 6= N , S 6= ∅. Note that
∑
i∈S

c(S, i) = −(n + 1 − s) · cS . By using

(2.10) it holds that

4 · n · v(S) = n

n+ 1− s ·
[
a+ cN\S − (n+ 1− s) · cS

]2

=
n

n+ 1− s ·
[
yS − (n+ 1− s) · cS

]2
Further,

4 · n · v({i}) =
[
a+ cN − (n+ 1) · ci

]2
=

[
yS + c(S, i)

]2
for all i ∈ N

Recall that
∑
i∈S

c(S, i) = −(n+1− s) · cS for all S ⊆ N . We obtain the following

chain of equalities:
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4 · n ·
[∑

i∈S

v({i})− v(S)
]
=
∑

i∈S

[
yS + c(S, i)

]2

− n

n+ 1− s ·
[
yS − (n+ 1− s) · cS

]2

=
∑

i∈S

[
(yS)

2 + 2 · yS · c(S, i) + (c(S, i))2
]

− n

n+ 1− s ·
[
(yS)

2 − 2 · yS · (n+ 1− s) · cS + (n+ 1− s)2 · (cS)2
]

= s · (yS)2 + 2 · yS ·
∑

i∈S

c(S, i) +
∑

i∈S

(c(S, i))2

− n

n+ 1− s · (yS)
2 + 2 · yS · n · cS − n · (n+ 1− s) · (cS)2

Our main goal is to describe the coalitional notion of surplus in terms of a
quadratic function of the variable y, say g(y) = β2 · y2+ β1 · y+ β0 where β2 > 0. ✷

Definition 4.1. The three real numbers βk, k = 0, 1, 2, are given as follows:

β2 = s− n

n+ 1− s =
(n− s) · (s− 1)

n+ 1− s (4.34)

β1 = 2 ·
[
n · cS − s · (n+ 1− s) · c̄S

]
(4.35)

β0 =
∑

i∈S

(c(S, i))2 − n · (n+ 1− s) · (cS)2 (4.36)

Clearly, β2 > 0 since s 6= n, s 6= 1. Further, it holds that β1 < 0 due to c̄S > cS
as well as n < s · (n + 1 − s) since s · (s − 1) < n · (s − 1). So far, we conclude
that the quadratic function g(y) = β2 · y2 + β1 · y + β0 attains its minimum at
y = −β1

2·β2
and the corresponding minimal function values g(−β1

2·β2
) = −(β1)

2

4·β2
+β0. This

minimal function value is non-negative if and only if 4 ·β0 ·β2 > (β1)
2. For the sake

of the forthcoming computational matters, recall (3.11) as well as c̄T = cT
|T | for all

T ⊆ N , T 6= ∅. Recall the fundamental substitution c(S, i) := cS − (n + 1) · ci for
all i ∈ S. Based upon (4.34)–(4.36), we evaluate the square of β1, as well as the
product 4 · β2 · β0. Finally, we arrive at a reasonable description of their difference
as stated in the next lemma.
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Lemma 4.2. Consider the setting of Definition 4.1. Firstly, we evaluate β0 in
the following form:

β0 =
∑

i∈S

(c(S, i))2 − n · (n+ 1− s) · (cS)2

=
∑

i∈S

[
cS − (n+ 1) · ci

]2
− n · (n+ 1− s) · (cS)2

= s · (cS)2 − 2 · (n+ 1) · (cS)2 + (n+ 1)2 · s · c̄c̄S − n · (n+ 1− s) · (cS)2

= (−2 · n− 2 + s) · (cS)2 + (n+ 1)2 · s · c̄c̄S − n · (n+ 1− s) · (cS)2

Secondly, we add the following chain of computations:

β2 · β0 −
(β1)

2

4
= β2 · β0 −

[
n · cS − s · (n+ 1− s) · c̄S

]

=
(n− s) · (s− 1)

n+ 1− s ·
[
(−2 · n− 2 + s) · s2 · (c̄S)2 + (n+ 1)2 · s · c̄c̄S

− n · (n+ 1− s) · (cS)2
]
−
[
n2 · (cS)2 − 2 · n · s · (n+ 1− s) · cS · c̄S

+ s2 · (n+ 1− s)2 · (c̄S)2
]

=

[
−n · (n− s) · (s− 1)− n2

]
· (cS)2

+

[
(n− s) · (s− 1)

n+ 1− s · (−2 · n− 2 + s) · s2 − s2 · (n+ 1− s)2
]
· (c̄S)2

+
(n− s) · (s− 1)

n+ 1− s · (n+ 1)2 · s · c̄c̄S + 2 · n · s · (n+ 1− s) · cS · c̄S

= −n · s · (n+ 1− s) · (cS)2 + 2 · n · s · (n+ 1− s) · cS · c̄S
+

(n− s) · (s− 1)

n+ 1− s · (n+ 1)2 · s · c̄c̄S

− s2

n+ 1− s ·
[
(n− s) · (s− 1) · (2 · n+ 2− s) + (n+ 1− s)3

]
· (c̄S)2

= −n · s · (n+ 1− s) ·
[
cS − c̄S

]2
+

(n− s) · (s− 1)

n+ 1− s · (n+ 1)2 · s · c̄c̄S

+

[
n · s · (n+ 1− s)− s2

n+ 1− s

[
(n− s) · (s− 1) · (2 · n+ 2− s)

+ (n+ 1− s)3
]]
· (c̄S)2
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Thus,

(n+ 1− s) ·
[
β0 · β2 −

(β1)
2

4

]

= −s · n · (n+ 1− s)2 ·
[
cS − c̄S

]2
+ (s− 1) · (n− s) · (n+ 1)2 · s · c̄c̄S

+

[
n · s · (n+ 1− s)2 − s2 · (n+ 1− s)3

− s2 · (n− s) · (s− 1) · (2 · n+ 2− s)
]
· (c̄S)2

= −s · n · (n+ 1− s)2 ·
[
cS − c̄S

]2
+ s · (s− 1) · (n− s) · (n+ 1)2 · c̄c̄S

− s · (s− 1) · (n− s) · (n+ 1)2 · (c̄S)2

= −s · n · (n+ 1− s)2 ·
[
cS − c̄S

]2

+ s · (s− 1) · (n− s) · (n+ 1)2 ·
[
c̄c̄S − (c̄S)

2

]

It suffices to prove the next inequality:

(s− 1) · (n− s) · (n+ 1)2 ·
[
c̄c̄S − (c̄S)

2

]
> n · (n+ 1− s)2 ·

[
cS − c̄S

]2
(4.37)

or equivalently, by (2.9)

(s− 1) · (n− s) · (n+ 1)2 ·
∑

i∈S

[
ci − c̄S

]2
> s · n · (n+ 1− s)2 ·

[
cS − c̄S

]2

By (4.37), we observe the same inequality as in Lemma 3.5 and hence, we may
state the same sufficiency condition. ✷
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