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Abstract The problem of strategic stability of long-range cooperative ag-
reements in differential games with coalition structures is investigated. We
build a general theoretical framework of the cooperative differential game
with a coalition structure basing on imputation distribution procedure. The
notion of imputation distribution procedure is the basic ingredient in our
theory. This notion may be interpreted as an instantaneous payoff of an
individual at some moment which prescribes distribution of the total gain
among the members of a group and yields the existence of a Nash equilib-
rium. Moreover, a few assumptions about deviation instant for a coalition
are made concerning behavior of a group of many individuals in certain dy-
namic environments; thus, the time-consistent cooperative agreement can be
strategically supported by an ε-Nash equilibrium or a strong ε-Nash equi-
librium.
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1. Introduction

Human behavior is dynamic, and cooperation runs through human behavior. It
happens often that players agree to cooperate over a certain period. It also happens
often that some cooperative agreements are abandoned before reaching the matu-
rity. It is important that cooperation remains stable on a time interval. When we
analyze the problem of stability of long-range cooperative agreements there are three
important aspects which must be taken into account, including time consistency,
strategic stability and the irrational-behavior-proof condition.

Time consistency involves the property that as the cooperation develops,
partners are guided by the same optimal principle at each instant of time and
hence do not possess incentives to deviate from the previous cooperative behavior.
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The concept of time consistency and its implementation was initially proposed in
(Petrosyan, 1977), (Petrosyan and Danilov, 1979), (Petrosyan and Danilov, 1982),
(Petrosyan and Danilov, 1986) and was developed in (Petrosyan, 1993),
(Petrosyan and Zenkevich, 1996), and (Petrosyan, 1997). Some new results
about time consistency can be found in (Petrosyan and Zaccour, 2003),
(Yeung and Petrosyan, 2005), and (Gao et al., 2014).

Strategic stability means that the outcome of the cooperative agreement
must be attained in some Nash equilibrium, which will guarantee the strate-
gic support of the cooperation. The agreement will be developed in such
a manner that at least individual deviations from the cooperation will not
give any advantage to the deviator. Some results about strategic stability
can be found in (Petrosyan and Grauer, 2002), (Gao and Petrosyan, 2009), and
(Petrosyan and Zenkevich, 2009).

The irrational-behavior-proof condition means that the partners involved in the
cooperation must be sure that even in the worst scenario they will not lose compared
with non-cooperative behavior. Since one cannot be sure that the partners will
behave rational on a long time interval, this aspect must be also taken into account.
The concept of the irrational-behavior-proof condition was initially proposed in
(Yeung, 2006). A further investigation can be found in (Gao et al., 2013).

Some results about dynamic games with coalition structures are given in
(Petrosjan and Mamkina, 2003), (Kozlovskaya et al., 2010). In this paper we focus
on the problem of strategic stability in cooperative differential games with coalition
structures. We build a general theoretical framework of the cooperative differential
game with a coalition structure basing on imputation distribution procedure (IDP).
The notion of imputation distribution procedure (IDP) is the basic ingredient in
our theory. This notion may be interpreted as a instantaneous payoff of an indi-
vidual at some moment which prescribes distribution of the total gain among the
members of a group. This notion yields the existence of a Nash equilibrium. More-
over to construct an ε-Nash equilibrium or a strong ε-Nash equilibrium in such a
game a few assumptions about deviation instant of a coalition concerning the be-
havior of a group of many individuals in certain dynamic environments are made.
It turns out that ε-Nash equilibrium or strong ε-Nash equilibrium exist in such a
differential game with a coalition structure which guarantee the strategic support
of cooperation.

The paper is organized as follows. In Section 2 we define the basic concepts and
set up standard terminology and notation about a cooperative differential game with
a coalition structure. In Section 3 we prove the existence of ε-Nash equilibrium
in a regularized differential game with a coalition structure and the existence of
strong ε-Nash equilibrium in a strictly regularized differential game with a coalition
structure.

2. Formal Definitions and Terminology

In this section we define the basic concepts of a cooperative differential game with
a coalition structure and set up standard terminology and notation.

Differential Game Γ (x0, T − t0) Let N = {1, 2, . . . , n} be the set of players. We
consider an n-person differential game Γ (x0, T − t0) with independent motions on
the time interval [t0, T ] (see (Dockner et al., 2000)). Motion equations have the
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form:
ẋi = f i(xi, ui), ui ∈ Ui ⊂ Rl, xi ∈ Rm, i = 1, . . . , n. (1)

It is assumed that the system of differential equations (1) satisfies all conditions
necessary for the existence, sustainability and uniqueness of the solution for any
n-tuple of measurable controls u1(t), . . . , un(t). The payoff of player i is given by:

Hi(x0, T − t0;u1(·), . . . , un(·)) =

∫ T

t0

hi(x(τ))dτ, (2)

where hi(x) is a continuous function, x(τ) = (x1(τ), . . . , xn(τ)) is a solution (a
trajectory) of (1) when open-loop controls u1(τ), . . . , un(τ) are used, and x(t0) =
(x1(t0), . . . , xn(t0)) = x0.

Optimal Cooperative Trajectory x̄(t) Suppose that there exist an n-tuple of open-
loop controls ū(t) = (ū1(t), . . . , ūn(t)) and a trajectory x̄(t), t ∈ [t0, T ], such that

max
u1(t),...,un(t)

n
∑

i=1

Hi(x0, T − t0;u1(t), . . . , un(t)) =

n
∑

i=1

Hi(x0, T − t0; ū1(t), . . . , ūn(t)) =

n
∑

i=1

∫ T

t0

hi(x̄(τ))dτ.

The trajectory x̄(t) = (x̄1(t), . . . , x̄n(t)) satisfying (2) we call the optimal cooperative
trajectory.

Characteristic Function The characteristic function in Γ (x0, T − t0) is defined in a
classical way:

V (x0, T − t0;N) =

n
∑

i=1

∫ T

t0

hi(x̄(τ))dτ,

V (x0, T − t0; ∅) = 0,

V (x0, T − t0;S) = V alΓS,N\S(x0, T − t0),

where V alΓS,N\S(x0, T − t0) is a value of a zero-sum game between coalition S

acting as player 1 and coalition N\S acting as player 2, with the payoff of S:
∑

i∈S Hi(x0, T − t0;u1(t), . . . , un(t)).

Imputation Set L(x0, T − t0) Define L(x0, T − t0) as the imputation set of the game
Γ (x0, T − t0) (see (von Neumann and Morgenstern, 1994)):

L(x0, T − t0) = {α = (α1, . . . , αn) : αi ≥ V (x0, T−t0; {i}),
∑

i∈N

αi = V (x0, T−t0;N)}.

Core C(x0, T − t0) Define C(x0, T − t0) as the core of Γ (x0, T − t0):

C(x0, T − t0) = {α = (α1, . . . , αn) ∈ L(x0, T − t0) :
∑

i∈S

αi ≥ V (x0, T−t0;S), S ⊂ N}.

Imputation Distribution Procedure β(τ) Let α ∈ L(x0, T − t0). Define imputa-
tion distribution procedure (IDP) (see (Petrosyan, 1993)) as a function β(τ) =
(β1(τ), . . . , βn(τ)), τ ∈ [t0, T ], such that

αi =

∫ T

t0

βi(τ)dτ. (3)
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Regularized Game Γα(x0, T − t0) For every α ∈ L(x0, T − t0), we define a non-
cooperative game Γα(x0, T − t0) which differs from game Γ (x0, T − t0) only by
payoffs defined along the optimal cooperative trajectory x̄(τ), τ ∈ [t0, T ].

Denote a payoff function in Γα(x0, T − t0) by Hα
i (x0, T − t0;u1(t), . . . , un(t))

and the corresponding trajectory by x(τ). Then Hα
i (x0, T − t0;u1(t), . . . , un(t)) =

Hi(x0, T − t0;u1(t), . . . , un(t)), if there does not exist τ ∈ (t0, T ] such that x(τ) =
x̄(τ). Let t = sup{t′ : x(τ) = x̄(τ), τ ∈ (t0, t

′]}. Then

Hα
i (x0, T − t0;u1(t), . . . , un(t)) =

∫ t

t0

βi(τ)dτ +Hi(x̄(t), T − t;u1(t), . . . , un(t))

=

∫ t

t0

βi(τ)dτ +

∫ T

t

hi(x(τ))dτ.

In a special case, when x(τ) = x̄(τ), τ ∈ (t0, T ], we have

Hα
i (x0, T − t0; ū1(t), . . . , ūn(t)) =

∫ T

t0

βi(τ)dτ = αi.

Consider subgames Γ (x̄(t), T − t), imputation sets L(x̄(t), T − t) and cores
C(x̄(t), T − t). Let α(t) ∈ L(x̄(t), T − t). Suppose that α(t) can be selected as a
differentiable function of t, t ∈ [t0, T ]. Game Γα(x0, T − t0) is called a regularized
game of Γ (x0, T − t0) (α-regularization) if IDP β is defined in such a way that

αi(t) =

∫ T

t

βi(τ)dτ,

or
βi(t) = −α′

i(t). (4)

In particular, if α(t) ∈ C(x̄(t), T − t), Γα(x0, T − t0) is called a strictly regularized
game of Γ (x0, T − t0).

Time-consistency From (4) we get

αi =

∫ t

t0

βi(τ)dτ + αi(t). (5)

Now suppose that M(x0, T − t0) ⊂ L(x0, T − t0) is some optimality principle in
the cooperative version of game Γ (x0, T − t0), and M(x̄(t), T − t) ⊂ L(x̄(t), T − t)
is the same optimality principle defined in the subgame Γ (x̄(t), T − t) with an initial
condition on the optimal trajectory. M can be the core, the stable set, the Shapley
value, nucleolus, ect. If α ∈ M(x0, T − t0) and α(t) ∈ M(x̄(t), T − t), condition
(5) gives us time consistency of the chosen imputation α or the chosen optimality
principle in game Γα(x0, T − t0).

Differential Game with Coalition Structure ΓP(x0, T − t0) Let P = (S1, . . . , Sm)
be a partition of player set N such that Si ∩ Sj = ∅, i 6= j,

⋃m

i=1 Si = N, |Si| =
ni,

∑m

i=1 ni = n. Suppose that each player i from N is playing in the interests of
coalition Sk ∈ P to which he belongs trying to maximize the sum of payoffs of its
members, i. e.

max
ui,i∈Sk

∑

i∈Sk

Hi(x0, T − t0;u1(t), . . . , un(t)). (6)
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Define uSk
= {ui, i ∈ Sk} as the strategy of coalition Sk and xSk

= {xi, i ∈ Sk} as
a trajectory of coalition Sk. Write

HSk
(x0, T − t0;uS1

(t), . . . , uSm
(t)) =

∑

i∈Sk

Hi(x0, T − t0;u1(t), . . . , un(t))

as the payoff of coalition Sk. Suppose that coalitions in P are playing cooperatively
with objective (2) and state dynamics (1). We call the above game as a cooperative
differential game with a coalition structure denoted by ΓP(x0, T − t0). Suppose that
there exist an n-tuple of open-loop controls ū(t) = (ū1(t), . . . , ūn(t)) and a trajectory
x̄(t) = (x̄1(t), . . . , x̄n(t)), t ∈ [t0, T ] satisfying (2). Then trajectory x̄(t) is an optimal
cooperative trajectory of Γ (x0, T − t0). We define x̄(t) as the optimal cooperative
trajectory of ΓP(x0, T − t0) at the same time.

The characteristic function in ΓP(x0, T − t0) is defined by:

V (x0, T − t0;P) =

n
∑

i=1

∫ T

t0

hi(x̄(τ))dτ,

V (x0, T − t0; ∅) = 0,

V (x0, T − t0;S) = V alΓS,P\S(x0, T − t0),

where V alΓS,P\S(x0, T − t0) is a value of zero-sum game played between coalition
S acting as player 1 and coalition P \ S acting as player 2 in which the payoff of
coalition S equals

∑

Sk∈S HSk
(x0, T − t0;uS1

(t), . . . , uSm
(t)).

Define LP(x0, T − t0) as the imputation set in ΓP(x0, T − t0):

LP(x0, T − t0) = {α = (αS1
, . . . , αSm

) :

αSk
≥ V (x0, T − t0; {Sk}),

∑

Sk∈P

αSk
= V (x0, T − t0;P)}.

Define CP (x0, T − t0) as the core in ΓP(x0, T − t0):

CP(x0, T − t0) = {α = (αS1
, . . . , αSm

) ∈ LP(x0, T − t0) :
∑

Sk∈S

αSk
≥ V (x0, T − t0;S),S ⊂ P}.

Let α ∈ LP(x0, T − t0). Define imputation distribution procedure (IDP) of
ΓP(x0, T − t0) as a function β(τ) = (βS1

(τ), . . . , βSm
(τ)), τ ∈ [t0, T ], such that

αSk
=

∫ T

t0

βSk
(τ)dτ, Sk ∈ P . (7)

Regularized Game with Coalition Structure ΓP
α (x0, T − t0) For every α ∈

LP(x0, T − t0), we define a non-cooperative game ΓP
α (x0, T − t0) which differs

from game ΓP(x0, T − t0) only by payoffs defined along the optimal cooperative
trajectory x̄(τ), τ ∈ [t0, T ]. Denote the payoff function in game ΓP

α (x0, T − t0)
by Hα

Sk
(x0, T − t0;uS1

(t), . . . , uSm
(t)) and the corresponding trajectory by x(τ).

Then Hα
Sk
(x0, T − t0;uS1

(t), . . . , uSm
(t)) = HSk

(x0, T − t0;uS1
(t), . . . , uSm

(t)), if
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there does not exist τ ∈ (t0, T ] such that x(τ) = x̄(τ) for τ ∈ (t0, T ]. Let
t = sup{t′ : x(τ) = x̄(τ), τ ∈ (t0, t

′]}. Then

Hα
Sk
(x0, T − t0;uS1

(t), . . . , uSm
(t)) =

∫ t

t0

βSk
(τ)dτ +HSk

(x̄(t), T − t;uS1
(t), . . . , uSm

(t))

=

∫ t

t0

βSk
(τ)dτ +

∫ T

t

hSk
(x(τ))dτ,

where hSk
(x(τ)) =

∑

i∈Sk
hi(x(τ)). In a special case, when x(τ) = x̄(τ), τ ∈ (t0, T ],

we have

Hα
Sk
(x0, T − t0;uS1

(t), . . . , uSm
(t)) =

∫ T

t0

βSk
(τ)dτ = αSk

.

Consider subgames ΓP(x̄(t), T − t), imputation sets LP(x̄(t), T − t) and cores
CP(x̄(t), T − t). Let α(t) ∈ LP(x̄(t), T − t). Suppose that α(t) can be selected as a
differentiable function of t, t ∈ [t0, T ]. Game ΓP

α (x0, T − t0) is called a regularized
game of ΓP(x0, T − t0) (α-regularization) if IDP β is defined in such a way that

αSk
(t) =

∫ T

t

βSk
(τ)dτ,

or
βSk

(t) = −α′
Sk
(t). (8)

In particular, if α(t) ∈ CP(x̄(t), T − t), ΓP
α (x0, T − t0) is called a strictly regularized

game of ΓP(x0, T − t0).
From (8) we get

αSk
=

∫ t

t0

βSk
(τ)dτ + αSk

(t), Sk ∈ P . (9)

Now suppose that MP(x0, T − t0) ⊂ LP(x0, T − t0) is some optimality prin-
ciple in the cooperative version of game ΓP(x0, T − t0), and MP(x̄(t), T − t) ⊂
LP(x̄(t), T − t) is the same optimality principle defined in the subgame
ΓP(x̄(t), T − t) with an initial condition on the optimal trajectory. If α ∈
MP(x0, T − t0) and α(t) ∈ MP(x̄(t), T − t), condition (9) gives us time consis-
tency of the chosen imputation α or the chosen optimality principle in game
ΓP
α (x0, T − t0).

ε-Nash Equilibrium and strong ε-Nash Equilibrium of ΓP
α (x0, T − t0) In a differ-

ential game with a coalition structure, different members of a coalition may de-
viate from their strategies at different time moments. And the trajectory realized
by the deviations possibly has no changing, which cannot be regarded as the ac-
tual deviation. To define ε-Nash Equilibrium and strong ε-Nash Equilibrium of
ΓP
α (x0, T − t0), we shall define deviation instant for a coalition.
In Γ (x0, T − t0), we say that for player i ∈ N strategy ui(·) is essentially different

from strategy ūi(·) under n-tuple ū(·) if trajectory xi(·) under n-tuple ū(·)‖ui(·) is
different from trajectory x̄i(·) under ū(·), i. e. there is t ∈ (t0, T ] such that xi(t) 6=
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x̄i(t). If strategies ui(·) and ūi(·) are essentially different, we define t̄i(ū(·)‖ui(·)) =
sup{t : xi(t) = x̄i(t), t ∈ (t0, T ]} as the deviation instant between strategies ui(·)
and ūi(·).

We say that coalition Sk ∈ P has the same deviation instant under n-tuple ū(·)
if t̄i(ū(·)‖ui(·)) is the same for every i ∈ Sk. We shall write t̄(ū(·)‖uSk

(·)) to denote
t̄i(ū(·)‖ui(·)) if Sk has the same deviation instant. We say that S ⊂ P has the same
deviation instant if t̄(ū(·)‖uSk

(·)) is the same for every Sk ∈ S.
Suppose that every Sk ∈ P has the same deviation instant. An m-tuple u∗(·) =

(u∗
S1
(·), . . . , u∗

sm
(·)) is an ε-Nash equilibrium of ΓP

α (x0, T − t0) if and only if

Hα
Sk
(x0, T − t0;u

∗(·)) ≥ Hα
Sk
(x0, T − t0;u

∗(·) ‖ uSk
(·))− ε, (10)

for all Sk ∈ P and all uSk
.

Suppose that every S ⊂ P has the same deviation instant. An m-tuple u∗(·) =
(u∗

S1
(·), . . . , u∗

Sm
(·)) is a strong ε-Nash equilibrium of ΓP

α (x0, T − t0) if and only if

∑

Sk∈S

Hα
Sk
(x0, T − t0;u

∗(·)) ≥
∑

Sk∈S

Hα
Sk
(x0, T − t0;u

∗(·) ‖ uS(·))− ε, (11)

for all S ⊂ P and all uS = {uSk
, Sk ∈ S}.

3. Existence of ε-Nash Equilibrium and Strong ε-Nash Equilibrium in

Differential Games with Coalition Structures

Theorem 1. Suppose that every Sk ∈ P has the same deviation instant. For every
ε > 0, the regularized game ΓP

α (x0, T − t0) has an ε-Nash equilibrium with payoff
α.

Proof. The proof is based on the construction of ε-Nash equilibrium in piecewise
open-loop (POL) strategies with memory. Remind the definition of POL strategies
with memory in a differential game. Denote any admissible trajectory of the system
(1) on the time interval [t0, t], t ∈ [t0, T ] by x̂(t). The strategy uSi

(·) of player Si is
called POL if it consists of the pair (a, σ), where σ is a partition of time interval
[t0, T ], t0 < t1 < . . . < tl = T, tk+1 − tk = δ > 0, k = 0, 1, 2, . . . , l − 1, and a is
a map which corresponds an open-loop control uSi

(t), t ∈ [tk, tk+1) for each point
(x̂(tk), tk), tk ∈ σ.

Consider POL strategies ū(·) = (ā, σ), where ā maps each point (x̄(tk), tk) on
the optimal trajectories to an open-loop control ūSi

(t), t ∈ [tk, tk+1) satisfying (2)
and ā is arbitrary at other points.

Consider a family of zero-sum games ΓP
{Si},P\{Si}

(x, T − t) from the initial posi-
tion x and duration T − t between coalition S consisting from a single player Si and
coalition P\{Si}. The payoff of player Si is equal to HSi

(x, T−t;uS1
(t), . . . , uSm

(t))
and the payoff of player P\{Si} is equal to (−HSi

). Let û(x, t; ·) be an ε
2 -optimal

POL strategy of player P\{Si} in ΓP
{Si},P\{Si}

(x, T − t). Note that û(x, t; ·) =

{uSj
, Sj ∈ P\{Si}}.
Let x̂(t) = {x̂S1

(t), . . . , x̂Sm
(t)} be the segment of an admissible trajectory sat-

isfying (1) on time interval [t0, t], t ∈ [t0, T ]. For each Si ∈ P define t̄(Si) = sup{t :
x̂Si

(t) = x̄Si
(t), t ∈ (t0, T ]} and ¯̄t(Sj) = minSi

t̄(Si) = t̄(Sj). ¯̄t(Sj) lies in one of
the intervals [tk, tk+1), k = 0, 1, 2, . . . , l− 1. And ¯̄t(Sj)− t0 is the length of the time
interval starting from t0 on which x̂(t) coincides with cooperative trajectory x̄(t).
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Define the following strategies of player Si ∈ P .

u∗
Si
(·) =







































ūSi
(t), for (x̂(tk), tk) on the optimal cooperative

trajectory;
ûSi

(x̂(tk+1), tk+1; ·), Si-th component of the ε
2 -optimal POL strategy

of player P\{Sj} in game
ΓP
{Sj},P\{Sj}

(x̂(tk+1), T − tk+1),

if tk ≤ ¯̄t(Sj)) < tk+1;
arbitrary, for all other positions.

To show that u∗(·) = (u∗
S1
(·), . . . , u∗

Sm
(·)) is an ε-Nash equilibrium in

ΓP
α (x0, T − t0), we have to show that

Hα
Si
(x0, T − t0;u

∗(·)) ≥ Hα
Si
(x0, T − t0;u

∗(·) ‖ uSi
(·)) − ε, (12)

for all Si ∈ P and all uSi
. It is easy to see that when m-tuple u∗(·) is played, the

game develops along the optimal trajectory x̄(t). If under u∗(·) ‖ uSi
(·)) trajectory

x̄(t) is also realized then (12) will be true.
Now suppose that under u∗(·) ‖ uSi

(·)) trajectory x(t) is different from
x̄(t). Suppose t̄(Si) ∈ [tk, tk+1). Since the motion of players are independent,
we get xSj

(tk+1) = x̄Sj
(tk+1) for Sj ∈ P\{Si}. From the definition of u∗(·) it

follows that the players in P\{Si} will use their strategies ûSj
(x(tk+1), tk+1; ·)

and player Si starting from position (x(tk+1), tk+1) will get no more than
V (x(tk+1), T −tk+1; {Si})+

ε
2 , where V (x(tk+1), T −tk+1; {Si}) is the value of game

ΓP
{Si},P\{Si}

(x(tk+1), T − tk+1). By choosing δ = tk+1− tk sufficiently small one can

achieve that integral
∫ tk+1

tk
hSi

(x(τ))dτ will be small (less than ε
4 ). Then the to-

tal payoff Hα
Si
(x0, T − t0;u

∗(·) ‖ uSi
(·)) of player Si in game ΓP

α (x0, T − t0) when
m-tuple of strategies u∗(·) ‖ uSi

(·)) is played cannot exceed the amount
∫ tk

t0

βSi
(τ)dτ +

∫ tk+1

tk

hSi
(x(τ))dτ + V (x(tk+1), T − tk+1; {Si}) +

ε

2
≤

∫ tk

t0

βSi
(τ)dτ + V (x(tk+1), T − tk+1; {Si}) +

3ε

4
. (13)

When m-tuple u∗(·) is played, payoff Hα
Si
(x0, T − t0;u

∗(·)) of player Si is equal

to αSi
=

∫ T

t0
βSi

(τ)dτ =
∫ tk

t0
βSi

(τ)dτ + αSi
(tk). But αSi

(tk) ∈ LP(x̄(tk), T − tk),

then we get αSi
(tk) ≥ V (x̄(tk), T − tk; {Si}). From the continuity of function V and

continuity of trajectory x(t) by appropriate choice of δ = tk+1 − tk the following
inequality can be guaranteed: V (x̄(tk), T−tk; {Si}) ≥ V (x(tk+1), T−tk+1; {Si})−

ε
4 .

So Hα
Si
(x0, T − t0;u

∗(·)) will be no less than

∫ tk

t0

βSi
(τ)dτ + V (x(tk+1), T − tk+1; {Si})−

ε

4
. (14)

Combining (13) and (14) we finish the proof of Theorem 1. This means that the co-
operative solution (any imputation) can be strategically supported in a regularized
game ΓP

α (x0, T − t0) by a specially constructed ε-Nash equilibrium. ⊓⊔

Theorem 2. Suppose that every S ⊂ P has the same deviation instant. For every
ε > 0, the strictly regularized game ΓP

α (x0, T − t0) has a strong ε-Nash equilibrium
with payoff α.
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Proof. The proof is based on the construction of strong ε-Nash equilibrium in piece-
wise open-loop (POL) strategies with memory. Consider POL strategies ū(·) =
(ā, σ), where ā maps each point (x̄(tk), tk) on the optimal trajectories to an open-
loop control ūSi

(t), t ∈ [tk, tk+1), Si ∈ P , satisfying (2) and ā is arbitrary at other
points.

Consider a family of zero-sum games ΓP
S,P\S(x, T − t) from the initial position

x and duration T − t between coalition S and coalition P\S in which the payoff of
coalition S equals

∑

Si∈S HSi
(x, T − t;uS1

(t), . . . , uSm
(t)). Let ûP\S(x, t; ·) be an

ε
2 -optimal POL strategy of player P\S in ΓP

S,P\S(x, T − t). Note that ûP\S(x, t; ·) =

{uSj
, Sj ∈ P\S}.
Let x̂(t) = {x̂S1

(t), . . . , x̂Sm
(t)} be the segment of an admissible trajectory sat-

isfying (1) on time interval [t0, t], t ∈ [t0, T ]. Since every S ⊂ P has the same
deviation instant, for every S ⊂ P we can define t̄(S) = t̄(Si) = sup{t : x̂Si

(t) =
x̄Si

(t), t ∈ (t0, T ]}, Si ∈ S and ¯̄t(S) = minS t̄(S). ¯̄t(S) belongs to one of the inter-
vals [tk, tk+1), k = 0, 1, 2, . . . , l − 1. And ¯̄t(S) − t0 is the length of the time interval
starting from t0 on which x̂(t) coincides with cooperative trajectory x̄(t).

Define the following strategies of player Si ∈ P :

u∗
Si
(·) =































ūSi
(t), for (x̂(tk), tk) on the optimal cooperative

trajectory;
ûSi

(x̂(tk+1), tk+1; ·), Si-th component of the ε
2 -optimal POL strategy

of player P\S in game ΓP
S,P\S(x̂(tk+1), T − tk+1),

if tk ≤ ¯̄t(S) < tk+1;
arbitrary, for all other positions.

We shall show that u∗(·) = (u∗
S1
(·), . . . , u∗

Sm
(·)) is a strong ε-Nash equilibrium in

ΓP
α (x0, T − t0). We have to show that

∑

Si∈S

Hα
Si
(x0, T − t0;u

∗(·)) ≥
∑

Si∈S

Hα
Si
(x0, T − t0;u

∗(·) ‖ uS(·))− ε, (15)

for all S ⊂ P and all uS = {uSi
, Si ∈ S}. It is easy to see that when m-tuple u∗(·) is

played, the game develops along the optimal trajectory x̄(t). If under u∗(·) ‖ uS(·)
trajectory x̄(t) is also realized then (15) will be true.

Now suppose that under u∗(·) ‖ uS(·) trajectory x(t) is different from x̄(t).
Suppose t̄(S) ∈ [tk, tk+1). Since the motion of players are independent we get
xSj

(tk+1) = x̄Sj
(tk+1) for Sj ∈ P\S. From the definition of u∗(·) it follows

that players in P\S will use their strategies ûSj
(x(tk+1), tk+1; ·) and coalition

S starting from position (x(tk+1), tk+1) will get no more than V (x(tk+1), T −
tk+1;S)+

ε
2 , where V (x(tk+1), T − tk+1;S) is the value of game ΓP

S,P\S(x(tk+1), T −

tk+1). By choosing δ = tk+1 − tk sufficiently small one can achieve that inte-

gral
∫ tk+1

tk

∑

Si∈S hSi
(x(τ))dτ will be small (less than ε

4 ). Then the total payoff
∑

Si∈S Hα
Si
(x0, T − t0;u

∗(·) ‖ uSi
(·)) of coalition S in game ΓP

α (x0, T − t0) when
m-tuple of strategies u∗(·) ‖ uS(·) is played cannot exceed the amount

∑

Si∈S

∫ tk

t0

βSi
(τ)dτ +

∑

Si∈S

∫ tk+1

tk

hSi
(x(τ))dτ + V (x(tk+1), T − tk+1;S) +

ε

2
≤

∑

Si∈S

∫ tk

t0

βSi
(τ)dτ + V (x(tk+1), T − tk+1;S) +

3ε

4
. (16)
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When m-tuple u∗(·) is played, payoff
∑

Si∈S Hα
Si
(x0, T − t0;u

∗(·)) of coalition S is
equal to

∑

Si∈S

αSi
=

∑

Si∈S

∫ T

t0

βSi
(τ)dτ =

∑

Si∈S

∫ tk

t0

βSi
(τ)dτ +

∑

Si∈S

αSi
(tk).

But αSi
(tk) ∈ CP(x̄(tk), T − tk), then we get

∑

Si∈S αSi
(tk) ≥ V (x̄(tk), T − tk;S).

From the continuity of function V and continuity of trajectory x(t) by appropriate
choice of δ = tk+1 − tk the following inequality can be guaranteed:

V (x̄(tk), T − tk;S) ≥ V (x(tk+1), T − tk+1;S)−
ε

4
.

So
∑

Si∈S Hα
Si
(x0, T − t0;u

∗(·)) will be no less than

∑

Si∈S

∫ tk

t0

βSi
(τ)dτ + V (x(tk+1), T − tk+1;S)−

ε

4
. (17)

Combining (16) and (17) we finish the proof of Theorem 2. ⊓⊔

It should be noticed that if every S ⊂ P has the same deviation instant, a strong
ε-Nash equilibrium is also an ε-Nash equilibrium in the strictly regularized game
ΓP
α (x0, T − t0). So the existence of strong ε-Nash equilibrium implies the existence

of ε-Nash equilibrium in ΓP
α (x0, T − t0). And if every S ⊂ N has the same devi-

ation instant, we can easily construct a strong ε-Nash equilibrium in the strictly
regularized game ΓP

α (x0, T − t0) from a strong ε-Nash equilibrium in the strictly
regularized game Γα(x0, T − t0) (see Petrosyan and Zenkevich (2009)). So the exis-
tence of strong ε-Nash equilibrium in the strictly regularized game Γα(x0, T − t0)
implies the existence of strong ε-Nash equilibrium in the strictly regularized game
ΓP
α (x0, T − t0).
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