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Abstract This paper discusses results on Nash equilibrium and its refine-
ments for several variants of the architecture for oligopolistic markets of ho-
mogeneous goods. For different kinds of one-stage and two-stage auctions,
we compare the game-theoretic solution with the competitive equilibrium
and estimate the loss of social welfare due to producers market power. We
conclude on the optimal architecture of the market.
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1. Introduction

Markets of homogeneous goods play an important role for many economies including
Russian one. A typical structure of such markets is oligopoly, and they are organized
as auctions of some types. Consumers often have no market power and do not play
an active role in these auctions. Their behavior corresponds to a known demand
function. So an important problem for such markets is limitation of large producers
market power. Splitting of the market into small companies is a bad way to deal
with the problem because of the scale effect and the reliability requirements.

Another way is to design such market mechanism that its equilibrium state is suf-
ficiently close to the Walrasian equilibrium the optimal state of the market accord-
ing to theWelfare theorem (Debreu, 1954). The literature on the markets of homoge-
neous goods (Amir, 1996, Amir and Lambson, 2000, Ausubel and Cramton, 1999,
Allen and Helwig, 1986, Vives, 1986, Vasin et al., 2003 and many others) models
different mechanisms as strategic games where producers are the players, and ex-
amines Nash equilibrium or its refinement as behavior model. Other desirable prop-
erties of the mechanism are: existence of Nash equilibrium in dominating strategies;
the strategy of each agent can be determined proceeding from his private informa-
tion.

The present paper surveys results of game-theoretic analysis of economic mecha-
nisms related to markets of homogeneous goods. The three following sections discuss
different variants of the uniform price auction. In such action, a producer’s bid de-
termines the supplied volume depending on the price, the market price corresponds
to the intersection of the total supply function with the demand function, and all
agents buy and sell at this price. Section 2 considers the Cournot auction where
each seller proposes a fixed amount of the good. Section 3 studies a model with bids
corresponding to non-decreasing step functions (a typical design of the auction in
practice). Section 4 examines the auction with continious bid functions and uncer-
tain demand and discusses the concept of supply function equilibrium proposed by
Klemperer and Meyer (1989). In Section 5 we discuss Vickrey auction that obtains
the desirable properties. Section 6 considers another variant implemented in prac-
tice: pay as bid auction. Section 7 finishes with discussion of forward market as an
instrument for the market power reduction and final conclusions from our study.

⋆ The research was supported by Russian Foundation for Basic Research (project No.
140191163 GFEN a).



316 Alexander Vasin, Polina Kartunova

2. Cournot oligopoly

Many papers (Novchek, 1985, Kukushkin, 1994, Amir, 1996, Amir and Lambson,
2000 and so on) study the Cournot auction where each seller proposes a fixed
amount of the good. Vasin et al. (2007) prove existence of the unique Nash equilib-
rium under non-decreasing demand elasticity and marginal costs. They show that
the relative deviation of the Cournot price from the Walrasian price is less or equal
to the share of the largest company in the total production volume, divided by the
demand elasticity. This estimate coincides with the Lerner index for the company
and is precise if its marginal costs are equal for the Walrasian and the Cournot
equilibria. Newbery (2009) considers these results in context of the data for Eu-
ropian electricity markets. The share of the largest company typically exceeds 0.25,
while the demand elasticity is less than 0.2. Thus, the data obviously contradicts
to the Cournot model. Newbery calls it as Lerner Paradox and discusses different
explanations considered below.

The formal model and the results are as follows. Consider a market for a ho-
mogenous good with a finite set A of producers. Each producer a is characterized
by his cost function Ca(v) with non-decreasing marginal costs for v ∈ [0, V a] where
V a is his production capacity. The precise form of Ca is his private information.
Consumers behavior is characterized by a demand function D(p), which is continu-
ously differentiable, decreasing in p, tends to 0 as p tends to infinity, and is known
to all agents.

The combination (ṽa, a ∈ A) of production volumes is a Walrasian equilibrium
(WE) and p̃ is a Walrasian price of the market if, for any a,

ṽa ∈ Sa(p̃)
def
= argmax

va
(vap̃− Ca(va)),

∑

a

ṽa = D(p̃)

Consider Cournot competition in this market. Then a strategy for each producer
a is his production volume va ∈ [0, V a]. Producers set these values simultaneously.
Let −→v = (va, a ∈ A) denote a strategy profile. The market price p(−→v ) equalizes
the demand with the actual supply: p(−→v ) = D−1(

∑
a∈A va). The payoff function of

producer a determines his profit fa(−→v ) = vap(−→v ) − Ca(va) Thus, the interaction
in Cournot model corresponds to the normal form game ΓC = 〈A, [0, V a], fa(⇀
v),−→v ∈ ⊗a∈A[0, V

a], a ∈ A〉 where [0, V a] is the set of strategies for a ∈ A. The
profile −→v ∗ of production volumes is a Cournot equilibrium (CE) if it is a NE in
the game ΓC . Let (va∗ , a ∈ A) denote the equilibrium production volumes and
p∗ = D−1(

∑
a∈A va∗)

Proposition 1. (Vasin et al., 2007) Let the demand function D(p) and the de-

mand elasticity e(p)
def
= p

|D′(p)|
D(p)

meet one of the following conditions:

a) D(p) > 0 and e(p) ↑ p for p ∈ (p̃,M), D(p) = 0 for p > M
b) D(p) > 0 and e(p) ↑ p for p > p̃, limp−→∞ = L > 1/n where n is the total

number of producers in the market. Then there exists a unique Nash equilibrium in
the game ΓC .

The F.O.C. for a Nash equilibrium is

va
∗ ∈ (p∗ − Ca′

(va
∗

))|D′(p∗)| for any a s.t. Ca′

(0) < p∗ (1)
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va
∗

= 0 if Ca′

(0) > p∗ (2)

where Ca′

(v) = [Ca′

−
(v), Ca′

+ (v)] at break points of the marginal cost function,

Ca′

+ (V a) = ∞.

The combination (p∗, va
∗

, a ∈ A) is called a local Cournot equilibrium if it meets
the necessary conditions (1),(2). Define Cournot supply function Sa

C(p) of a pro-
ducer a as a solution of the system (1),(2). This function determines the optimal
production volume of producer a if p is a Cournot equilibrium price. The Cournot
price p∗ is determined by the equation

∑
a S

a
C(p

∗) = D(p∗). Note that in general
player a cannot determine his equilibrium volume va

∗

proceeding from his private
information.

The next proposition evaluates the deviation of the Cournot outcome from the
Walrasian equilibrium proceeding from the demand elasticity and the maximal share
of one firm in the total production at the Cournot equilibrium.

Proposition 2. For every firm a, its Lerner index at the Cournot equilibrium meets
equation

La
c

def
=

p∗ − ca(va
∗

)

p∗
=

sa(p∗)

e(p∗)

where sa(p∗) =
va

∗

D(p∗)
is the share of producer a in the total production volume,

e(p) is the demand elasticity. Moreover,

p∗ − p̃

p̃
6 max

a

Sa(p∗)

e(p∗)

The latter condition holds as the equality for a symmetric oligopoly with a fixed
marginal cost c = p, and also for a large firm with a fixed marginal cost interacting
with the competitive environment characterized by a smaller marginal cost and a
limited total capacity ( see Fig. 1).

Fig. 1: Deviation of the Cournot price p∗ from the Walrasian price p̃ for a large firm in the
competitive environment

3. Uniform price auction

Vasin et al. (2007) study a uniform price auction, where a strategy of each producer
is a non-decreasing step function that determines the actual supply of the good
depending on the price. Such auctions are typical for wholesale electricity markets,
in particular, for day-ahead markets where the basic production and consumption
components are determined. The real auctions differ in the rules for acceptable bids.
Russian DAM accepts bids with at most 3 steps, a different bid for every hour of
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the next day, while the market of England and Welsh permitted up to 48 steps, but
a unique bid for the whole day.

The mentioned study shows that, for any Nash equilibrium of the correspond-
ing game, the market price lies between the competitive equilibrium price and the
Cournot price, and vice versa, each price in this range corresponds to a Nash equi-
librium. However, only the Nash equilibrium corresponding to the Cournot outcome
is stable with respect to the dynamics of adaptive strategies.

Note that Moreno and Ubeda (2001)) obtain similar results for the two-step
model where at the first step producers set capacities , and at the second step they
compete by setting reserve prices. Kreps and Scheinkman (1983) show that the SPE
outcome of the two-stage model ′′first quantities, then price′′ also corresponds to
the Cournot equilibrium. Thus, for all these mechanisms the expected deviation of
the market price from the Walrasian price is the same as for the Cournot model,
and they are not responsible for solution of the Lerner paradox.

The formal model of the uniform price auction and the results are as follows.
Every producer a ∈ A simultaneously sends to the auctioneer his reported supply
(r-supply) function Ra(p) that determines the amount of the good this producer
is ready to sell at price p, p > 0. Acceptable bid Ra(p) is a non-decreasing step
function with a limited number of steps. So this is not a usual function but a point-
set mapping: at any jump point its value is a stretch, and it obtains the same
properties as a Walrasian supply function.

A profile of r-supply functions determines the total r-supply R(p) =
∑

a R
a(p)

and the cut-off price c̃(Ra, a ∈ A) that meets condition D(c̃) ∈ R(c̃). Proceeding
from the properties of the demand function, the cut-off price is uniquely determined
for any non-zero r-supply, as well as the Walrasian price in the market model. In or-

der to define payoff functions, consider two cases. LetR+(p)
def
= maxR(p), R−(p)

def
=

minR(p). If R+(c̃) = D(c̃) then each producer sells the reported volume Ra+(c̃) at
the cut-off price. Otherwise, first each producer sells Ra−(c̃), and then the resid-
ual demand D(c̃) − R−(c̃) is distributed among producers with Ra+(c̃) > Ra−(c̃)
according to some rationing rule (typically the proportional rule).

Under a given rationing rule, the profit of producer b ∈ A is determined as
follows:

f b(Ra(.), a ∈ A) = c(Ra, a ∈ A)vb(Ra, a ∈ A)− Cb(vb(Ra, a ∈ A)),

where vb(Ra, a ∈ A) ∈ [Rb−(c̃), Rb+(c̃)] is the final demand for his production.
Thus, we have defined the normal form game ΓS that corresponds to the auction.

Note that there might be three possible types of Nash equilibria for ΓS : a) those
Nash equilibria for which R+(c̃) = D(c̃) (Nash equilibria without rationing), b)
those for which D(c̃) ∈ (R−(c̃), R+(c̃)) (Nash equilibria with rationing), c) those
for which D(c̃) = R−(c̃) < R+(c̃) (Nash equilibria with a barrier, see Figure 2).
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Fig. 2: Three types of Nash equilibria in the supply function auction.

Proposition 3. (Vasin et al., 2007)

a) For every Nash equilibrium without rationing, the production volumes corre-
spond to the local Cournot equilibrium. Vice versa, if (va, a ∈ A) is a Cournot
equilibrium, then the corresponding Nash equilibrium exists in ΓS.

b) If (Ra, a ∈ A) is a Nash equilibrium such that D(c̃) ∈ (R−(c̃), R+(c̃)), then there
exists at most one producer b ∈ A such that Rb−c̃) < Sb−(c̃) (so va ∈ Sa(c̃) for
any a 6= b); the cut-off price lies in the interval [p̃, p∗].

c) For any Nash equilibrium of the type c), the cut-off price lies in the interval
[p̃, p∗]. Vise versa, for any p ∈ [p̃, p∗] there exists a Nash equilibrium (Ra, a ∈ A)
such that c̃(Ra, a ∈ A) = p.

Let us note that every Nash equilibrium of the types b and c is unstable and
cannot occur as an outcome of the auction until some players act for the interests
of some external regulator. Indeed, in any such equilibrium the excessive supply
at price c̃ creates a barrier that makes it unprofitable for any player to increase
the cut-off price by reducing his supply level in the neighborhood of the price c̃.
However, keeping this barrier is unprofitable. Reduction ofRa(c̃) to va for ever a ∈ A
does not change the profits of the players if other strategies are fixed. Moreover,
as soon as the barrier is sufficiently small, some player finds it profitable to reduce
his supply function and thus increase the profits of the other players. Thus, the
expected outcome of the auction corresponds to the Cournot equilibrium, and the
estimates from Proposition 2 also hold in this case.

Models by Baldick et al. (2000), Vasin and Daylova (2012), Klemperer and
Meyer (1989) describe the uniform price supply function auction with continu-
ous bids as a game in normal form and characterize the Nash equilibria of the
auction. Klemperer and Meyer study the competition model with arbitrary bid
functions, including non-monotonic. For a given demand function they find a lot
of Nash equilibria corresponding to all prices grater than the Walrasian price.
Green and Newbery (1992) consider a symmetric duopoly with linear marginal cost,
demand and bid functions. They obtain the formula for calculation of the unique
Nash equilibrium. Baldick et al. (2000) generalize the results to the asymmetric
linear oligopoly. Abolmasov and Kolodin (2002) and Dyakova (2003) apply this ap-
proach to study electricity markets in two Russian regions. They use the affine
approximations of the true supply functions and obtain in the simulations a sig-
nificant reduction of the ”market power” in the supply function auction compared
with the Cournot auction.
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Can a model of SFE with linear supply functions and marginal costs adequately
describe and explain the Lerner paradox? Note that the assumption of affine struc-
ture of the supply function does not correspond to the actual cost structure of energy
companies, nor the practice of the auction. In a typical DAM every producer may
submit a bid corresponding to a non-decreasing piece-wise step function. In a first
approximation the real structure of the variable costs of many power companies
also corresponds to such function. Usually, such a company owns several power
generators with limited capacities, each of them is characterized by approximately
constant marginal cost, but the cost is specific for each generator. Under these con-
ditions, the equilibrium bid is a nonlinear function of the price. This is confirmed by
the results obtained in the other direction of research initiated in the same paper,
Klemperer and Meyer (1989).

4. Supply function auction with uncertain demand

An important feature of electricity markets is uncertainty of demand, which is due to
random changes of the environment and also to variations of the demand during the
time for which the bids are submitted. In this context, Klemperer and Meyer (1989)
proposed a promising auction model and theoretical results. They assumed a bid to
be a monotone smooth function and the demand function to depend on a random
parameter. Thus, the cut-off price that equalizes the total supply and demand is
random. A bid profile is called a supply function equilibrium (SFE) if, for any
parameter value, the bid of each firm maximizes its profit under fixed bids of other
producers. For a symmetric oligopoly, the authors derive a differential equation for
an equilibrium bid and describe the set of the SFE.

The SFE price is always lower than the Cournot oligopoly price. In some cases,
the price reduction is significant (Green, 1999, Newbery, 1998). On this ground,
some researchers claim that the supply function auction is an efficient mechanism
for reduction of the ”market power” of producers.

However, the computation of the SFE bids is a rather sophisticated mathemati-
cal problem. Even in a simple case with fixed marginal costs and a limited capacity,
the equilibrium bid is a combination of a linear and a logarithmic functions. More-
over, calculation of the equilibrium bid requires full information on the demand
function and the cost functions of all competitors, which in practice is lacking.
Thus, SFE does not obtain those desirable properties we mentioned in the Intro-
duction. Why should one expect that the actual behavior at the auction corresponds
to this concept?

A similar question for Nash equilibria of normal form games is consid-
ered in the framework of adaptive and learning mechanisms investigation (see
Milgrom and Roberts, 1990, Vasin, 2005). These studies show that for some classes
of games rather simple mechanisms provide convergence of strategy profiles to stable
NE. Models of adaptive dynamics require neither full information nor high rational-
ity of the players. It suffices to be able to calculate and compare an agents profits
under the current and alternative strategies. If the adaptive process converges to
the Nash equilibrium, we can expect the appropriate behavior in the real life. But
many NE are not stable in this sense.

Rudkevich (1993) examined best response dynamics for a symmetric oligopoly
with linear demand function and linear marginal cost function and proved that the
dynamics converges to the SFE with a geometric rate. Vasin and Dolmatova (2012)
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studied a symmetric oligopoly with fixed marginal cost and limited capacities. They
showed that the best response does not exist at some stage under general conditions.
Moreover, even if there exists a sequence of best responses in a certain range of the
random parameter values, it is typically cyclic, so the convergence to the SFE does
not hold.

4.1. Formal model of the auction and SFE concept.

Consider a market with a set N = {1, 2, ..., n} of players (producers). For player
i, Ci(q) is the cost functions C(q) depending on generation q, such that: C′

i(q) >
0, C′′

i (q) > 0 for any q > 0. Demand is given by a function D(p, t) of price p > 0,
which also depends on a random factor t. The probability density of the factor is
strictly positive for the set [t, t]. For any p, t, the demand function satisfies: Dp < 0,
Dpp 6 0, Dpt = 0, Dt > 0. A strategy of a player i is a non-decreasing supply
function Si(p) that maps produced volume to the market price p. Making their
choices Si(p), the players do not know the value of the random factor t. When t is

known, a strategy profile
−→
S = (S1(p), S2(p), .., Sn(p)) induces the price p(

−→
S , t) that

balances the aggregate supply and demand: D(p(t)) =
n∑

i=1

Si(p(t)). Each producer

i intends to maximize his pay-off function:

πi(
−→
S , t) = p(

−→
S , t)Si(p(

−→
S , t))− C(Si(p(

−→
S , t)), i ∈ N.

Strategy profile
−→
S ∗ = (S∗i, i ∈ N) is called an SFE if, for any t > 0 and i ∈ N ,

S∗i ∈ argmaxSi
(πi(S

i, S∗−i, t)).

Proposition 4. (see Proposition 1.2 in Klemperer and Meyer, 1989)
For a symmetric oligopoly with the cost function Ci(q) = C(q), i ∈ N , if

suptD(0, t) = ∞, then
−→
S ∗ = (S∗1, S∗2, ..., S∗n) is SFE if and only if Si(p) ≡ S(p)

∀i ∈ N , and S(p) monotonously increases in p and meets equation:

S′(p) =
1

n− 1

[
S(p)

p− C′(S(p))
+Dp(p)

]
. (3)

4.2. The model with linear marginal cost function.

Consider a symmetric oligopoly with n producers, where the cost function of each
producer is C(q) = (c0 + 0, 5c1q)q, c0 > 0, c1 > 0, and the demand function is
D(p, t) = D(t)−dp, where d > 0 and D(t) is a maximal demand value depending on
a random parameter t. According to Proposition 4, an equilibrium supply function
for this case should meet the differential equation:

S′(p) =
1

n− 1

(
S(p)

p− C′(S(p))
+Dp(p)

)
.

There exists the infinite set of nonlinear solutions (see Rudkevich, 1993 ). However,
the condition supt D(t) = ∞ results in a unique and linear SFE:

S∗(p) = (p− c0)
n− 2− c1d+

√
(n− 2)2 + 2nc1d+ c21d

2

2c1(n− 1)
. (4)

Consider the strong best response dynamics (SBRD) for the repeated auction
with identical players. For any bid S1(p) bid S2(p) is called a strong best responce,
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if for each t ∈ [t, t] solution p(t) to S1(p) + S2(p) = D(p, t) provides the maximum
profit:

p(t) −→ max
p

{(D(p, t)− S1(p))p− C(D(p(t)− S1(p)))}.

At every time τ = 1, 2, ..., each firm sets a bid S(p, τ) that is a strong best response
to its competitors’ bids S(p, τ − 1) at the previous time. We do not assign players
in the considered dynamics, since we assume S(p, 0) = 0, and so the best responses
of all the players are the same. The sequince S(p, τ), τ = 1, 2, ..., forms SBDR, if for
any t ∈ [t, t] S(p, τ) is a SBR for S(p, τ − 1).

Below we recall the result by Rudkevich (1993) on the existance and convergence
of the SBDR for the market under consideration.

Proposition 5. Let {D(t), t ∈ T } ⊇ [dc0,∞).

Then, the bid Si(p) = (p − c0)
d+(n−1)k

1+c1(d+(n−1)k) is the unique strong best response

to the competitors’ bids Sj = k(p− c0), j ∈ N\{i}.
The best response at time τ is S(p, τ) = kτ (p−c0), where kτ = d+(n−1)kτ−1

1+c1(d+(n−1)kτ−1)
.

The unique fixed point k∗ =
n−2−c1d+

√
(n−2)2+2nc1d+c21d

2

2c1(n−1) for this dynamics corre-

sponds to the SFE of the static auction model.

4.3. Oligopoly with fixed marginal costs and capacity constraints.

Consider a market with n symmetric producers, each characterized by the capacity
constraint Q and the linear cost function C(q) = cq, where q ≤ Q and c > 0. The
equilibrium supply function bid is constructed as a continous monotone function
satisfying (3).

For n > 2 the solution Sn(p,An) = An(p − c)1/(n−1) − d(p−c)
n−2 depends on

the integration constant An. The function reaches its maximum q(An) under

p = p(An)
def
= An(n−2)

d(n−1)

n−1
n−2

at the point of intersection of its graph with the Cournot

supply shedule. The inverce function is A(q) = d · ( qd)
n−2
n−1 · n−1

n−2 .

Proposition 6. (Vasin and Dolmatova, 2012)If D∗ > (n+1)Q, then there exist a
unique SFE in the oligopoly model. The equilibrium bid is

S∗

n(p) =

{
Sn(p,An(Q)) for c ≤ p ≤ p(An(Q)),

Q for p ≥ p(An(Q)).

Consider the BRD for the oligopoly where firms have limited capacities and their
marginal costs are zero c = 0. For a linear demand D(p) = max{0, D − dp} under
fixedD, we study the best response dynamics depending on the ratio betweenD and
Q. At every stage τ = 1, 2, . . ., we search for the BR in the set of supply functions
S(p, τ) = min{k(τ)p,Q}. So the problem is to find the optimal slope k(τ). Our aim

is to determine ranges of parameter
D

Q
with the same best response dynamics.

Proposition 7. (Vasin and Dolmatova, 2012)

The BRD for the model of n-firm oligopoly with n > 3 depends on the ratio
between parameters D and Q as follows:
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For D > (n + 1)Q , S(p, τ) = min{Q, kdp}, ∀k ∈ [1,∞)∀τ > 1. The BR is
rather uncertain, but the outcome always corresponds to the Cournot equilibrium
coinciding with the Walrasian equilibrium in this case.

For (n−1)Q < D < (n+1)Q , the best response at the time τ = 1, 2, . . . , T (D,Q)
is S(p, τ) = min{Q, k(τ)p}, then the best response dynamics loops. The cycle

length T (D,Q) is the smallest integer T meeting inequality
∑T

s=0(n − 1)s >

4Q(D −Q)

(D − (n− 1)Q)2
;

For D < (n− 1)Q , S(p, τ) = min{Q, k(τ)p}, ∀τ > 1, where k(τ) = d
∑τ−1

s=0 (n−
1)s. For τ → ∞ the BRD converges to the Walrasian supply function.

Figure 3 shows how the lenght of the BDR cycle varies depending on the ratio
between D and the capacity constraint Q.

Fig. 3: The BDR cycle lenght T depending on the ratio between the maximal demand D
and capacity Q.

Our study together with the previous research shows ambiguous results on
the justification for the SFE concept. For market models with linear demand and
marginal cost functions, the adaptive dynamics rapidly converges to the unique SFE
existing under large demand shocks. A similar result holds if each generator either
works all the time at its maximum capacity level, or never reaches this level, and
its marginal cost is a linear function.

However, in general the real costs of generating companies do not meet these
assumptions. Typically such a company owns several generators with limited capac-
ities (and in practice the constraints are often binding in spike periods). The price
of fuel per 1MW is usually the main component of the marginal cost. Sometimes
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this cost is approximately constant, for other generators it is necessary to use a
more complicated relation. But in any case the SFE bid is not an affine function
since the capacity constraint is binding. While the literature focuses on the SFE
specified in proposition 6 as an instrument for the price forecast and evaluation of
the market power in the supply function auction, our study shows that there is no
ground to expect such kind of behavior in general.

5. Vickrey auction

An alternative possibility of SF auction organization, considered in several studies
(Ausubel and Cramton, 1999, Wolfram, 1999, Vasin et al., 2007), is to use Vickrey
auction. At this auction the cut-off price and production volumes are determined in
the same way as in the uniform price auction. However, each producer is paid her
reservation price for her goods. The marginal price is the minimum of the marginal
cost of the same output for other producers and the marginal reservation price
of this output for consumers. The marginal cost is calculated on the basis of the
reported supply functions, but in this case reporting actual costs and production
capacities is a weakly dominant strategy. In the absence of information on produc-
tion costs, the guaranteed total welfare reaches its maximum at the corresponding
Nash equilibrium, and each producer makes a profit equal to the increment of the
total welfare of all participants in the auction as a result of his participation in the
auction.

Our calculations for the Central Economic Region of Russia show that the Vick-
rey auction price for consumers exceeds the Walrasian price at 50% (to compare
with 250-400% for the Cournot auction price). However, such increase seems to be
also rather large. Besides, there exist reasonable arguments implying that the partic-
ipants of Vickrey auction typically do not reveal their actual costs, that is, the spec-
ified equilibrium in dominant strategies is not realized (see Rotkkopf et al., 1990).
The main argument is that reporting actual costs gives an advantage to the auction-
eer (and also to other economic partners) in further interactions with this producer.

The situation is different if marginal costs and maximal capacity of each genera-
tor are common knowledge, and uncertainty pertains to a decrease of the capacities
due to breakdowns and repairs. In this case the current state of working capacities
is weakly correlated with the future state, and the specified argument against re-
vealing the actual costs loses its validity. Moreover, available information may be
used for redistribution of the total income in favor of consumers.

5.1. Formal model and results.

The set of strategies {Ra(p), p > 0} of each articipant, the rule that determines for
the cut-off price c̃(Ra(p), a ∈ A) and production volumes are the same as discussed
for the uniform price auction. Producers a payment is calculated as follows.

The marginal reservation price ra(va) for an additional volume dv under produc-
tion volume va is a cut-off price under the given bids Rb(p), b 6= a and P a(p) ≡ va:

D(ra) ∈ RA�a + va (5)

The total payment to producer a is equal to

Ia(
−→
R ) =

∫ va

0

ra(v)dv (6)
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Thus, we defined the game Γv corresponding to Vickrey auction. Bellow Sa(p)
denote Walrasian supply sunction.

Proposition 8. (Vasin et al., 2007)
Ra(p) ≡ Sa(p) is a weakly dominant strategy in Γv. Production volumes at

the Nash equilibrium (Sa, a ∈ A) are the same as at the competitive equilibrium,
the profit of player a is W (A) − W (A�a) where W (K) is the total welfare of the
market with the set of producers K ⊆ A.

Proposition 9. The rule (5, 6) determines the minimal payment functions
Ca(v), a ∈ A under which, for any cost function, the optimal production volume
of each firm is equal to sa(p).

It is possible to distribute the total payment among the consumers in differ-
ent ways. Consider the following variant taking into account reservation prices of
consumers and at the same time minimizing the maximal price that they pay for
the good. Consumer b buys the good at the maximal price pv until it exceeds his
marginal reserve price. The rest of the amount v̂b he buys out at his reservation
prices. Thus, the total cost of the good for consumer b is

Cb(pv) = pvD
b(pv) +

∫ Dbp̃

Db(pv)

(Db)−1(v)dv

The price pv equalizes the total cost of the good for consumers and the total payment

to producers:
∑

b∈B Cb(pv) =
∑

a∈A Ia(
−→
R ). Since each cost function monotonously

increases in pv, the unique solution of the latter equation may be obtained by a
standard computational method.

5.2. Vickrey Auction with Incomplete Information on Cost Functions.

Consider now the case where the marginal costs cai and the maximal capacities
vaiM for each participant a and for each generator i are common knowledge. Then
the optimal auction procedure differs from the previous case in two aspects. The
auctioneer restricts the set of possible bids in accordance with the obtained infor-
mation, accepting from player a only bids corresponding to the specified values of
cai and some vai 6 vaiM , i = 1, . . .m. Besides, he takes into account this information
in the computation of the prices used to determine the auction outcome. As in the
previous variants, the production volumes are determined by the accepted bids as
va = Ra(c̃(Rb, b ∈ A)), a ∈ A. The payment to firm a for the good is calculated
according to (6) on the basis of the reservation prices but these prices are reduced in
comparison with (5) taking account the given information. Let us describe the algo-
rithm to calculate the minimal reservation price ra(v). This function is determined
by the reservation price rav for the standard Vickrey auction and the marginal cost
function caM (v) corresponding to (cai , v

a
iM , i = 1, . . .m(a)).

Stage 1.

Let us find i1 = max{i|cai 6 ra(0) = c̃(Rb, b ∈ A�a)}. Let V 1 =
∑

i6i1
V a
iM ,

ra(v) = caM (V 1 − v), until inequality caM − (V 1 − v) > ra+(v) does not hold or

v = V 1. In the first case let us define v1 as a minimal volume for which the specified
inequality holds.

Stage l.
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For a given value vl−1 let il = max{i|cai 6 ra+(vl−1)}, V l =
∑

i6il
V a
iM , ra(vl−1+

∆v) = caM (V l−∆v), until caM−(V l−∆v) > ra+(vl−1+∆v) does not hold or∆v = V l.
In the latter case the algorithm finishes its work. In the former case let us define vl
as the minimal value of vl−1 +∆v such that the specified inequality holds, and go
to stage l + 1.

The proposed algorithm calculates the maximal marginal cost allowing the firm
a to produce the volume dv under the available information on her costs and the
evidence of selling this volume in the auction under given bids of other players.

Proposition 10. Let the payment to each firm for the supplied volume be calculated
according to (6) but substituting of ra(v) for reservation price ra(v). Then for any
V a
i 6 V a

iM and any player a the strategy Ra = Sa is weakly dominant, and the
maximum of the total welfare is reached at the corresponding Nash equilibrium.
The reservation price ra(v) is minimal among reserve prices providing the specified
property.

5.3. Empirical study.

In this section we compute the NE prices of the standard supply function auction,
the standard and the modified Vickrey auctions for two variants of the electricity
market in the Central economic region of Russia. The paper by Dyakova (2003)
based on the data from the RAO UES provides the following values of the marginal
costs and the production capacities of the generating companies in this region. (See
table 5.3..)

Table 1.

Generator Marginal cost
(rub/mqth)

Capacity
(bln kwth
per year)

Generator Marginal cost
(rub/mqth)

Capacity
(bln kwth
per year)

Mosenergo GC2

G1 0 5 1 95 2.5
G2 75 10 2 110 2.5
G3 80 10 3 120 4
G4 85 25 4 128 13
G5 90 10 5 135 6
G6 100 5 6 145 2
G7 165 10 7 162 15

Rosenergoatom

12.5 125.4

GC1 GC3

1 0 16 1 0 3.5
2 60 2 2 100 2.5
3 112 3 3 120 21
4 125 2 4 150 3.5
5 150 16 5 170 4.5
6 200 2 6 200 4.5
7 255 2 7 215 3
8 340 10
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We consider several demand function D(p) = N − γp corresponding to the
average price and consumtion volume in 2000:

γ 0.1 0.2 0.4 0.6
N 279.9 316.1 388.4 460.7

For each slope ratio γ, we find the Cournot price, standart and modified Vickrey
prices, end we evaluate the deviations of the NE prices from the Walrasian prices
for two variants of the market structure:

a) 5 independents companies (Mosenergo, Rosenergoatom, GC1, GC2, GC3).
b) 3 independents companies (Mosenergo, Rosenergoatom and UGC including all

the rest generators).

Table 2: Walrasian (p̃), Cournot (p∗), Vickrey (pV ) and modified Vicrey (p
V
) prices for

electricity market in the Central economic region od Russia. The cases with 5 and 3
generating companies.

γ p̃ p∗5/p̃ p∗3/p̃ p∗V 5/p̃ p∗V 3/p̃ p∗
V 5

/p̃ p∗
V 3

/p̃

0.1 135 4.24 5.65 1.59 2.19 0.51 0.62
0.2 150 2.45 3.10 1.49 1.92 0.44 0.57
0.4 172.5 1.56 1.87 1.49 1.76 0.42 0.49
0.6 219.67 1.15 1.34 1.30 1.46 0.33 0.38

6. Pay-as-bid auction

Another possible form of the organized market is a pay-as-bid auction. Sales vol-
umes are defined in the same way as for a uniform price auction, but the payment
is made to each participant according to the prices specified in her bid. This form
was used for the electricity market in England and Wales, as well as in Russia in
the capacity market. As a trivial argument in its favor, we note that, for fixed bids,
the sales price for consumers is less than under the uniform price auction. However,
this form has serious drawbacks. Rational behavior of participants is significantly
different from the above options. Even under conditions of perfect competition,
submission of a bid corresponding to real costs is unreasonable. The optimal strat-
egy for a producer is to calculate the competitive equilibrium price and to offer at
this price the supply function value. Given the incompleteness of the information,
it is practically impossible. In the case of imperfect competition, the Nash equi-
librium in the corresponding game typically does not exist, because the auction is
similar to the Bertrand-Edgeworth model of price competition (see Wolfram, 1999,
Vasin et al., 2003).

Proposition 11. For the game corresponding to the pay-as-bid auction, the Nash
equilibrium exists if and only if the Cournot price coincides with the Walrasian
price.

The latter condition typically does not hold. This situation is pushing sellers to
conclude cartel agreements as a means to ensure the stable operation of the market.
This, of course, increases their bargaining power. Therefore, in our opinion, everyone
should agree with C. Wolfram who does not recommend this type of an auction.
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7. Forward market

The final part of our survey is devoted to the impact of the forward market on the
market power of large companies. In the literature, the forward market is studied
as one of the most important mechanisms to reduce the market power. One of the
first papers investigating its impact on the level of competition in oligopolistic mar-
kets is Allaz and Vila (1992). They consider a symmetric duopoly. Two producers
compete in N rounds of forward sales, and then in the spot market. The prices
at all stages are equal proceeding from no arbitration condition. The results show
that the introduction of forward markets increases competition among producers, as
well as social welfare. As the number of steps N tends to infinity, the SPE outcome
tends to the competitive equilibrium. Hughes and Kao (1997) show that this result
can be achieved only under assumption of firms’ forward positions being perfectly
observed, and that in case of firms’ positions not being transparent the Cournot
outcome arises.

Mahenc and Salanie (2004) show that under Bertand-Edgeworth competition at
the spot market, a possibility of forward cotracts may increase the market power
and reduce the social welfare. They establish that at the equilibrium each producer
buys forwards on its own production in order to increase the spot price.

Bushnell (2005) considered a two-stage Cournot auction with a constant
marginal cost, and showed that the ability to make forward contracts reduces the
bargaining power of producers as well as an increase in their number in the market
from n to n2.

Note the following problems related to the latter study. First, the actual price
trends in the electricity markets are not consistent with the hypothesis of equality
of prices in the spot and forward markets. Usually the price in the spot market is
slightly lower, but sometimes there are jumps in which the spot price significantly
exceeds the price in the forward market. The second problem relates to the assump-
tion of the priority of consumers with high reserve prices when buying goods in
the forward market. It is hard to imagine the possibility of such a distribution of
consumers without special rationing which does not exist in real markets.

Vasin et al. (2009) and Vasin and Daylova (2012) consider a two-stage model
with a random market price in the spot market. We take into account the presence
of risk-neutral arbitrageurs, the competition between them leads to equality of the
forward price to the spot price expectation. Consumers operate under conditions of
perfect competition and are free to choose between the spot and forward markets.
Our model describes a strategic interaction between producers, consumers and ar-
bitrageurs. We find the optimal strategies of rational consumers, depending on the
reserve price and the parameter characterizing risk aversion. We examine properties
of the subgame perfect equilibrium (SPE) for the model under the assumption that
the proportion of risk-preferring consumers with high reserve prices is constant.

In our model at the equilibrium the producers employ correlated mixed strate-
gies, and the corresponding outcome is random: the expected (rather than actual)
spot market price coincides with the price in the forward market. Consumers with
low reserve prices buy goods at the spot market if the price is lower than their re-
serve price, otherwise they refuse the purchase. The risk-preferring consumers with
high reserve prices always buy goods at the spot market. Risk-averse consumers buy
in the forward market if their reserve price is higher than the forward price and the
risk aversion parameter is above a certain threshold.
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Fluctuations of the spot price are usually explained by the existence of random
external factors. Our model shows that external factors are not necessarily the main
reason. In the game describing the spot market there are two local equilibria. The
first (with the low price) corresponds to the steep slope of the residual demand
(p < pf , ”bear market”). The second ( with the high price) corresponds to the
small slope of the residual demand (p > pf , ”bull market”). In the subgame perfect
equilibrium, the ”bear market” with the low spot prices realizes often, the ”bull
market” with the high prices is seldom.

Finally, we estimate the reduction in the market power of producers owing to
forward contracting.

7.1. The model of interaction on a two-stage market.

Consider a symmetrical oligopoly with constant marginal costs c. Let n producers
present on the market. Each consumer b wants to purchase a unit of the product
and is characterized by the reserve price rb. The demand function D(p) is defined
by the distribution density ρ(r) of the consumers: D(p) =

∫ rmax

ρ
ρ(r)dr.

Risk-neutral arbitrageurs either sell contracts on the forward market and then
purchase the product on the spot market, or perform the inverse operation in the
conditions of perfect competition.

Trading runs in two stages, on the forward market, firms supply their sales
volumes qfa , a ∈ 1, n. Denote by qf the total volume supplied by all producers on
the forward market, by qarb - the volume supplied by arbitrageurs on the forward
market, qarb > 0. In the case when arbitrageurs first purchase contracts on the
forward market and then sell the product on the spot market, the quantity qarb
shows the volume purchased by them on the forward market, qarb < 0.

Each consumer b who decides to participate in trading on the forward market
specifies the reserve price rb in her ask and purchases the product if the market
price does not exceed the reserve price. Denote by Df (p) the demand function of
consumers on the forward market. The price on the forward market pf follows from

the condition Df (pf ) = qft
def
= qf + qarb.

The spot market operates as the Cournot auction with the residual demand
function Ds(p) of consumers: Ds(p) = D(p)− qft for p < pf , and Ds(p) = D(p)−
Df (p) for p > pf . Producers supply the sales volumes qsa, a ∈ 1, n on the spot
market. The spot price ps balancing the demand and supply meets the condition
Ds(ps) + qarb =

∑n
a=1 q

s
a.

Random events occur between trading on the forward market and trading on the
spot market. Let a random factor possess values i ∈ 1, k with probabilities wi > 0,∑n

i=1 wi = 1. The strategy of a firm is defined by the set (qfa , q
s
a(i); i ∈ 1, k) that

specifies the volumes of supplies on the forward and spot markets. The price on the
spot market represents a random variable and can be found from the expression
Ds(pi + qarb =

∑n
a=1 q

s
a(i), i ∈ 1, k). Let pmin = p1 < p2 < . . . < pk = pmax.

Since the condition of perfect competition holds true for arbitrageurs and con-
sumers, their strategies meet the principle of economic equilibrium (Makarov, 1973).

The equilibrium condition for arbitrageurs implies that the price on the forward
market equals the mathematical expectation of the price on the spot market: pf =
E(ps).

Find the optimal strategies of consumers taking into account their attitude
towards risk. For consumer b ∈ B, the attitude is described by the parameter
λb ∈ [λmin, λmax], λmin < 0 < λmax. The positive domain of λb reflects risk-averse
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consumers. Next, the zero value of λb corresponds to risk-neutral consumers. And
finally, the negative domain of λb characterizes risk-seeking consumers. The utility
function of consumer b depends on the price difference ∆b and the parameter λb:
Ub(p) = U(∆b, λb) where ∆b = rb − p. If ∆ < 0, we obtain U(∆,λ) = 0 for any
λ, since purchasing fails. Under ∆ > 0, the function U(∆,λ) is concave in ∆ for
risk-averse consumers, linear in ∆ for risk-neutral consumers and convex in ∆ for
risk-seeking consumers.

Theorem 1. The equilibrium behavior of consumers is defined depending on the
reserve prices and their attitude towards risk as follows:

1) Customers with reserve prices from the interval rb < pf , as well as risk-neutral
and riskseeking consumers with reserve prices from the interval pf < rb < pmax

purchase on the spot market if ps < rb.
2.1) Let U ′

∆(∆,λ) be concave in ∆ and consumers with λ = λmax choose trading on
the forward market. Then for risk-averse consumers with pf < rb < pmax there
exists a threshold λ(r) such that consumers with λb > λ(r) prefer product pur-
chase on the forward market, whereas consumers with λb < λ(r) prefer product
purchase on the spot market.

2.2) Suppose that the price on the spot market possesses only two values, the condi-
tion

(lnU(∆,λ))′′λ∆ < 0 (7)

takes place and U(∆,λmax) ≡ Umax for ∆ > 0.

Then the optimal behavior of risk-averse consumers with pf < rb < pmax is
defined by point 2.1 and the function λ(r) decreases monotonically from λmax to 0.

3) For risk-seeking consumers with rb > pmax, the optimal behavior is product
purchase on the spot market for any realized price. For risk-averse consumers with
rb > pmax, the optimal behavior is product purchase on the forward market.

Note 1. For the utility function U(∆,λ) = (
∆

∆max
)1−

λ

2m , U ′

∆(∆,λ) is concave in

∆ for λmax 6 m. The condition U(∆,λmax) = Umax is valid under λmax = 2m,
0 < ∆ 6 ∆max, Umax = 1. The condition (7) holds true for λ < 2m, 0 < ∆ 6 ∆max.

Theorem 2. The residual demand function of the consumers in the equilibrium
has the form

Ds(p) =





D(p)− qft for p < pf ,∫ rmax

p

∫
λ
λ(r)
min

ρ(r, λ)dλdr for pf < p < pmax,

α(p)D(p) for p > pmax.

For SPE evaluation, we first find the equilibrium strategies of producers at the
second stage under fixed qfa using the residual demand function.

Theorem 3. If the model admits a subgame perfect equilibrium and the residual
demand function is smooth under p = pi, i ∈ 1, k, then the prices p1, . . . , pk meet
the conditions:

(p1 − c)|D′(p1)| =
D(p1)− qft + qarb

n
,
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(pi − c)|Ds′(pi)| =
Ds(pi) + qarb

n
, i = 2, . . . , k − 1,

where

Ds(p) =

∫ rmax

ρ

∫ λ(r)

λmin

ρ(r, λ)dλdr,

(pk − c)|(α(pk)D(pk))
′| = α(pkD(pk)) + qarb

n
. (8)

Note 2. If the function Ds(p) is concave under p > pf then k = 2, the value p2 > pf

meets conditions (8).

Next, consider the SPE when D(p) = max{d(rmax − p), 0}, the share of risk-
seeking consumers is constant: α(p) = α and the random factor possesses only two
values. Consequently, the spot market has two possible realizations of the price, p1
with a probability w and p2 > p1 with the probability 1−w, pf = wp1 +(1−w)p2.
Denote by qsia the volume sold by producer a on the spot market under the realized
price pi, i = 1, 2.

Theorem 4. The SPE prices p1, p2, p
f and the volumes qs1a , qs2a meet the equa-

tions:

p1 = p∗ − qf

d(n+ 1)
, p2 = p∗ − qarb

αd(n+ 1)
, pf = p∗ − wqf

d(n+ 1)
+

(1− w)qarb
αd(n+ 1)

,

qs1a = d

(
∆∗ − qf

d(n+ 1)

)
, qs2a = αd

(
∆∗ +

qarb
αd(n+ 1)

)
.

(9)

Here p∗ is the Nash equilibrium pricec in the classical Coutnot oligopoly model for
this market, ∆∗ = p∗ − c.

Let us find the equilibrium strategies at the first stage. Consider the demand-
supply balance equation in the price pf :

qf + qarb = Df (p∗ − wqf

d(n+ 1)
+

(1− w)qarb
αd(n + 1)

). (10)

Since the left-hand (right-hand) side of equation (10) increases (decreases, respec-

tively) in qarb, the value qarb(
−→
qf ) is uniquely defined by (10).

The profit of producer j on the forward market is calculated by the formula

πf
j = qfj (p

f − c) = qfj

(
∆∗ − wqf

d(n+ 1)
+

(1− w)qarb(
−→
qf )

αd(n+ 1)

)
.

And the mathematical expectation of the total profit πj of producer j is described
by

πj(
−→
qf ) = qfj

(
∆∗ − wqf

d(n+ 1)
+

(1− w)qarb(
−→
qf )

αd(n+ 1)

)

+wd

(
∆∗ − qf

d(n+ 1)

)2

+ (1− w)αd

(
∆2 +

qarb(
−→
qf )

αd(n+ 1)

)2

.

(11)
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Theorem 5. If the model admits a subgame perfect equilibrium with qfj > 0, j =

1, n, then the equilibrium volumes qfj result from the system
∂πj(

−→
qf )

∂qfj
= 0, j = 1, n,

where πj(
−→
qf ) and qarb(

−→
qf ) are specified by (10) and (11).

However, the stated necessary condition is not sufficient in the general case.
For the low-price local equilibrium on the spot market, a deviating producer

can increase the equilibrium price by reducing the volume of supply. A possible
beneficial deviation is when the new price corresponds to the gentle slope domain
of the residual demand function.

The produser gains the profit π1 = qs1a (p1−c) = qnew = αd(pnew−c), where the
new price pnew follows from the equality (n− 1)qs1a + qnew = α(D − dpnew) + qarb.
And the equilibrium profit is π̃2 = qnew(pnew− c) = αd(pnew − c)2. The equilibrium
is stable if π1 > π̂2 ⇐⇒ d(p1 − c)2 > αd(pnew − c)2 ⇐⇒

(
n− 1 + 2

√
α
) p1(w, n, α) − c

∆∗
> (n+ 1)α+

qarb(w, n, α)

d∆∗
. (12)

For the high-price local equilibrium on the spot market, a producer may benefit
by a unilaterial deviation from the evaluated strategy so that the new price cor-
responds to the steep slope domain on the residual demand function. In the local
equilibrium, the producer obtains the profit π2 = qs2a (p2 − c) = αd(p2 − c)2. The
optimal volume of supply under the deviation makes up qnew = d(pnew − c), where
the new price pnew follows from the equality (n − 1)qs2a + qnew = D − dqnew − qf .
And the resulting profit is π̃1 = qnew(pnew − c) = d(pnew − c)2. The equilibrium is
stable if π2 > π̂1 ⇐⇒ αd(p2 − c)2 > d(pnew − c)2 ⇐⇒

p2(w, n, α)− c

∆∗

(
2
√
α+ (n− 1)α

)
> n+ 1− nqfa (w, n, α)

d∆∗
. (13)

Under qarb > 0, the total residual demand function equals qarb for sufficiently
large p. Therefore, for stability it is necessary that a separate player appears
unable to reduce the supply of products below this level (by decreasing its vol-
ume of production). In other words, the following condition must hold satisfied:
qarb 6 (n− 1)qs2 ⇐⇒

qarb(w, n, α)

d
6 (n− 1)(p2(w, n, α)− c)α. (14)

The range w1(n, α), w2(n, α) of the parameter w, where local equilibria represent
an SPE, is defined by (12) - (14) (see Table 3). The value w1(n, α) results from the
expression

p2(w, n, α)− c

∆∗

(
2
√
α+ (n− 1)α

)
= n+ 1− nqfa (w, n, α)

d∆∗
.

The value w2(n, α) = minw1
2 , w

2
2 , where w1

2 is determined from the equation

(
n− 1 + 2

√
α
) p1(w, n, α) − c

∆∗
= (n+ 1)α+

qarb(w, n, α)

d∆∗
,
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and w2
2 is specified by the equality

qarb(w, n, α)

d
= (n− 1)(p2(w, n, α) − c)α.

Table 3: The admissible range of the parameter w

α = 0.1 α = 0.5 α = 0.9

w1 w2 w1 w2 w1 w2

n = 2 - - 0.4741 0.7185 - -

n = 3 0.6560 0.8105 0.4328 0.7574 0.3481 0.6812

n = 4 0.6386 0.9171 0.4113 0.7759 0.3270 0.7018

n = 5 0.6275 0.9227 0.3981 0.7868 0.3144 0.7141

n = 6 0.6198 0.9263 0.3892 0.7939 0.3059 0.7223

n = 7 0.6141 0.9287 0.3828 0.7990 0.2998 0.7281

n = 8 0.6098 0.9306 0.3779 0.8028 0.2953 0.7325

n = 9 0.6064 0.9319 0.3741 0.8057 0.2917 0.7359

n = 10 0.6036 0.9330 0.0311 0.8080 0.2889 0.7386

Table 4 characterizes the reduction in the market power of producers due to in-

troduction of the forward market. It contains the ratio
pf (w, n, α) − c

∆∗
, hereinafter

referred to as the reduction coefficient of the market power. This coefficient is ob-
tained using (9) and the values w = w1, w = w2 from Table 3.

Table 4: The reduction coefficient of the market power

α = 0.1 α = 0.5 α = 0.9 Bushnell

w1 w2 w1 w2 w1 w2

n = 2 - - 0.7019 0.6629 - - 0.6

n = 3 0.7551 0.6617 0.5129 0.4545 0.4169 0.4084 0.4

n = 4 0.6509 0.4252 0.3991 0.3383 0.3093 0.3009 0.29

n = 5 0.5728 0.3390 0.3249 0.2671 0.2441 0.2364 0.23

n = 6 0.5117 0.2805 0.2734 0.2197 0.2009 0.1939 0.18

n = 7 0.4625 0.2387 0.2356 0.1862 0.1703 0.1640 0.16

n = 8 0.4220 0.2074 0.2069 0.1614 0.1477 0.1420 0.13

n = 9 0.3880 0.1832 0.1843 0.1423 0.1303 0.1251 0.12

n = 10 0.3591 0.1639 0.1661 0.1272 0.1165 0.1117 0.1

The feasibility of forward contracting appreciably decreases the market power of
producers. Here possible cases are qarb > 0 (boldfaced in the tables) and qarb < 0.
Clearly, the results demonstrate that, as the probability of low-price outcome on
the spot market goes up, the market power of producers is reduced. In addition, the
growing share of risk-seeking consumers also reduces the market power of producers.
Table 5 shows the ratio of sales volumes on the forward and spot markets. This
ratio has been calculated using (9) and the values w = w1, w = w2 from Table 3.
Obviously, producers sell the prevailing volume of products on the forward market.
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Table 5: The ratio of sales volumes on the forward and spot market

α = 0.1 α = 0.5 α = 0.9

w1 w2 w1 w2 w1 w2

n = 2 - - 1.4384 1.2828 - -

n = 3 3.3408 2.5790 2.4759 2.2941 2.0708 2.0516

n = 4 4.4422 3.5697 3.4944 3.3072 3.0731 3.0552

n = 5 5.5089 4.5668 4.5053 4.3179 4.0744 4.0580

n = 6 6.5562 5.5660 5.5123 5.3262 5.0753 5.0602

n = 7 7.5916 6.5661 6.5173 6.3328 6.0760 6.0619

n = 8 8.6186 7.5664 7.5210 7.3381 7.0764 7.0633

n = 9 9.6400 8.5669 8.5238 8.3425 8.0768 8.0644

n = 10 10.6578 9.5675 9.5259 9.3461 9.0771 9.0654

8. Conclusions and Discussion

The performed analysis of the ratio of the equilibrium prices and sales volumes for
the two-stage market and the classical Cournot oligopoly testifies that introduction
of the forward market appreciably restricts the market power of firms. Moreover, the
growing share of risk-seeking customers also reduces the market power of producers.

Another mechanism with nice properies is Vickrey auction, especialy its modi-
fication with account of information on producer characteristics. The correspond-
ing equilibrium in dominating strategies provides the maximal total welfare and
substantial price reduction in fawour of consumers. The both mechanisms may be
recommended for increasing the efficiency of markets for homogenious goods.
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