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Abstract In this paper two single-valued solution concepts of a TU-game
with a finite set of players, the SM-nucleolus and the α-nucleolus, are con-
sidered. Based on the procedure of finding lexicographical minimum, there
was proposed an algorithm allowing to calculate the SM-nucleolus as well as
the prenucleolus. This algorithm is modified to calculate the α-nucleolus for
any fixed α ∈ [0, 1]. Using this algorithm the monotonicity properties of the
SM-nucleolus and the α-nucleolus are studied by means of counterexamples.
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1. Introduction

In this paper we examine two single-valued solution concepts of a transferable utility
game (TU-game) with a finite set of players — the SM-nucleolus (Tarashnina, 2011)
and the α-nucleolus (Smirnova and Tarashnina, 2011). Both of these solution con-
cepts take into account "the blocking power" of a coalition, the amount which the
coalition cannot be prevented from by the complement coalition.

Based on the procedure (Maschler et al., 1979) of finding lexicographical mini-
mum, there was proposed an algorithm (Britvin and Tarashnina, 2013) allowing to
calculate the SM-nucleolus as well as the prenucleolus (Schmeidler, 1969). By intro-
ducing the special numbering of coalitions the problem of finding the SM-nucleolus
of a cooperative n-person game is reduced to solving a single linear program with 2n

rows and (n+1) columns. The initial values of the problem coefficients are 0, 1,−1.
This algorithm is modified to calculate the α-nucleolus for any fixed α ∈ [0, 1].

In this work we consider two properties of single-valued solution concepts of
TU-games: aggregate and coalitional monotonicity. Aggregate monotonicity means
that if the worth of the grand coalition icreases while the worths of all other coali-
tions remain the same, then the players payoffs should not decrease. Coalitional
monotonicity applies this rule to any coalition S ⊂ N in a game. The Shapley
value (Shapley, 1953) satisfies aggregate and coalitional monotonicity. N. Megiddo
(Megiddo, 1974) presented an example of nine person cooperative TU-game that
shows that another well-known single-valued solution, the nucleolus (Schmeidler,
1969), violates aggregate monotonicity. It is known that the nucleolus does not sat-
isfy coalitional monotonicity too (Young, 1985). In this paper we verify that the
SM-nucleolus does not satisfy aggregate and coalitional monotonicity.

The paper is organized as follows. In section 2 basic definitions and notations
are given. For any fixed α we describe the algorithm of finding the α-nucleolus
(including the SM-nucleolus) in section 3. Using this algorithm we study the mono-
tonicity properties of the considered solution concepts by means of counterexamples
in section 4.
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2. Basic definitions and notations

In this paper we consider cooperative games with transferable utilities (TU-games).
A TU-game is a pair (N, v), whereN = {1, ..., n} is the set of players and v : 2N → R
is a characteristic function with v(∅) = 0. More information about cooperative game
theory can be found in (Petrosjan et al., 2012) and (Pecherskiy and Yanovskaya,
2004).

The set of all TU-games with the fixed set of players N is denoted by GN .
Consider a game (N, v) from GN . Assume that the players have formed the maximal
coalition N and consider the distribution of v(N) among all the players. We define
the set of feasible payoff vectors as follows:

X(N, v) = {x ∈ Rn |
∑

i∈N

xi ≤ v(N)}.

The set X0(N, v) ⊂ X(N, v) such that

X0(N, v) = {x ∈ Rn |
∑

i∈N

xi = v(N)} (1)

is a set of group rational payoff vectors of the game (N, v). It follows from (1) that
x ∈ X0(N, v) if and only if for all S ⊂ N it holds

x(S) + x(N\S) = v(N),

where
x(S) =

∑

i∈S

xi.

Definition 1. A solution of a TU-game on GN is a mapping f that matches for
every game (N, v) ∈ GN the subset f(N, v) of X(N, v).

In the paper we study two single-valued solution concepts: the SM-nucleolus and
the α-nucleolus. To introduce the definitions of these solution concepts, we should
define the excess of a coalition.

Definition 2. The excess e(x, S, v) of a coalition S at x ∈ X0(N, v) is calculated
as

e(x, S, v) = v(S)− x(S). (2)

Let (N, v) be a TU-game. The dual game (N, v∗) of (N, v) is defined by

v∗(S) = v(N)− v(N\S)

for all coalitions S.
Let us clarify the notion of the constructive and the blocking power of S. The

constructive power of S is the worth of the coalition, or exactly what S can reach by
cooperation. By the blocking power of coalition S we understand the amount v∗(S)
that this coalition brings to N if the last will be formed — its contribution to the
grand coalition. The difference between v(N) and v(N\S) is a subject which should
be taken into account in a solution of a game. In our opinion, the blocking power
can be judged as a measure of necessity of S for N — how much S contributes to
N . So, each coalition S is estimated by N in this spirit.

In order to introduce the SM-nucleolus we define the sum-excess of the coalition.
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Definition 3. The sum-excess ē(x, S, v) of a coalition S at x ∈ X0(N, v) in the
game (N, v) is

ē(x, S, v) =
1

2
e(x, S, v) +

1

2
e(x, S, v∗).

We define for some ϕ ∈ Rn the mapping θ : Rn → Rn such that ψ = θ(ϕ) ∈ Rn

means that ψ is obtained from ϕ by ordering its components in non-increasing order.
After calculating the sum-excess for each S ⊆ N we obtain the sum-excess vector

ē(x, v) = {ē(x, S, v)}S⊆N of dimension 2n.

Definition 4. The SM-nucleolus of the game (N, v) is the set XSM ⊂ X0(N, v)
such that for every x ∈ XSM vector θ({ē(x, S, v)}S⊆N ) is lexicographically the
smallest:

XSM (N, v) = {x ∈ X0|θ({ē(x, S, v)}S⊆N ) �lex θ({ē(y, S, v)}S⊆N ), ∀y ∈ X0(N, v)}.

To introduce the α-nucleolus we define the α-excess of a coalition.

Definition 5. The α-excess eα(x, S, v) of a coalition S at x ∈ X0(N, v) is

eα(x, S, v) = αe(x, S, v) + (1− α)e(x, S, v∗), α ∈ [0, 1]. (3)

After calculating the α-excess for each S ⊆ N we obtain the α-excess vector
eα(x, v) = {eα(x, S, v)}S⊆N of dimension 2n.

Definition 6. The α-nucleolus of the game (N, v) is the set Xα ⊂ X0(N, v) such
that for every x ∈ Xα vector θ({eα(x, S, v)}S⊆N ) is lexicographically the smallest:

Xα(N, v) = {x ∈ X0(N, v)|θ({eα(x, S, v)}S⊆N ) �lex θ({eα(y, S, v)}S⊆N ),

∀y ∈ X0(N, v)}.

It is important to note that both solution concepts represent a unique point in
X0, so they are single-valued solutions (Smirnova and Tarashnina, 2011).

Obviously, if α = 1
2 , then

Xα(N, v) = XSM (N, v).

This means that the SM-nucleolus is a special case of the α-nucleolus.

3. Algorithm

In the literature there was presented an algorithm of finding the SM-nucleolus of
any TU-game (Britvin and Tarashnina, 2013). Here we modify this algorithm for
calculation the α-nucleolus. First, we should replace the excess in the procedure
of finding the lexicographical minimum (Maschler et al., 1979) to the α-excess. We
obtain the following procedure.
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1. Consider a pair (X0, J0), where J0 consists of all possible coalitions except the
empty one.

2. Recursively find
ut = min

x∈Xt−1
max

S⊆Jt−1
eα(x, S, v), (4)

Xt = {x ∈ Xt−1 | eα(x, S, v) ≤ ut, ∀S ⊆ J t−1},
Jt = {S ⊆ J t−1 | eα(x, S, v) = ut, ∀x ∈ Xt},

J t = J t−1\Jt.
3. If J t = ∅, then we stop, otherwise we go to step 2 with t = t+ 1.

In the game there may be formed 2n coalitions (including the empty one). We
will not consider the empty coalition. Let us enumerate all the other coalitions in
the following way.

Suppose that n-person game has been built dynamically by adding one player
at each step. In a game with one player the single coalition {1} is number 1.
When the second player enters the game he brings there two additional coalitions.
The sequence of coalitions in ascending order for two-person game is as follows:
{1}, {2}, {1, 2}. Further, for a three-person game we have: {1}, {2}, {1,2}, {3},
{1,3}, {2,3}, {1,2,3}. And so on.

Assume that the sequence of coalitions has been formed in ascending order for
a k-person game. Adding to this game the (k + 1)-th player entails forming 2k

coalitions. We determine the order of the added coalitions. Let coalition {k + 1}
be the first of the added coalitions. Among the remaining coalitions we do not pay
attention to the (k + 1)-th player, then we obtain a set of coalitions for a k-person
game, which is already built in ascending order. Finally, we extend this numbering
to the additional coalitions. As a result, each coalition in a (k+1)-person game will
be numbered.

For example, the coalitions in 4-person game in ascending order look like

{1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3},

{4}, {1, 4}, {2, 4}, {1, 2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.
Problem (4) for t = 1 is equivalent to the following task





minu1,

u1 ≥ eα(x, S, v),
S ⊆ J0,

x ∈ X0.

By using formulas (1), (2) and (3) we transform it to the following form




min u1,

u1 +
∑

i∈S xi ≥ αv(S) + (1− α)(v(N) − v(N\S)), S ⊆ J0,∑
i∈N xi = v(N).

The resulting problem is a linear programming. Given the suggested order of
the coalitions in J0 we obtain the matrix form



12 Sergei V. Britvin, Svetlana I. Tarashnina





min cT z,

Az ≥ b,
Aeqz = beq,

with

z =

(
u1

x

)
. (5)

The parameters of this linear programming are the following:

c =




1
0
0
...
0



, A =

(
I A∗) , I =




1
1
1
...
1



, A∗ =




1 0 0 ... 0 0
0 1 0 ... 0 0
1 1 0 ... 0 0
...

. . .
...

0 1 1 ... 1 1



,

b = α




v(1)
v(2)
v(1, 2)

...
v(2, 3, ..., n)




+ (1− α)




v(N)− v(2, 3, ..., n)
v(N)− v(1, 3, ..., n)
v(N)− v(3, 4, ..., n)

...
v(N)− v(1)



,

Aeq =
(
1 1 1 ... 1

)
, beq = v(N).

Based on the theorem from (Britvin and Tarashnina, 2013), it is easy to prove
that there exists a unique solution z∗ of this linear programming. So, the calculation
procedure is stopped and we obtain the α-nucleolus in the form

Xα =




z∗2(α)
z∗3(α)

...
z∗n+1(α)


 , α ∈ [0, 1].

4. The monotonicity of the SM-nucleolus and the α-nucleolus

In this paper we investigate the monotonicity properties of single-valued solution
concepts of TU-games: aggregate monotonicity and coalitional monotonicity. First,
let us define these properties.

Definition 7. A single-valued solution concept f satisfies aggregate monotonicity
if for every pair of games (N, v) and (N,w) such that

v(N) < w(N), (6)

v(S) = w(S) for all S ⊂ N, (7)

it follows that
fi(N, v) ≤ fi(N,w) for all i ∈ N. (8)
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Definition 8. A single-valued solution concept f satisfies coalitional monotonicity
if for every pair of games (N, v) and (N,w) such that

v(T ) < w(T ) for any T ⊂ N, (9)

v(S) = w(S) for all S ⊂ N,S 6= T, (10)

it follows that
fi(N, v) ≤ fi(N,w) for all i ∈ T. (11)

Let us give the following example (Megiddo, 1974) that contains of two coop-
erative games and illustrates the absence of aggregate monotonicity of the SM-
nucleolus.

Example 1. LetN = {1, 2, ..., 9} and ϕ = (1, 1, 1, 2, 2, 2, 1, 1, 1). Consider two groups
of coalitions:

A = {(1, 2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (7, 8, 9)},

B = {(1, 2, 3, 6, 7), (1, 2, 3, 6, 8), (1, 2, 3, 6, 9), (4, 5, 6)}.
Define the characteristic function v as

v =





6, if S ∈ A,
9, if S ∈ B,
12, if S = N,∑

i∈S ϕi − 1, otherwise.

The characteristic function w has the following form

w =





6, if S ∈ A,
9, if S ∈ B,
13, if S = N,∑

i∈S ϕi − 1, otherwise.

It is obvious that conditions (6) and (7) hold for characteristic functions v and
w. For some fixed α ∈ [0, 1] we calculate the α-nucleolus for games (N, v) and
(N,w) using the algorithm, presented in section 3. Assuming that the parameter α
is moving along the interval [0, 1] with the step of 0.1, we have the following payoff
vectors presented in Table 1. The special case α = 1

2 with XSM = Xα is shown in
bold.

Consider the payoffs that player 6 gets according to the α-nucleolus for α ≥ 0.1.
We can see that X6

α(N, v) > X6
α(N,w). Therefore, inequality (8) is not satisfied.

So, by means of the counterexample we can verify that aggregate monotonicity does
not hold for the α-nucleolus with 0.1 ≤ α ≤ 1.

By using the dichotomy method for this pair of games we can approximately
calculate the maximum α∗ such that 0 < α∗ < 0.1 for which aggregate monotonicity
is satisfied and for some α > α∗ aggregate monotonicity is not satisfied. In the
current example α∗ ≈ 0.075.
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Table 1: The α-nucleolus for (N, v) and (N,w).

α Xα(N, v) Xα(N,w)

0 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.11, 2.11, 2.11, 1.11, 1.11, 1.11)

0.1 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.92, 1.11, 1.11, 1.11)

0.2 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

0.3 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

0.4 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

0.5 (1,1,1,2,2,2,1,1,1) (1.11,1.11,1.11,2.22,2.22,1.89,1.11,1.11,1.11)

0.6 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

0.7 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

0.8 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

0.9 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

1 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.11, 1.11, 1.11, 2.22, 2.22, 1.89, 1.11, 1.11, 1.11)

Let us give one more example.

Example 2. Consider the characteristic function v′ that coincides with v from Ex-
ample 1:

v′(S) = v(S) for all S ⊆ N.

The characteristic function w′ is constructed in the following way

w′(S) =

{
7, if S = (4, 7),

v(S), otherwise.

It is obvious that conditions (9) and (10) hold for characteristic functions v′ and
w′. For some fixed α ∈ [0, 1] we calculate the α-nucleolus for games (N, v′) and
(N,w′) using the algorithm, presented in section 3. Assuming that the parameter
α is moving along the interval [0, 1] with the step of 0.1, we have the payoff vectors
presented in Table 2. The special case α = 1

2 with XSM = Xα is shown in bold.

Table 2: The α-nucleolus for (N, v′) and (N,w′).

α Xα(N, v′) Xα(N,w′)

0 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1, 1, 1, 2, 2, 2, 1, 1, 1)

0.1 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.01, 1.01, 1.01, 1.98, 1.98, 2.03, 1.11, 0.94, 0.94)

0.2 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.01, 1.01, 1.01, 1.96, 1.96, 2.05, 1.21, 0.88, 0.88)

0.3 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.02, 1.02, 1.02, 1.94, 1.94, 2.08, 1.32, 0.82, 0.82)

0.4 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.03, 1.03, 1.03, 1.93, 1.93, 2.10, 1.43, 0.76, 0.76)

0.5 (1,1,1,2,2,2,1,1,1) (1.04,1.04,1.04,1.91,1.91,2.13,1.54,0.70,0.70)

0.6 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.04, 1.04, 1.04, 1.89, 1.89, 2.16, 1.64, 0.64, 0.64)

0.7 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.05, 1.05, 1.05, 1.87, 1.87, 2.18, 1.75, 0.59, 0.59)

0.8 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.06, 1.06, 1.06, 1.85, 1.85, 2.21, 1.86, 0.53, 0.53)

0.9 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.07, 1.07, 1.07, 1.83, 1.83, 2.23, 1.97, 0.47, 0.47)

1 (1, 1, 1, 2, 2, 2, 1, 1, 1) (1.07, 1.07, 1.07, 1.81, 1.81, 2.26, 2.07, 0.41, 0.41)

Consider the payoffs that player 4 gets according to the α-nucleolus for α ≥ 0.1.
We can see that X4

α(N, v) > X4
α(N,w). Therefore, inequality (11) is not satisfied.
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So, by means of counterexample we can verify that coalitional monotonicity does
not hold for the α-nucleolus with 0.1 ≤ α ≤ 1.

By using the dichotomy method for this pair of games we can approximately
calculate the maximum α∗ such that 0 < α∗ < 0.1 for which coalitional monotonicity
is satisfied and for some α > α∗ coalitional monotonicity is not satisfied. In the
current example α∗ ≈ 0.

5. Conclusion

The result of this work is not surprising. Although aggregate and coalitional mono-
tonicity are considered to be desirable and natural properties of a solution in a
TU-game (Maschler, 1992). There are very few solution concepts satisfying even
aggregate monotonicity, the weakest form of it. In the paper we have investigated
the monotonicity of the SM-nucleolus and come across to some negative conclusion.
In a general game it violates the both aggregate and coalitional monotonicity. At
the same time, the α-nucleolus due to the arbitrary choice of a real parameter α
demonstrates for some α better properties than the SM-nucleolus. The intervals for
which the α-nucleolus satisfies aggregate and coalitional monotonicity are approx-
imately calculated for the given examples. The investigation may be extended and
deepened in the direction of getting analytical formulas for this interval.

In (Tauman and Zapechelnyuk, 2010), the authors argue that monotonicity may
not be a proper requirement for some economic context from which a cooperative
game arises. They provide an example of a simple 4-person game that marks out a
class of economic problems where the monotonicity property of a solution concept
is not as attractive as it may seem at the beginning. So, sometimes there is a
competition between monotonicity and other attractive properties of a solution in
a TU-game.
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