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Abstract In an earlier work (Dragan, 1991), we introduced the Inverse
Problem for the Shapley Values and Weighted Shapley Values of coopera-
tive transferable utilities games (TU-games). A more recent work (Dragan,
2004) is solving the Inverse Problem for Semivalues, a more general class of
values of TU games. The Binomial Semivalues have been introduced recently
(Puerte, 2000), and they are particular Semivalues, including among other
values the Banzhaf Value. The Inverse problem for Binomial Semivalues was
considered in another paper (Dragan, 2013). As these are, in general, not
efficient values, the main tools in evaluating the fairness of such solutions
are the Power Game and the coalitional rationality, as introduced in the
earlier joint work (Dragan/Martinez-Legaz, 2001). In the present paper, we
are looking for the existence of games belonging to the Inverse Set, and for
which the a priori given Binomial Semivalue is coalitional rational, that is
belongs to the Core of the Power Game. It is shown that there are games in
the Inverse Set for which the Binomial Semivalue is coalitional rational, and
also games for which it is not coalitional rational. An example is illustrating
the procedure of finding games in the Inverse Set belonging to both classes
of games just mentioned.

Keywords: Inverse Problem, Inverse Set, Semivalues, Binomial Semivalues,
Power Game, Coalitional rationality.

Introduction
In a cooperative transferable utilities game (TU game), (N, v), defined by a

finite set of players N, n = |N | , and the characteristic function v : P (N) → R,
with v(∅) = 0, where P (N) is the set of nonempty subsets of N, called coalitions,
the main classical problem is to divide fairly the win of the grand coalition v(N).
An early solution was the Shapley Value (1953), defined axiomatically, to satisfy
some fairness conditions (the axioms), and proved to be given by the formula

SHi(N, v) =
∑

S:i∈S⊆N

(s− 1)!(n− s)!
n!

.[v(S) − v(S − {i})], ∀i ∈ N,

where s = |S| , S ⊆ N. It is easy to prove that SH is always efficient, that is we have
the sum of components equal v(N). The Shapley Value may belong to the Core of the
game and in this case it is coalitional rational. The Semivalues, introduced by Dubey,
Neyman and Weber (1981), who tried to avoid the efficiency axiom, in general are
not efficient, so that they do not belong to the Core, and coalitional rationality
is a problem in evaluating the fairness. The Binomial Semivalues were introduced
by Puerte (2000), as extensions of the most known Semivalue, the Banzhaf Value
(1965). To evaluate the fairness of such a solution, an algebraic structure is needed,
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and let us denote by G(N) the set of all games with the set of players N. Two
operations are defined, addition and scalar multiplication by

v = v1 + v2 ⇔ v(S) = v1(S) + v2(S), ∀S ⊆ N,
where (N, v1) and (N, v2) are any two TU games in G(N), and

v = γv1 ⇔ v(S) = γv1(S), ∀S ⊆ N, ∀γ ∈ R,
where (N, v1) is any TU game. It is easy to check that G(N) is a linear vector space
and its dimension is 2n−1. Now, for every coalition S ⊆ N , the restriction of (N, v)
to S is the game denoted by (S, v). Obviously, this finite set and the operations
shown above define on S again a linear vector space, G(S), and the union of all
spaces G(S), ∀S ⊆ N, is denoted by GN . A value Φ defined on GN is any functional
defined on each G(S) with values in Rs. The Shapley Value is defined on GN by a
formula similar to the first formula above, where N has been changed into S ⊆ N,
and n into s.

In the first section we introduce the Semivalues and the Binomial Semivalues;
the solution of the Inverse Problem for Semivalues is shown in the second section.
The Power Game and the coalitional rationality, together with the main result of
the paper about Binomial Semivalues are discussed in the last section.

1. Semivalues and Binomial Semivalues

To give the definition of a Semivalue, we need a weight vector pn ∈ Rn, satisfying
a normalization condition

n∑

s=1

(
n− 1
s− 1

)
pns = 1, (1.1)

together with the interpretation: pns is the common weight of all coalitions of size s.
This would be enough for the games in G(N), but for all the games in GN we need
a sequence of weight vectors defined recursively as follows:

pn−1
s = pns + pns+1, s = 1, 2, ..., n− 1, (1.2)

will give the weight vector for the space G(S) with |S| = n− 1. Then, the sequence
of weight vectors pn−2, pn−3, ..., p2, p1 is defined by formulas similar to (1.2), going
up to p11 = 1. From (1.2) it is easy to show that these vectors satisfy a normalization
condition like (1.1). It has been said earlier that (1.2) are the inverse Pascal triangle
conditions, as any sequence shows triangles similar to those present when the Pascal
triangle conditions were defined. Now, we can define the Semivalue associated with
any sequence of weight vectors, p1, p2, ..., pn subject to (1.1) and connected by (1.2),
as the value defined on GN by

SEi(T, v, p
t) =

∑

S:i∈S⊆T

pts[v(S)− v(S − {i})], ∀i ∈ T, ∀T ⊆ N, T 6= ∅. (1.3)

Recall that here (T, v) is the TU game, a subgame of (N, v), obtained as a
restriction of the characteristic function to T, so that (T, v) ∈ GT . Notice that for
t 6 n the weight vectors
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pts =
(s− 1)!(t− s)!

t!
, s = 1, 2, ..., t, pts = 21−s, s = 1, 2, ..., t, (1.4)

give the Shapley Value, and the Banzhaf Value, respectively.

Example 1. Consider the weight vector p3 = (18 ,
1
4 ,

3
8 ), and p2 = (38 ,

5
8 ), p

1 = (1),
derived via (1.2). Consider the game

v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = v({1, 3}) = v({2, 3}) = v(1, 2, 3}) = 1,
(1.5)

a constant sum game. We may compute the Semivalue of this game, by the formula
(3), to get for the game (1.5) the outcome SE({1, 2, 3}, v, p3) = (12 ,

1
2 ,

1
2 ), which is

not efficient, because the sum of components makes a number different of 1. Then,
the Semivalue does not belong to the Core, as the efficiency is missing. As this
is the case in most situations, we have to define the coalitional rationality in some
other way, following the ideas from the earlier work (Dragan/Martinez-Legaz, 2001),
namely to consider the Power Game of the given game, in which the Semivalue is
efficient and may be coalitional rational. Thus we have to define the Power Game.
We may compute also the Semivalues of the subgames

SE({1, 2}, v, p2) = SE({1, 3}, v, p2) = SE({2, 3}, v, p2) = (
5

8
,
5

8
). (1.6)

They are looking all similar, due to the symmetry in (1.5) of the worth of the
characteristic function of the players. Of course, the Semivalues of singletons are all
zero. Then, we got a new game

w({1}) = w({2}) = w({3}) = 0, w({1, 2}) = w({1, 3}) = w({2, 3}) = 5

4
,

w({1, 2, 3}) = 3

2
.

were we used (6) to satisfy the definition which follows.

Definition 1. For a TU game (N, v), the Power Game, relative to a Semivalue
associated with a weight vector pn, is the game (N, π, pn) defined by formula

π(T, v, pt) =
∑

i∈T

SEi(T, v), ∀T ⊆ N, (1.7)

where the components of the Semivalue were given by formula (1.3).

As seen above in example 1, it is not easy to compute the Power Game by means
of (7). However, this may be done by using the following result:

Theorem (Dragan, 2000). Let a Semivalue SE(N, v) be associated with the
weight vector pn, and the Power Game (N, π, pn), relative to the Semivalue, given
by formula (7). Then, we have

π(T, v, pt) =
∑

S⊆T

[spts − (t− s)pts+1]v(S), ∀T ⊆ N, (1.8)

where ptt+1 is an arbitrary number.
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Example 2. Return to the game of Example 1 and recall that the computation of
the Power Game, relative to the Semivalue, by using the definition (7), led to

π({1, 2}, v, p2) = π({1, 3}, v, p2) = π({2, 3}, v, p2) = 5

4
, π({1, 2, 3}, v, p3) = 3

2
.

(1.9)
Now, by using the theorem, as we have the bracket in (8) given by

2p22 =
5

4
, and 2p32 − p33 =

1

8
, 3p33 =

9

8
, (1.10)

with the second equality used three times for coalitions of size two, from (1.10)
and formula (1.8) we get the same worth for the characteristic function as in (1.9).
Beside definition 1, we illustrated the usefulness of (1.8), relative to (1.7).

Now, that we have the Power Game (1.9) for our given game (1.5), and the
Semivalue is efficient in this game, which obviously is always true, we may check
whether or not, the Semivalue is in the Core of the Power Game, and conclude that
this is not true; hence according to the ideas from Dragan/Martinez-Legaz (2001),
the Semivalue of (1.5) is not coalitional rational. Of course, it may be possible that
the Semivalue does belong to the Core of the Power Game, and in this last case
it will be coalitional rational. For example, if we consider the Banzhaf Value, the
most popular Semivalue, defined by p3 = (14 ,

1
4 ,

1
4 ), and compute the Power Game,

then we find out that the value is coalitional rational. Looking at our Example 2
we think that it is justified to introduce the following:

Definition 2. The Semivalue of a given game is coalitional rational if it belongs to
the Core of the Power Game relative to the Semivalue (or, the Power Core of the
game).

Now, let us consider the Binomial Semivalues, introduced by Puerte (2000) and
discussed also in the work by Puerte/Freixas (2002), where definition 2 applies.

Definition 3. The Semivalue SE associated with the sequence of normalized weight
vectors p1, p2, ..., pn connected by the inverse Pascal triangle relationships, is a Bi-
nomial Semivalue, if the weight vectors satisfy also for some number r ∈ (0, 1], the
equalities

pn2
pn1

=
pn3
pn2

= ... =
pnn
pnn−1

= r. (1.11)

Now, that the concepts of Power Game and coalitional rationality have been
explained and the computation of the Power Game has been given, we notice:

Lemma 1. In GN , the weights of a Binomial Semivalue are given by the equalities

pts =
rs−1

(1 + r)t−1
, s = 1, 2, ..., t, t 6 n, (1.12)

so that the Binomial Semivalue is given by the formula

SEi(T, v, p
t) =

∑

S:i∈S⊆T

rs−1

(1 + r)t−1
[v(S)− v(S − {i})], ∀i ∈ T, ∀T ⊆ N, T 6= ∅.

(1.13)



28 Irinel Dragan

Proof. Follows from (1.11) and the normalization condition (1.1), as well as formula
(1.3). ⊓⊔

ę

Remarks: (a) From the inverse Pascal triangle relationships it follows that all
weight vectors of the sequence are given by formulas similar to (1.12), obtained for
different values of t = 1, 2, ..., n, and while the game is replaced by the Value, a fact
which justifies the study of the Binomial Semivalues, that should have properties
similar to those of the Banzhaf Value.

Now, the problem to be considered in this paper is: for a given vector L, and
a given TU game (N, v), such that the Binomial Semivalue corresponding
to a parameter r is not coalitional rational, find out in the Inverse Set of
L a TU game (N,w), for which the Binomial Semivalue with parameter r
is the same, but belongs to the Core of the Power Game. Clearly, we have
to explain the procedure in two steps:

• How do we find the Inverse Set of a Binomial Semivalue associated with a
parameter r, and an a priori given value L? From our previous work on general
Semivalues we know that this should be determined by an explicit formula,
hence the Inverse Set will be available. This will be discussed in the second
section.
• In the Inverse Set, how do we get a TU game for which the Binomial Semivalue

of the original game is in the Core of its Power Game? This will be discussed
in the last section. What about games for which the Binomial Semivalue of the
original game does not belong to the Power Core? like the one from example 1.

2. The Null Space and the Inverse Set

In a recent work (Dragan, 2004), it has been shown that the Semivalue, associated
with a sequence of weight vectors derived from pn by means of formulas of type
(1.2), has a potential function and for a game (N, v), it is given by the formula

P (N, v, pn) =
∑

S⊆N

pns v(S). (2.1)

Thus, for a Binomial Semivalue (2.1) becomes

P (N, v, pn) =
1

(1 + r)n−1

∑

S⊆N

rs−1v(S). (2.2)

Obviously, to make (2.2) computationally better, the sum may be written as

P (N, v, pn) =
1

(1 + r)n−1

n∑

s=1

rs−1ds(N, v), (2.3)

where ds(N, v) is the sum of worth of the characteristic function for all subcoali-
tions of size s in the set of players N.

Example 3. Returning to the game (1.5) of Example 1, and the weight vector p3 =
(18 ,

1
4 ,

3
8 ), we see that d1(N, v) = 0, d2(N, v) = 3, d3(N, v) = 1, so that from (2.3) we

get P (N, v, p3) = 1
(1+r)2 (3r + r2), where the expressions of weights in terms of the
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ratio r were used. Now, for any coalition of size two, again from (2.3), we get the
potential P (N − {i}, v, p2) = r

1+r , i = 1, 2, 3, Hence, the Binomial Semivalue is

SEi(N, v, p
3) = P (N, v, p3)− P (N − {i}, v, p2) = 3r + r2

(1 + r)2
− r

1 + r
=

2r

(1 + r)2
,

i = 1, 2, 3, (2.4)

which for the Banzhaf Value (r = 1) becomes as above B(N, v) = (12 ,
1
2 ,

1
2 ).

In the more recent work (Dragan, 2013), we considered a basis for the space
G(N), consisting of the linearly independent vectors in the set

W = {wT ∈ Rn : T ⊆ N, T 6= ∅}, (2.5)

defined by the formulas

wT (T ) =
1

ptt
, wT (S) =

s−t∑

l=0

(−1)l
(
s− t
l

)

pt+l
t+l

, ∀S ⊃ T, wT (S) = 0, otherwise.

(2.6)
For all these vectors were computed the Binomial Semivalues associated with

the weight vectors in the sequence generated by the vector pn, via (1.2), by using
the formulas for the Binomial Semivalues (1.3) obtained in Lemma 1. Here, we try
to compute the same Binomial Semivalues by means of the potential, using

SEi(N,wT , p
n) = P (N,wT , p

n)− P (N − {i}, wT , p
n−1), ∀i ∈ N, (2.7)

like in example 3 above. To get the experience needed in this computation let
us consider first an example.

Example 4. From (2.6), the general three person game shows the basis W, that
taking into account (1.2) becomes

w{1} = (1, 0, 0, 1− 1

p22
, 1− 1

p22
, 0, 1− 2

p22
+

1

p33
) = (1, 0, 0,−1

r
,−1

r
, 0,

1

r2
),

w{2} = (0, 1, 0, 1− 1

p22
, 0, 1− 1

p22
, 1− 2

p22
+

1

p33
) = (0, 1, 0,−1

r
, 0,−1

r
,
1

r2
),

w{3} = (0, 0, 1, 0, 1− 1

p22
, 1− 1

p22
, 1− 2

p22
+

1

p33
) = (0, 0, 1, 0,−1

r
,−1

r
,
1

r2
),

w{1,2} = (0, 0, 0,
1

p22
, 0, 0,

1

p22
− 1

p33
) = (0, 0, 0,

1 + r

r
, 0, 0,−1 + r

r2
),

w{1,3} = (0, 0, 0, 0,
1

p22
, 0,

1

p22
− 1

p33
) = (0, 0, 0, 0,

1 + r

r
, 0,−1 + r

r2
),

w{2,3} = (0, 0, 0, 0, 0,
1

p22
,
1

p22
− 1

p33
) = (0, 0, 0, 0, 0,

1 + r

r
,−1 + r

r2
),

w{1,2,3} = (0, 0, 0, 0, 0, 0,
1

p33
) = (0, 0, 0, 0, 0, 0,

(1 + r)2

r2
).

(2.8)
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Obviously, these are linearly independent vectors and their number equals the
dimension of the space, hence they form a basis. Let us compute the potentials
of all basic vectors, by using formula (2.3). For i, j, k = 1, 2, 3, we have the sums

d1(N,w{i}) = 1, d2(N,w{i}) = −
2

r
, d3(N,w{i}) =

1

r2
,

d1(N,w{i,j}) = 0, d2(N,w{i,j}) =
1 + r

r
, d3(N,w{i,j}) = −

1 + r

r2
,

d1(N,w{i,j,k}) = d2(N,w{i,j,k}) = 0, d3(N,w{i,j,k}) =
(1 + r)2

r2
,

(2.9)

and from (2.3) we obtain

p3s =
rs−1

(1 + r)2
, s = 1, 2, 3. (2.10)

Now, by (2.9) and (2.10), for every basic vector (N,w) shown above in (2.8),
formula (2.1) written as

P (N,w, p3) =
1

(1 + r)2

3∑

s=1

rs−1ds(N,w), (2.11)

will give

P (N,ws, p
3) =

1

(1 + r)s−1
[1 + (−1)]s−1 = 0, ∀S ⊂ N. (2.12)

while the potential of the last game equals 1. Now, the potentials of the subgames
would be computed, by using a formula similar to (2.11), namely

P (N − {i}, wS, p
2) =

1

1 + r

2∑

s=0

rs−1dS(N,w), ∀S ⊂ N − {i}, i ∈ N. (2.13)

In the same way, we get zero, and the potential of the last game equals 1.
Then, the Semivalues computed by the formula (2.7) are

SE(N,w{i}, p
1) = (0, 0, 0), ∀i ∈ N, (2.14)

SEj(N,wN−{i}, p
2) = −δij, i = 1, 2, 3; SE(N,wN , p

3) = (1, 1, 1).

A similar approach is hepful in proving, by computing the potentials, the result:

Theorem (Thm.3, Dragan, 2013). Let a Binomial Semivalue be defined by a
parameter r, and let W be the basis of the space provided by formulas (2.5), (2.6).
Then, we have

SE(N,wT , p
t) = 0, ∀T ⊂ N, |T | 6 n− 2, T 6= ∅,
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SEi(N,wN−{i}p
n) = −1, ∀i ∈ N, SEj(N,wN−{i}, p

n) = 0, j 6= i, ∀i ∈ N, (2.15)

SEi(N,wN , p
n) = 1, ∀i ∈ N.

As a Corollary, by the linearity of the Semivalue, we get the Inverse Set, where
r enters only the basic vectors:

Theorem (Thm.6, Dragan, 2013). Let a Binomial Semivalue for a game (N,w),
defined by a parameter r, be SE(N, v, pn) = L. Let W given by (2.5), (2.6) be a
basis for the space G(N). Then, the solution of the Inverse Problem is expressed by
the formula

w =
∑

S⊂N,|S|6n−2

aSwS + aN (wN +
∑

i∈N

wN−{i})−
∑

i∈N

LiwN−{i}, (2.16)

where the constants multiplying the basic games are arbitrary.

3. The Power Game and the coalitional rational inverse

Consider in the Inverse Set the family of games, to be called the “almost null games”,
obtained for aS = 0, ∀S ⊂ N, |S| 6 n− 2, S 6= ∅. This family, as seen in the
formula (2.16), is given by

w = aN (wN +
∑

i∈N

wN−{i})−
∑

i∈N

LiwN−{i}, (3.1)

where aN is the parameter of the family; of course, the parameter r of the Binomial
Semivalue occurs in the basic vectors. Now, by using the weight vectors (2.6), written
in terms of r, as shown in (Dragan, 2013), we have

wT (T ) =
(1 + r)t−1

rt−1
, ∀T ⊆ N, wT (S) =

(−1)s−t

(1 + r)t−1

rs−1
, ∀S ⊃ T, (3.2)

and wT (S) = 0, otherwise, so that from (3.2) we obtain

wN−{i}(N − {i}) =
(1 + r)n−2

rn−2
, ∀i ∈ N, wN−{i}(N) = − (1 + r)n−2

rn−1
, (3.3)

wN−{i}(N − {j}) = 0, ∀j 6= i, wN (N) =
(1 + r)n−1

rn−1
. (3.4)

In this way, from (3.3), (3.4), the components different of zero in (3.1) are:

w(N − (i}) = (aN − Li)
(1 + r)n−2

rn−2
, ∀i ∈ N, (3.5)

w(N) =
(1 + r)n−2

rn−1
[aN (r − n+ 1) +

∑

i∈N

Li]. (3.6)
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Now, we compute the Power Game of an arbitrary game in the almost null
family set, given in (3.5), (3.6), where the null values of the characteristic function
are omitted, and we get:

π(N − {i}, v, pn−1) = (n− 1)(aN − Li), ∀i ∈ N, (3.7)

π(N, v, pn) =
∑

i∈N

Li. (3.8)

As stated in definition 2 before, a Semivalue of a given game is coalitional ra-
tional if it belongs to the Core of the Power Game, or Power Core. If the Binomial
Semivalue is L > 0, and, as seen in (3.8), this is efficient in the Power Game, then
the only Core conditions are those obtained from the coalitions of size n− 1, that
have the worth shown in (3.7), namely

∑

j∈N−{i}
Lj > (n− 1)(aN − Li), ∀i ∈ N, (3.9)

or

aN 6
1

n− 1
[
∑

j∈N−{i}
Lj + (n− 1)Li], ∀i ∈ N. (3.10)

We proved
Theorem 2. A Binomial Semivalue associated with the parameter r, and given by a
nonnegative vector L ∈ Rn, is coalitional rational, in the Power Game of the game

w = aN (wN +
∑

i∈N

wN−{i})−
∑

i∈N

LiwN−{i}, (3.11)

If and only if aN satisfies the inequality

aN 6
1

n− 1
Min{

∑

j∈N−{i}
Lj + (n− 1)Li}, (3.12)

Notice that there is also an infinite set of games in the almost null Inverse Set
for which the Binomial Semivalue is not coalitional rational.

Example 5. Return to the game considered in Example 1, for which the Banzhaf
Value is B(N, v) = (12 ,

1
2 ,

1
2 ), so that the inequality (3.12) is aN 6 1. We compute

the almost null game, relative to the Banzhaf Value by (3.5) and (3.6) , and we
obtain

w({1}) = w({2}) = w({3}) = 1, w({1, 2}) = w({1, 3}) = w({2, 3}) = w({1, 2, 3}) = 1,
(3.13)

that incidentally coincides with the given game (1.5). Obviously, the Banzhaf Value
is the same, that is B(N,w) = (12 ,

1
2 ,

1
2 ). Then, we compute the Power Game, of

(3.13) by (3.7) and (3.8) and we get

π({1, 2}, w, p2) = π({1, 3}, w, p2) = π({2, 3}, w, p2) = 1, π({1, 2, 3}, w, p3) = 3

2
,

(3.14)
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while we have null values for the singletons. Now, in the new game (3.14) the old
Banzhaf Value is efficient and we may see that it is also in the Power Core. This
happened because for our game we have aN = 1, which satisfies (3.12) and we have
to modify only w({1, 2, 3}) = 1, into π({1, 2, 3}, w, p3) = 3

2 , to get the Banzhaf
Value in the Power Core. Notice that the Power Game does not have the same
Banzhaf Value as the original one, or the almost null game in the Inverse Set; for
example, in our case the Banzhaf Value of (3.14) is B(N, π) = (58 ,

5
8 ,

5
8 ). Obviously,

this is not efficient again and the coalitional rationality conditions do not hold.
Consider the same game, but take aN = 3

2 , and compute again the almost null
game, relative to the Banzhaf Value by (3.5) and (3.6), and we obtain

w({1}) = w({2}) = w({3}) = 0, w({1, 2}) = w({1, 3}) = w({2, 3}) = 2,

w({1, 2, 3}) = 0, (3.15)

which gives the same old Banzhaf Value. Further, we compute the Power Game and
we get

π({1, 2}, w, p2) = π({1, 3}, w, p2) = π({2, 3}, w, p2) = 2, π({1, 2, 3}, w, p3) = 3

2
,

(3.16)
in which the old Banzhaf Value is efficient, but it is not coalitional rational, because
(3.12) does not hold. These two examples illustrate theorem 2 and the technique to
build the game in the almost null inverse family, for which the given Banzhaf Value
is coalitional rational.
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