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Abstract In cooperative dynamic games a stringent condition – subgame
consistency – is required for a dynamically stable solution. In particular, a
cooperative solution is subgame consistent if the optimality principle agreed
upon at the outset remains in effect in any subgame starting at a later stage
with a state brought about by prior optimal behavior. Hence the players
do not have incentives to deviate from the previously adopted optimal be-
havior. Yeung and Petrosyan (2015) provided subgame consistent solutions
in cooperative dynamic games with non-transferable payoffs/utility (NTU)
using a variable payoffs weights scheme is analyzed. This paper extends
their analysis to a stochastic dynamic framework. A solution mechanism for
characterizing subgame consistent solutions is derived. The use of a variable
payoff weights scheme allows the derivation of subgame consistent solutions
under a wide range of optimality principles.

Keywords: stochastic dynamic games, subgame consistent cooperative so-
lution, variable payoff weights.

1. Introduction

Cooperative games suggest the possibility of enhancing the participants’ well-being
in situations involving strategic interactions. One of the ways to uphold sustainabil-
ity of a cooperation scheme is to maintain the condition of subgame consistency.
In particular, a cooperative solution is subgame consistent if the optimality princi-
ple agreed upon at the outset remains in effect in any subgame starting at a later
time with a state brought about by prior optimal behavior. Subgame consistent
solutions for differential games and dynamic games with transferable payoffs under
deterministic and stochastic dynamics can be found in Yeung and Petrosyan (2004,
2010). The use of transfer payments plays an important role in achieving subgame
consistency in games with transferrable payoffs.

In NTU cooperative dynamic games, the inapplicability of transfer payments
makes the design of cooperative schemes much more difficult. The number of stud-
ies in cooperative dynamic games with non-transferrable payoffs/utility (NTU) is
much less than that of cooperative dynamic games with transferrable payoffs. Leit-
mann (1974), Dockner and Jorgensen (1984), Hamalainen et al (1986), Yeung and
Petrosyan (2005 and 2006), de-Paz et al (2013), and Marin-Solano (2014) stud-
ied continuous-time cooperative differential games with non-transferable payoffs.

⋆ This work was supported by the Saint-Petersburg State University No.9.38.245.2014
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Sorger (2006) presented a recursive Nash bargaining solution for a discrete-time
NTU cooperative dynamic game involving a productive asset. In NTU coopera-
tive dynamic games, the inapplicability of transfer payments makes the derivation
of subgame consistent solutions extremely strenuous. Yeung and Petrosyan (2005)
presented subgame consistent solution in cooperative stochastic differential games
with non-transferable payoffs under a constant weight scheme. However, the result
is confined to a specific class of games under a very restrictive set of optimality
principles. Yeung and Petrosyan (2015) provides an effective way in achieving sub-
game consistency using variable weights under a wide range of optimality principles
in cooperative dynamic games.

This article extends Yeung and Petrosyan’s analysis on subgame consistent so-
lution in NTU cooperative dynamic games to NTU cooperative stochastic dynamic
games. A mechanism for the derivation of subgame consistent solution in NTU
cooperative stochastic dynamic games using a variable payoff weights scheme is
presented. The game formulation and mathematical preliminaries are given in Sec-
tion 2. Subgame consistency for NTU cooperative stochastic dynamic games under
variable payoff weights are defined and examined in Section 3. In Section 4 a the-
orem is established to characterize and derive subgame consistent solutions. An
illustration in public goods provision is given in Section 5. Concluding remarks are
provided in Section 6.

2. Game Formulation and Mathematical Preliminaries

Consider the general T−stage n−person nonzero-sum discrete-time stochastic dy-
namic game with initial state x01. The state space of the game is X ∈ Rm and the
state dynamics of the game is characterized by the stochastic difference equation:

xk+1 = fk(xk, u
1
k, u

2
k, · · · , u

n
k) +Gk(xk)θk, (2.1)

for k ∈ {1, 2, · · · , T } ≡ κ and x1 = x01,

where uik ∈ Rmi is the control vector of player i at stage k, and xk ∈ X is the state
of the game and θk is a set of independent random variable. The payoff that player
i seeks to maximize is

Eθ1,θ2,··· ,θT

{ T
∑

ζ=1

giζ [xζ , u
1
ζ, u

2
ζ , · · · , u

n
ζ , xζ+1] + qi(xT+1)

}

, (2.2)

for i ∈ {1, 2, · · · , n} ≡ N ,

where qi(xT+1) is the terminal payoff that player i will received in stage T + 1,
and Eθ1,θ2,··· ,θT is the expectation operation with respect to the statistics of
θ1,θ2,· · · , θT .

The payoffs of the players are not transferable. Using the standard HJB equa-
tions approach for solving stochastic dynamic games a feedback Nash equilibrium of
the game can be characterzied (see Basar and Olsder (1999)). Let {φik(x), for k ∈ κ

and i ∈ N} denote a set of strategies that provides a feedback Nash equilibrium
solution to the game (2.1)-(2.2), and {V i(k, x), for k ∈ κ and i ∈ N} denote the
value functions yielding the payoff to player i over the stages from k to T +1. Since
the analysis is on cooperative schemes for improving the non-cooperative outcomes
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in NTU stochastic dynamic games, we would consider games with non-cooperative
Nash equilibrium outcomes.

2.1. Cooperation Under Constant Weights

To enhance their payoffs the players would consider formulating a cooperative
scheme. In particular, the players agree to cooperate and enhance their payoffs ac-
cording to an agreed-upon optimality principle. Since payoffs are non-transferable
the payoffs of individual players are directly determined by the optimal cooperative
strategies adopted. Pareto efficient cooperative strategies can be derived from the
maximization of the expected weighted sum of payoffs of the players under a set of
agreed-upon payoff weights. See Leitmann (1974), Dockner and Jorgensen (1984),
Hamalainen et al (1986) Yeung and Petrosyan (2005 and 2015) and Yeung et al
(2007) for examples.

To establish the optimization foundation of the variable weights schme we con-
sider first the case in which the players adopt a vector of constnt payoff weights

α = (α1, α2, · · · , αn) in all stages, where
n
∑

j=1

αj = 1. Conditional upon the vector of

weights α, the players’ optimal cooperative strategies can be generated by solving
the stochastic dynamic programming problem of maximizing the expected weighted
sum of payoffs :

Eθ1,θ2,··· ,θT

{ n
∑

j=1

[ T
∑

k=1

αjg
j
k(xk, u

1
k, u

2
k, · · · , u

n
k ) + αjqj(xT+1)

] }

(2.3)

subject to (2.1).
An optimal solution to the problem (2.1) and (2.3) can be characterized by

the technique of stochastic dynamic programming. Let {ψ
(α)i
k (x), for k ∈ κ and

i ∈ N} denote the set of cooperative strategies that provides an optimal solution
to the problem (2.1) and (2.3), and let W (α)(k, x), for k ∈ K, denote the expected
weighted sum of cooperative payoffs over the stages from k to T + 1. Substituting

the optimal control {ψ
(α)i
k (x), for k ∈ κ and i ∈ N} into (2.1), one can obtain the

cooperative trajectory x
(α)
k ∈ X

(α)
k , for k ∈ κ.

2.2. Individual Payoffs and Individual Rationality

Given that all players are adopting the cooperative strategies the payoff of player i
under cooperation can be obtained as:

W (α)i(t, x) = Eθt,θt+1,··· ,θT

{ T
∑

k=t

gik[x
(α)
k , ψ

(α)1
k (x

(α)
k ), ψ

(α)2
k (x

(α)
k ), · · ·

· · · , ψ
(α)n
k (x

(α)
k )] + qi(x

(α)
T+1)

∣

∣

∣

∣

x
(α)
t = x

}

, (2.4)

for i ∈ N and t ∈ κ.
To allow the derivation of the functions W (α)i(t,K) in a more direct way we

follow the analysis in Yeung (2013) and characterize individual player’s payoffs
under cooperation by the following Theorem.
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Theorem 2.1. The payoff of player i over the stages from t to T + 1 can be char-
acterized as the value function W (α)i(t, x) satisfying the following recursive system
of equations:

W (α)i(T + 1, x) = qi(xT+1),

W (α)i(t, x) = Eθt

{

git[x, ψ
(α)1
t (x), ψ

(α)2
t (x), · · · , ψ

(α)n
t (x)]

+W (α)i[t+ 1, ft(t, ψ
(α)1
t (x), ψ

(α)2
t (x), · · · , ψ

(α)n
t (x)) +G(x)θt]

}

,

for i ∈ N and t ∈ κ. (2.5)

Proof. W (α)i(t, x) in (2.4) can be expressed as:

W (α)i(t, x) = Eθt,θt+1,··· ,θT

{

git[x, ψ
(α)1
t (x), ψ

(α)2
t (x), · · · , ψ

(α)n
t (x)]

+

T
∑

k=t+1

gik[x
(α)
k , ψ

(α)1
k (x

(α)
k ), ψ

(α)2
k (x

(α)
k ), · · · , ψ

(α)n
k (x

(α)
k )] + qi(x

(α)
T+1)

}

. (2.6)

Invoking (2.4) again, we have:

W (α)i(t+ 1, x
(α)
t+1) =

Eθt+1,θt+2,··· ,θT

{ T
∑

k=t+1

gik[x
(α)
k , ψ

(α)1
k (x

(α)
k ), ψ

(α)2
k (x

(α)
k ), · · · · · · , ψ

(α)n
k (x

(α)
k )]

+ qi(x
(α)
T+1)

}

, (2.7)

Using (2.6) and (2.7), one can obtain (2.5). ⊓⊔

For individual rationality to be maintained throughout all the stages t ∈ κ, it is
required that:

W (α)i(t, x
(α)
t ) ≥ V i(t, x

(α)
t ), for i ∈ N and t ∈ κ. (2.8)

Let the set of weights α that satisfies (2.8) be denoted by Λ. If Λ is not an empty set,
a vector α̂ = (α̂1, α̂2, · · · · · · , α̂n)∈ Λ agreed upon by all players would yield a co-
operative solution which satisfies both individual rationality and Pareto optimality
throughout the cooperation duration.

Remark 2.1. The pros of the constant payoff weights scheme is that full Pareto
efficiency is satisfied in the sense that there does not exist any strategy path which
would enhance the cooperative payoff of a player without lowering the cooperative
payoff of at least one of the other players in all stages.

The cons of the constant payoff weights scheme include the inflexibility in ac-
commodating the preferences of the players according to the initial cooperative
agreement and the high possibility of the non-existence of the set of weights Λ that
satisfies individual rationality throughout the cooperation duration. ⊓⊔
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In the cited literature on NTU cooperative dynamic games in Section 1 only
Sorger (2006), Marin-Solano (2014) and Yeung and Petrosyan (2015) adopted a
variable payoff weights scheme.

3. Subgame Consistent Cooperative Solution

Now, we proceed to consider subgame consistent solutions in NTU cooperative
stochastic dynamic games. A salient property of a subgame consistent solution is
that the agreed-upon optimality principle remains in effect at each stage of the
game and hence the players do not possess incentives to deviate from the solution
plan. Let Γ (t, xt) denote the cooperative game in which the objective of player i is

Eθt,θt+1,··· ,θT

{ T
∑

k=t

gik(xk, u
1
k, u

2
k, · · · , u

n
k ) + qi(xT+1)

}

, for i ∈ N, (3.1)

and the state dynamics is

xk+1 = fk(xk, u
1
k, u

2
k, · · · , u

n
k ) +Gk(xk)θk, (3.2)

for k ∈ {t, t+ 1, · · · , T } and the state at stage t is xt.
Let the agreed-upon optimality principle be denoted by P (t, xt). For subgame

consistency to be maintained the agreed-upon optimality principle P (t, xt) must
be satisfied in the subgame Γ (t, xt) for t ∈ {1, 2, · · · , T }. Hence, when the game
proceeds to any stage t, the agreed-upon solution policy remains effective. Examples
of optimality principles P (t, xt) include criteria like the Nash bargaining solution,
cooperative gains proportional to non-cooperatives payoffs and the mid-value of
feasible payoff weights.

A time-invariant weights scheme is usually hardly applicable for the derivation of
a subgame consistent solution in general. As stated in Remark 2.1, the set Λ which
satisfies individual rationality throughout the game duration is often empty. In gen-
eral, typtical optimality principles in classical game theory could not be maintained
as the game proceeds under a time-invariant payoff weights cooperative scheme.

To derive a set of subgame consistent strategies in a cooperative solution with
optimality principle P (t, xt) a variable payoff weight scheme has to be adopted. In
particular, at each stage t ∈ κ the players would adopt a vector of payoff weights

α̂t = (α̂1
t , α̂

2
t , · · · , α̂

n
t ) for

n
∑

j=1

α̂
j
t = 1 which satisfies the agreed-upon optimality prin-

ciple. The chosen set of weights α̂t = (α̂1
t , α̂

2
t , · · · , α̂

n
t ) must lead to the satisfaction

of the optimality principle P (t, xt) in the subgame Γ (t, xt) for t ∈ {1, 2, · · ·T }.

4. Derivation of Subgame Consistent Cooperative Strategies

To derive the optimal cooperative strategies in a subgame consistent solution for
NTU cooperative stochastic dynamic games with variable payoff weights we invoke
the principle of backward induction and begin with the final stage of the cooperative
game.

4.1. Optimal Cooperative Strategies in Ending Stages

Consider first the last operation stage, that is stage T , with the state xT = x∈ X .
The players will select a set of payoff weight αT = (α1

T , α
2
T , · · · , α

n
T ) which satisfies
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the optimality principl P (T, x). The players’ optimal cooperative strategies can be
generated by solving the stochastic dynamic programming problem of maximizing
the weighted sum of their payoffs

EθT

{ n
∑

j=1

[

α
j
T g

j
T (xT , u

1
T , u

2
T , · · · , u

n
T ) + α

j
T q

j(xT+1)

] }

(4.1)

subject to

xT+1 = fT (xT , u
1
T , u

2
T , · · · , u

n
T ) +GT (xT )θT , xT = x. (4.2)

Let {uiT= ψ
(αT )i
T , for i ∈ N} denote the optimal cooperative stratgies in stage T that

solves the stochastic dynamic programming problem (4.1)-(4.2). When all players
are adopting the cooperative strategies the payoff of player i under cooperation
covering stages T and T + 1 can be obtained as:

W (αT )i(T, x) = EθT

{

giT [x, ψ
(αT )1
T (x), ψ

(αT )2
T (x), · · · , ψ

(αT )n
T (x)] + qi(x

(αT )
T+1 )

}

,

for i ∈ N. (4.3)

Invoking Theorem 2.1 one can characterize player i’s payoffW (αT )i(T, x) by the
following equations

W (αT )i(T + 1, x) = qi(x),

W (αT )i(T, x) = EθT

{

giT [x, ψ
(αT )1
T (x), ψ

(αT )2
T (x), · · · , ψ

(αT )n
T (x)]

+W (αT )i[T + 1, fT (x, ψ
(αT )1
T (x), ψ

(αT )2
T (x), · · · , ψ

(αT )n
T (x)) +GT (x)θT ]

}

for i ∈ N. (4.4)

For individual rationality to be maintained, it is required that:

W (αT )i(T, x) ≥ V i(T, x), for i ∈ N. (4.5)

Since the maximization problem (4.1)-(4.2) with payoff weight αT yields a Pareto
optimal cooperative solution and the non-cooperative outcome is (in general) sub-
optimal there always exists a set of weights that satisfies (4.5). We use ΛT to denote
the set of weights αT that satisfies (4.5). Then we use α̂T = (α̂1

T , α̂
2
T , · · · , α̂

n
T )∈ ΛT

to denote the payoff weights in stage T that leads to the satisfaction of the opti-
mality principle P (T, x).

Now we proceed to cooperative scheme in the second to last stage. Given that
the payoff of player i in stage T is W (α̂T )i(T, x), his payoff covering stages T − 1 to
T + 1 can be expressed as:

EθT−1

{

giT−1(xT−1, u
1
T−1, u

2
T−1, · · · , u

n
T−1) +W (α̂T )i(T, xT )

}

,

for i ∈ N. (4.6)
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In this stage the players will select payoff weights αT−1 =
(α1

T−1, α
2
T−1, · · · , α

n
T−1) which satisfy optimality principle Γ (T − 1, x). The

players’ optimal cooperative strategies {uiT−1= ψ
(αT−1)i
T−1 , for i ∈ N} in stage T − 1

can be generated by solving the stochastic dynamic programming problem of
maximizing

EθT−1

{ n
∑

j=1

α
j
T−1

[

g
j
T−1(xT−1, u

1
T−1, u

2
T−1, · · · , u

n
T−1) +W (α̂T )j(T, xT )

] }

(4.7)
subject to

xT = fT−1(xT−1, u
1
T−1, u

2
T−1, · · · , u

n
T−1) +GT−1(xT−1)θT−1, xT−1 = x. (4.8)

Invoking Theorem 2.1 one can characterize the payoff of player i under cooperation
covering the stages T − 1 to T + 1 by:

W (αT−1)i(T, x) =W (α̂T )i(T, xT ),

W (αT−1)i(T − 1, x) = EθT−1

{

giT−1[x, ψ
(αT−1)1
T−1 (x), ψ

(αT−1)2
T−1 (x), · · · , ψ

(αT−1)n
T−1 (x)]

+W (αT−1)i[T, fT−1(x, ψ
(αT−1)1
T−1 (x), ψ

(αT−1)2
T−1 (x), · · · , ψ

(αT−1)n
T−1 (x))+GT−1(x)θT−1]

}

,

for i ∈ N. (4.9)

For individual rationality to be maintained, it is required that:

W (αT−1)i(T − 1, x) ≥ V i(T − 1, x), for i ∈ N. (4.10)

We use ΛT−1 to denote the set of weights αT−1 that satisfies (4.10). We use the vec-
tor α̂T−1 = (α̂1

T−1, α̂
2
T−1, · · · · · · , α̂n

T−1)∈ ΛT−1 to denote the set of payoff weights
that leads to satisfaction of the optimality principle Γ (T − 1, x).

4.2. Optimal Cooperative Strategies in Preceding Stages

Now we proceed to characterize the cooperative scheme in stage k ∈ {1, 2, · · · , T −
2}. Following the analysis in Section 4.1, the players will select a set of weights
αk = (α1

k, α
2
k, · · · , α

n
k ) which satisfies the optimality principle P (k, x). The players’

optimal cooperative strategies {uik = ψ
(αk)i
k , for i ∈ N} in stage k can be generated

by solving the following stochastic dynamic programming problem of maximizing

Eθk

{ n
∑

j=1

α
j
k

[

g
j
k(xk, u

1
k, u

2
k, · · · , u

n
k) +W (α̂k+1)j(k + 1, xk+1)

] }

, (4.11)

subject to

xk+1 = fk(xk, u
1
k, u

2
k, · · · , u

n
k ) + θk, xk = x. (4.12)

Invoking Theorem 2.1 the payoff of player i under cooperation can be charac-
terized by the following equations
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W (αk)i(k + 1, x) =W (α̂k+1)i(k + 1, x),

W (αk)i(k, x) = Eθk

{

gik[x, ψ
(αk)1
k (x), ψ

(αk)2
k (x), · · · , ψ

(αk)n
k (x)]

+W (αk)i[k + 1, fk(x, ψ
(αk)1
k (x), ψ

(αk)2
k (x), · · · , ψ

(αk)n
k (x)) +Gk(x)θk]

}

,

for i ∈ N. (4.13)

For individual rationality to be maintained in stage k, it is required that:

W (αk)i(k, x) ≥ V i(k, x), for i ∈ N. (4.14)

We use Λk to denote the set of weights αk that satisfies (4.14). Again, we use
α̂k = (α̂1

k, α̂
2
k, · · · , α̂

n
k )∈ Λk to denote the set of payoff weights that leads to the

satisfaction of the optimal principle P (k, x), for k ∈ κ.

4.3. Subgame Consistent Solution: A Mathematical Theorem

A theorem characterizing a subgame consistent solution of the cooperative stochas-
tic dynamic game (2.1)-(2.2) with the optimality principle P (k, xk) can be obtained
as follows.

Theorem 4.1. A set of payoff weights {α̂k = (α̂1
k, α̂

2
k, · · · , α̂

n
k ), for k ∈ κ} and a set

of strategies {ψ
(α̂k)i
k (x), for k ∈ κ and i ∈ N} provides a subgame consistent solution

to the cooperative stochastic dynamic game (2.1)-(2.2) with optimality principle
P (k, x) if there exist functions W (α̂k)(k, x) and W (α̂k)i(k, x), for i ∈ N , k ∈ κ,
which satisfy the following recursive relations:

W (α̂T+1)i(T + 1, x) = qi(xT+1),

W (α̂k)(k, x) = max
u1
k
,u2

k
,··· ,un

k

{

Eθk

[ n
∑

j=1

α̂jg
j
k(x, u

1
k, u

2
k, · · · , u

n
k )

+

n
∑

j=1

α̂
j
kW

(α̂k+1)j [k + 1, fk(x, u
1
k, u

2
k, · · · , u

n
k ) +Gk(x)θk]

] }

;

W (α̂k)i(k, x) = Eθk

{

g
j
k(x, ψ

(α̂k)1
k (x), ψ

(α̂k)2
k (x), · · · , ψ

(α̂k)n
k (x))

+W (α̂k+1)i[k + 1, fk(x, ψ
(α̂k)1
k (x), ψ

(α̂k)2
k (x), · · · , ψ

(α̂k)n
k (x)) +Gk(x)θk]

}

,

for i ∈ N and k ∈ κ; and the optimality principle P (k, x)

in all stages k ∈ κ. (4.15)

Proof. Follow the analysis from equation (4.1) to equation (4.13) in Sections 4.1
and 4.2. ⊓⊔

In the case when the agreed-upon optimality principle requires the proportion
each player’s cooperative payoff to his non-cooperative payoff being equal, the op-
timality principle P (k, x) in Theorem 4.1 becomes
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W (α̂k)i(k, x)

V i(k, x)
=
W (α̂k)j(k, x)

V j(k, x)
, for i, j ∈ N and k ∈ κ.

If the optimality principle requires the satisfaction of the Nash bargaining solution,
P (k, x) becomes

α̂k = argmax
αk

{ n
∏

j=1

[W (αk)j(k, x) − V j(k, x)]

}

;

for k ∈ κ.
In the two-player case, the optimality principle P (k, x) may require the chosen

payoff weights α̂k = {α̂1
k, α̂

2
k} to be the mid-value of the maximum and minimum

of the payoff weight α1
k and that of the payoff weights α2

k in the set Λ.

Remark 4.1. The subgame consistent solution presented in Theorem 4.1 is con-
ditional Pareto efficient in the sense that the solution is a Pareto efficient outcome
satsifying the condition that the agreed-upon optimality principle is maintained in
all stages.

Remark 4.2. A subgame consistent solution is fully Pareto efficient only if the
optimality principle P (t, x) requires the choice of a set of time-invariant payoff
weights.

Only very restrictive optimality principles in specific game structures would yield
subgame consistent time-invariant weights (see Yeung and Petrosyan (2005)). Since
full Pareto efficiency is of less importance than reaching a cooperative solution,
achieving the latter at the expense of the former is a practical way out.

5. An Illustration in Public Capital Build-up

Consider a stochastic version of the example in Yeung and Petrosyan (2015) in
which there are 2 asymmetric agents. These agents receive benefits from an existing
public capital stock xt at each stage t ∈ {1, 2, · · · , 4}. The accumulation dynamics
of the public capital stock is governed by the stochastic difference equation:

xk+1 = xk +
2
∑

j=1

u
j
k − δ xk + θkxk, x1 = x01, for t ∈ {1, 2, 3}, (5.1)

where uik is the physical amount of investment in the public good and δ is the rate
of obsolescence and θk is a random variable affecting the rate of obsolescence with
range {θ1k, θ

2
k, θ

3
k, θ

4
k} and corresponding probabilities {λ1k, λ

2
k, λ

3
k, λ

4
k}. In particular,

(δ−θyk) is non-negative and not greater than one for y ∈ {1, 2, 3, 4} and t ∈ {1, 2, 3}.
The objective of agent i ∈ {1, 2} is to maximize the payoff:

Eθ1,θ2,θ3

{ 3
∑

k=1

[aikxk − cik(u
i
k)

2](1 + r)−(k−1) + (qix4 +mi)(1 + r)−3

}

, (5.2)
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subject to the dynamics (5.1), where aik, c
i
k, r, q

i and mi are positive model param-
eters.

The payoffs of the agents are not transferable and the non-cooperative payoffs
of agent i can be obtained as:

V i(t, x) = [Ai
tx+ Ci

t ](1 + r)−(t−1),

for i ∈ {1, 2} and t ∈ {1, 2, 3}, (5.3)

where

Ai
3= ai3+q

i(1− δ +
4
∑

ℓ=1

λℓ3θ
ℓ
3)(1 + r)−1, and

Ci
3 = −

(qi)2(1 + r)−2

4ci3
+

[

qi
( 2
∑

j=1

qj(1 + r)−1

2cj3

)

+mi

]

(1 + r)−1,

Ai
2= ai2+A

i
3(1− δ +

4
∑

ℓ=1

λℓ2θ
ℓ
2)(1 + r)−1, and

Ci
2 = −

1

4ci2

(

Ai
3(1 + r)−1

)2

+

[

Ai
3

( 2
∑

j=1

A
j
3(1 + r)−1

2cj2

)

+Ci
3

]

(1 + r)−1

}

;

Ai
1= ai1+A

i
2(1− δ +

4
∑

ℓ=1

λℓ1θ
ℓ
1)(1 + r)−1, and

Ci
1 = −

1

4ci1

(

Ai
2(1 + r)−1

)2

+

[

Ai
2

(

2
∑

j=1

A
j

2
(1+r)−1

2cj
1

)

+Ci
2

]

(1 + r)−1

}

; for i ∈ {1, 2}.

5.1. Cooperative Solution

Now consider first the case when the agents agree to cooperate and maintain an op-
timality principle P (t, xt) requiring the adoption of the mid values of the maximum
and minimum of the payoff weight αi

t in the set Λt, for i ∈ {1, 2} and t ∈ {1, 2, 3}.
Invoking the technique of stochastic dynamic programming the value function

W (α3)(3, x) in stage 3 can be obtained as:

W (α3)(3, x) = [A
(α3)
3 x+ C

(α3)
3 ](1 + r)−2, (5.4)

where

A
(α3)
3 =

2
∑

j=1

α
j
3

[

a
j
3+q

j(1− δ +
4
∑

ℓ=1

λℓ3θ
ℓ
3)(1 + r)−1

]

, and

C
(α3)
3 = −

2
∑

j=1

α
j
3

[

(1 + r)−2

4αj
3c

j
3

( 2
∑

ℓ=1

αℓ
3q

ℓ
3

)2 ]

+

2
∑

j=1

α
j
3

[

qj
( 2
∑

j=1

(1 + r)−1

2αj
3c

j
3

(

2
∑

ℓ=1

αℓ
3q

ℓ

)

)

+mj

]

(1 + r)−1

}

.
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Invoking Theorem 2.1, the payoff of player i under cooperation can be obtained
as:

W (α3)i(3, x) = [A
(α3)i
3 x+ C

(α3)i
3 ](1 + r)−2, (5.5)

for i ∈ {1, 2},

where A
(α3)i
3 =

[

a
j
3+q

j(1− δ +
4
∑

ℓ=1

λℓ3θ
ℓ
3)(1 + r)−1

]

, and

C
(α3)i
3 = −

[

(1 + r)−2

4αi
3c

i
3

( 2
∑

ℓ=1

αℓ
3q

ℓ
3

)2 ]

+

[

qi
( 2
∑

j=1

(1 + r)−1

2αj
3c

j
3

(

2
∑

ℓ=1

αℓ
3q

ℓ

)

)

+mi

]

(1 + r)−1

}

.

To identify the range of α3 that satisfies individual rationality we examine the
functions which gives the excess of agent i’s cooperative over his non-cooperative
payoff, that is

W (α3)i(3, x)− V i(3, x) = [C
(α3)i
3 − Ci

3](1 + r)−2, for i ∈ {1, 2}, (5.6)

because A
(α3)i
3 =Ai

3.
For individual rationality to be satisfied, it is required that

W (α3)i(3, x)−V i(3, x) ≥ 0 for i ∈ {1, 2}. Using α
j
3 = 1 − αi

3 and upon rear-

ranging terms C
(α3)i
3 can be expressed as:

C
(α3)i
3 = qi

[

(1 + r)−2

2ci3

(

αi
3q

i + (1 − αi
3)q

j

α1
3

)

+
(1 + r)−2

2cj3

(

αi
3q

i + (1 − αi
3)q

j

1− αi
3

) ]

+mi(1 + r)−1

−
(1 + r)−2

4ci3

(

αi
3q

i + (1− αi
3)q

j

αi
3

)2

,

for i, j ∈ {1, 2} and i 6= j. (5.7)

Differentiating C
(α3)i
3 with respect to αi

3 yields

∂C
(α3)i
3

∂αi
3

=
(1 + r)−2

2cj3

(

(qi)2

(1 − αi
3)

2

)

+
(1 + r)−2

2ci3

(

(1 − αi
3)q

j

αi
3

)(

qj

(αi
3)

2

)

,

(5.8)
which is positive for αi

3 ∈ (0, 1).

One can readily observed that lim
αi

3
→0

C
(α3)i
3 → −∞ and lim

αi
3
→1

C
(α3)i
3 → ∞. Since

the cooperative solution is Pareto optimal and the non-cooperative outcome is (in
general) suboptimal an αi

3∈ (0, 1) can be obtained such that

W (αi
3
,1−αi

3
)i(3, x) = V i(3, x)



358 David W.K. Yeung, Leon A. Petrosyan

and yields agent i’s minimum payoff weight value satisfying his own individual
rationality. Similarly there exist an ᾱi

3∈ (0, 1) such that

W (ᾱi
3,1−ᾱi

3)j(3, x) = V j(3, x)

and yields agent i’s maximum payoff weight value while maintaining agent j’s indi-
vidual rationality. According to the agreed-upon optimality principle P (t, xt), the

cooperative weights in stage 3 is α̂3=
(

αi
3
+ᾱi

3

2 , 1−
αi

3
+ᾱi

3

2

)

.

Now consider the stage 2 problem. We useW (α̂3)j(3, x) for j ∈ {1, 2} to form the

terminal payoff
2
∑

j=1

α
j
2W

(α̂3)j(3, x) for the cooperation scheme in stage 2. Following

the analysis in stage 3, one can obtain

W (α2)(2, x) = [A
(α2)
2 x+ C

(α2)
2 ](1 + r)−1,

W (α2)i(2, x) = [A
(α3)i
3 x+ C

(α3)i
3 ](1 + r)−2, for i ∈ {1, 2},

where A
(α2)
2 , C

(α2)
2 , A

(α3)i
3 and C

(α3)i
3 are functions that depend on α2.

One can readily verified that A
(αt)i
t = Ai

t is independent of αt and C
(αt)i
t is

strictly increasing in αi
t and C

(αt)j
t is strictly decreasing in αi

t. Hence agent i’s
minimum payoff weight is αi

2∈ (0, 1) which leads to

W (αi
2
,1−αi

2
)i(2, x) = V i(2, x),

and his maximum payoff weight is ᾱi
2∈ (0, 1) which leads to

W (ᾱi
2,1−ᾱi

2)j(2, x) = V j(2, x).

Invoking the agreed-upon optimality principle P (t, xt) the cooperative weights

in stage 2 is α̂2=
(

αi
2
+ᾱi

2

2 , 1−
αi

2
+ᾱi

2

2

)

.

Finally, following the analysis in stages 2 and 3, one can obtain the cooperative

weights in stage 1 as α̂1=
(

αi
1
+ᾱi

1

2 , 1−
αi

1
+ᾱi

1

2

)

.

Note that the parameter ait in C
(αt)i
t may be different at different stages of

t ∈ {1, 2, 3}, therefore αi
t and ᾱ

i
t cannot be the same. In the finite horizon, even if

the parameter ait is time-invariant, αi
t and ᾱ

i
t would change as t changes because of

the adjustments towards the terminal condition. Moreover, in general, there is no
guarantee for the existence of a constant payoff weight such that the basic require-
ment of individual rationality is satisfied in all subsequent stages. An example is
provided below.

Example 5.1. Consider the case in which q1 = 3, q2 = 4, m1 = 10, m2 = 20,
r = 0.05, δ = 0.02, c13 = 2, c23 = 4, a13 = 4, a23 = 1, c12 = 7, c22 = 2, a12 = 1,
a22 = 2, c11 = 1, c21 = 4, a11 = 2, a21 = 1. In stage 1, a constant α1

1 has to be between
α1
1 = 0.435 and ᾱ1

1 = 0.545. In stage 2, a constant α1
2 has to be between α1

2 = 0.33
and ᾱ1

2 = 0.43. In stage 3, α1
3 has to be between α

1
3 = 0.55 and ᾱ1

3 = 0.655. Therefore
there does not exist a constant choice of α1

t for t ∈ {1, 2, 3} such that individual
rationality is satisfied in all the subsequent subgame stages.
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5.2. Other Optimality Principles

In this section, we consider deriving subgame consistent solutions for the cooperative
stochastic dynamic game (5.1)-(5.2) under two alternative optimality principles.
Consider first the case where the agents agree with an optimality principle P (t, xt)
that requires the excess of the players’ cooperative payoffs over their respective non-
cooperative payoffs satisfies the Nash bargaining solution. They would first search
for an α3 in stage 3 to maximize the Nash product

2
∏

j=1

[W (α3)j(3, x)− V j(3, x)].

Invoking (5.6), the issue becomes solving the problem

max
αi

3

2
∏

j=1

[C
(α3)j
3 − C

j
3 ](1 + r)−2, (5.9)

in the range of αi
3 ∈ [αi

3, ᾱ
i
3].

Invoking the derivative property in (5.8), there exist an α̂i
3 ∈ [αi

3, ᾱ
i
3] that solves

problem (5.9).
Then one can obtain W (α̂3)j(3, x) for j ∈ {1, 2} and used them to solve the

cooperation scheme in stage 2. Repeating the above analysis, one can identify α̂2

which yields the Nash bargaining solution in stage 2. Finally, in a similar manner,
α̂1 which yields the Nash bargaining solution in stage 1 can be obtained.

Now consider another optimality principle P (t, xt) which requires the proportion
of each player’s cooperative payoff to his non-cooperative payoff to be equal. In
particular, a subgame consistent solution requires payoff weights α̂1, α̂2 and α̂3

leading to

W (α̂t)1(t, xt)

V 1(t, xt)
=
W (α̂t)2(t, xt)

V 2(t, xt)
, for t ∈ {1, 2, 3},

along the cooperation trajectory.
Invoking the value functions V i(t, x) and W (α̂t)i(t, x), for i ∈ {1, 2} and t ∈

{1, 2, 3}, a subgame consistent solution to the problem can be obtained with the
payoff weights α̂1, α̂2 and α̂3 which satisfy:

A
(α̂t)1
t xt + C

(α̂t)1
t

A1
txt + C1

t

=
A

(α̂t)2
t xt + C

(α̂t)2
t

A2
txt + C2

t

, for t ∈ {1, 2, 3}, (5.10)

and

xt+1 = xt

2
∑

j=1

[

(1 + r)−1

2α̂j
tc

i
t

2
∑

ℓ=1

α̂ℓ
tA

(α̂t+1)ℓ
t+1

]

− δxt, x1 = x01, (5.11)

for t ∈ {12, 3} and A
(α̂4)ℓ
4 = qℓ.

Again with A
(αt)i
t = Ai

t being independent of αt and C
(αt)i
t being strictly increas-

ing in αi
t and C

(αt)j
t being strictly decreasing in αi

t for α
i
t ∈ [αi

t, ᾱ
i
t], therefore one

can readily identify payoff weights α̂i
t such that (5.10) is satisfied.
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6. Concluding Remarks

This paper considers subgame consistent solutions in NTU cooperative stochastic
dynamic games using variable payoff schemes. A mathematical theorem character-
izing such a solution under different optimality principles is established. It resolves
the problems of the lack of guarantee for the agreed-upon optimality principle to
be maintained throughout the planning duration. The analysis contributes to the
solving of subgame consistent solutions for NTU cooperative stochastic dynamic
games under a wide range of optimality principles.
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