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Abstract The paper deals with a generalization of Scarf (Scarf, 1967) and
Bondareva-Shapley (Bondareva, 1962; Shapley, 1967) theorems on the core
of cooperative game to the case of fuzzy domination. The approach proposed
is based on the concept of balanced collection of fuzzy coalitions, introduced
by the author (Vasil’ev, 2012). This extension of classic notion of balanced
collection of standard coalitions makes it possible to present a natural ana-
log of balancedness for so-called fuzzy TU cooperative games. Moreover, it
turns out that similar to the standard situation the new balancedness-like
assumption is a necessary and sufficient condition for the non-emptyness of
the core of fuzzy cooperative game with side payments.
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1. Introduction

The goal of the paper is to present a generalization of the famous Scarf theorem
on the core of cooperative game (Scarf, 1967) to the case of fuzzy domination. The
approach proposed is heavily relies on the concept of balanced collection of fuzzy
coalitions, introduced by the author (Vasil’ev, 2012). This generalization of the well-
known notion of balanced collection of standard coalitions makes it possible to in-
troduce a natural analog of balancedness for so-called fuzzy NTU cooperative games
(fuzzy games without side payments, in terms of (Aubin, 1993)). It turned out that
similar to the standard games situation the new balancedness-like condition plays
a crucial role in providing the core of the fuzzy game to be nonempty. Moreover,
one of the main results of the paper demonstrates that the generalized balanced-
ness assumption is a necessary and sufficient condition for the non-emptyness of
the core of fuzzy game with side payments (an extension of the classic Bondareva-
Shapley theorem on the core of a standard TU cooperative game (Bondareva, 1962;
Shapley, 1967). Strong attention is paid, as well, to special S∗-representation of
fuzzy TU cooperative games in order to relax balancedness condition for several
types of games under consideration.

Some applications of the results obtained to the fuzzy-core allocation existence
problem in the framework of general equilibrium theory and cost-allocation theory
are also considered.

⋆ This work was supported by the Russian Foundation for Basic Researches (grant No.13-
06-00311) and Russian Foundation for Humanities (grant No.13-02-00226.)
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2. Notations and definitions

Let N = {1, . . . , n} be a set of players. Put IN = {τ ∈ RN | 0 ≤ τi ≤ 1, i ∈
N}, and denote by σF the set IN \ {0} of fuzzy coalitions over N (Aubin, 1993).
As usual, each component τi of τ = (τ1, . . . , τn) ∈ σF is treated as the level of
participation of player i in the fuzzy coalition τ. Remind (Aubin, 1993), that any
standard coalition S ⊆ N is identified with the corresponding indicator function
eS ∈ RN , defined by the formula (eS)i = 1 if i ∈ S, and (eS)i = 0 if i /∈ S. Further,
for each τ = (τ1, . . . , τn) ∈ σF denote by N(τ) the support of fuzzy coalition
τ : N(τ) = {i ∈ N | τi > 0}. Below, we apply the shortening Rτ := RN(τ) for
any τ ∈ σF . Finally, in the notations given above, the definition of the games under
consideration looks as follows.

Definition 1. A fuzzy NTU cooperative game (fuzzy game without side payments,
according to (Aubin, 1993) is a set-valued map τ 7→ G(τ) that associates any fuzzy
coalition τ ∈ σF with a subset G(τ) belonging to Rτ .

Each vector (xi)i∈N(τ) ∈ G(τ) is called an imputation of coalition τ. Remind
(Vasil’ev, 2012), that G is said to be a regular game, if the sets G(e{i}) of im-
putations of singletons e{i}, i ∈ N, and the set of imputations G(eN ) of ”grand
coalition” eN are nonempty and closed. Following the standard game-theoretic ter-
minology, we say that fuzzy TU cooperative game G is comprehensive from below,
if for any τ ∈ σF it holds: x ∈ G(τ) and y ≤ x implies y ∈ G(τ).

To complete the section, we introduce one more characteristic of the fuzzy TU
game, which makes it possible to propose a proper analog of standard balanced
game. To this end we extend first the notion of balanced family to the case of fuzzy
coalitions.

Definition 2. A finite subset {τk}k∈K ⊆ σF is an F -balanced collection, if for
some balancing weights λk ≥ 0, k ∈ K, it holds:

∑
k∈K λkτ

k = eN .

Definition 3. A fuzzy NTU cooperative game G is said to be F -balanced game,
if any vector x = (x1, . . . , xn) belongs to G(eN ) whenever its restrictions xN(τk)

belong to the corresponding sets G(τk) for some F -balanced collection {τk}k∈K (as

usual, restriction of x = (x1, . . . , xn) to N(τk) is the vector xN(τk) ∈ RN(τk) with

the same components just as x for each i ∈ N(τk)).

3. Main result

We start with the definition of improvement in case of fuzzy NTU games.

Definition 4. We say that a fuzzy coalition τ ∈ σF can improve upon an impu-
tation x = (x1, . . . , xn) ∈ G(eN ), if there exists an imputation y ∈ G(τ) such that
yi > xi for each i ∈ N(τ).

An analog of the standard core for the fuzzy NTU cooperative game G, given below,
seems to be very close to the original (for more information, see (Aubin, 1993)).

Definition 5. The core C(G) of a fuzzy NTU cooperative game G is the set of
imputations x ∈ G(eN ) such that no coalition τ ∈ σF can improve upon.
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For any fuzzy NTU cooperative game G put xG = (xG
1 , . . . , x

G
n ) with

xG
i = sup {xi ∈ R | xi ∈ G(e{i})}, i ∈ N,

and denote by Ĝ(eN ) the set of individually rational imputations of ”grand coali-
tion” of the game G

Ĝ(eN ) := {x ∈ G(eN ) | x ≥ xG}.

The main result of the paper is the following extension of the famous Scarf
theorem to the case of fuzzy NTU cooperative games.

Theorem 1. For any regular, comprehensive from below, and F -balanced fuzzy
NTU cooperative game G with Ĝ(eN ) to be bounded from above, the core C(G)
is nonempty.

To prove Theorem 1 we apply an approach based on approximation of fuzzy NTU
games, similar to that employed by Scarf for the standard NTU games. Namely, a
key role in our approach belongs to fuzzy NTU finitely generated games. Results
obtained for these games are interesting in itself. Moreover, we apply them to get
more general facts, like Theorem 1. To describe finitely generated games remind
(Vasil’ev, 2012), that a fuzzy NTU game G is said to be F -finite, if G is a regular
game, and its efficiency set e(G) := {τ ∈ σF

∣∣ G(τ) 6= ∅} is finite.

Definition 6. A fuzzy NTU game is finitely generated, if G is F -finite, and for any
τ ∈ e(G) there exists a finite family of vectors uτ,k ∈ Rτ , k ∈ K(τ), τ ∈ e(G), such
that uτ,k ≥ xG

N(τ), τ ∈ e(G), k ∈ K(τ), and

G(τ) =
⋃

k∈K(τ)

{ω ∈ Rτ
∣∣ ω ≤ uτ,k}, τ ∈ e(G).

Certainly, in comparison with general case, finitely generated fuzzy NTU games
admit more simple conditions providing non-emptyness of the core.

Theorem 2. For any fuzzy NTU F -balanced and finitely generated game G, the
core C(G) is nonempty.

More details on the core of a fuzzy NTU games can be found in (Vasil’ev, 2012).

4. A fuzzy-core extension of Bondareva-Shapley theorem

As a corollary of Theorem 1 we propose an extension of the well-known Bondareva-
Shapley criterion for nonemptyness of the core (Bondareva, 1962; Shapley, 1967) to
the case of fuzzy TU cooperative games (fuzzy games with side payments in terms
of (Aubin, 1993)). As usual, for any x = (x1, . . . , xn) ∈ RN and S ⊆ N denote by
xS ∈ RS the restriction of x to S : (xS)i = xi, i ∈ S. Further, for any S, T ⊆ N
and x ∈ RS , y ∈ RT we use the notation x · y :=

∑
i∈S∩T xiyi (thus generalizing

the standard notation for inner product to the case S 6= T ). In the notations given
above we isolate a class of games under consideration.
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Definition 7. A fuzzy TU cooperative game with coalition function v : σF → R
is a set-valued map τ 7→ Gv(τ) that associates any fuzzy coalition τ ∈ σF with a
subset of its imputations, given by the formula

Gv(τ) = {x ∈ Rτ
∣∣ τ · x ≤ v(τ)}, τ ∈ σF .

Further, we identify any fuzzy TU cooperative game with its coalition function v.
Introduce an important characteristic of the fuzzy TU game v, which allows

to present a proper analog of standard balanced TU game. To this end, following
(Vasil’ev, 2012) we extend first the notion of balanced family to the case of fuzzy
coalitions.

Definition 8. A finite subset {τk}k∈K ⊆ σF is an F -balanced collection, if for
some numbers (balancing weights) λk ≥ 0, k ∈ K, it holds:

∑
k∈K λkτ

k = eN .

A fuzzy analog of classical balanced game looks as follows.

Definition 9. A fuzzy TU cooperative game v is said to be a V -balanced game, if

∑

k∈K

λkv(τ
k) ≤ v(eN )

for any balanced family {τk}k∈K with corresponding balancing weights {λk}k∈K .

Remark 1. Note, that for fuzzy TU games the following analog of classic original
holds: fuzzy cooperative game Gv is F -balanced iff v is V -balanced. By applying
this analog, Theorem 1, and a simple extension of the classic description of the
core of the standard TU game in terms of linear inequalities (given below), one can
obtain a useful criterion for the core C(v) of fuzzy TU cooperative game v to be
nonempty. Another approach that doesn’t exploit Theorem 1 is given below, in the
proof of Theorem 3.

We start with a simple description of the core C(v) of fuzzy TU game v, men-
tioned above.

Proposition 1. The core C(Gv) of fuzzy TU cooperative game, generated by char-
acteristic function v : σF → R, has the following representation

C(Gv) = { x ∈ RN | eN · x = v(eN ), τ · x ≥ v(τ), τ ∈ σF }. (1)

Proof of Proposition 1 follows directly from the more explicit definition of domina-
tion, given by conditions (C.1), (C.2) below; it is left for the readers. Before to turn
to the criterion itself we make several notes, useful in description of the core of fuzzy
cooperative game. First of all, we propose a more detailed definition of domination
in fuzzy TU games.

Definition 10. A fuzzy coalition τ dominates an imputation x ∈ Gv(eN ), if there
exists a vector y ∈ Rτ such that

(C.1) τ · y ≤ v(τ);
(C.2) yi > xi, i ∈ N(τ).
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In the sequel, we apply the following standard shortenings: any ”singleton” e{i} is
denoted by ei, respectively, the value v(e{i}) is denoted by vi. In the notations given
we introduce a set of ”individually rational ” imputations of the game v :

I(v) := {x ∈ RN
∣∣ eN · x = v(eN ), xi ≥ vi, i ∈ N}. (2)

By applying Proposition 1, duality theorem of linear programming and compactness
of the set I(v), we obtain a ”fuzzy analog” of the famous Bondareva-Shapley theo-
rem (Bondareva, 1962; Shapley, 1967) on the core of a standard cooperative game.
Note once more that in TU case we establish a criterion of non-emptyness (not
just sufficient conditions); repeat also that the proof given below doesn’t exploit
Theorem 1.

Theorem 3. The core C(Gv) of a fuzzy TU cooperative game Gv is nonempty if
and only if v is V -balanced function.

Proof. Let C(v) 6= ∅ for some fuzzy TU game v. To prove v is V -balanced we
introduce an auxiliary construction related to the representation of the core C(v),
given in Proposition 1. Namely, denote byΣF collection of all the F -balanced (finite)
families of fuzzy coalitions, and for any σ ∈ ΣF define

Cσ(v) := {x ∈ RN | eN · x = v(eN ), τ · x ≥ v(τ), τ ∈ σ}. (3)

Remind, that due to Proposition 1 we have

C(v) = {x ∈ RN | eN · x = v(eN ), τ · x ≥ v(τ), τ ∈ σF }.

From (1) and (2) it follows: C(v) ⊆ Cσ(v) for any σ ∈ ΣF . Therefore, non-emptyness
of C(v) yields:

Cσ(v) 6= ∅ for any σ ∈ ΣF . (4)

Let now σ = {τk}k∈K be an arbitrary F -balanced family, and µ = {µk}k∈K are
corresponding weights. To prove inequality

∑
k∈K µkv(τ

k) ≤ v(eN ), we consider the
following linear programming problem

eN · x → min

τk · x ≥ v(τk), k ∈ K. (Aσ)

Associated dual problem is as follows:

∑

k∈K

λkv(τ
k) → max

∑

k∈K

λkτ
k = eN , λk ≥ 0, k ∈ K. (A∗

σ)

It is clear, that the problems (Aσ) and (A∗
σ) have feasible solutions. Hence, due to

the duality theorem both problems have optimality solutions, and their optimality
values coincide. Designating this common value v∗, let us mention that v∗ ≤ v(eN )
(which follows immediately from the existence of the solution x of problem (Aσ)
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satisfying equality eN ·x = v(eN )). Hence, for the weights µ = {µk}k∈K (which con-
stitute a feasible solution of the problem (A∗

σ)) it hold
∑

k∈K µkv(τ
k) ≤ v∗ ≤ v(eN ).

Consequently, because of arbitrariness of F -balanced family σ, we get required: fuzzy
TU cooperative game with nonempty core is V -balanced.

Prove now that V -balancedness of fuzzy TU cooperative game v provides solv-
ability of the system

eN · x = v(eN ), τ · x ≥ v(τ), τ ∈ σF

(remind, that by Proposition 1 solutions of this system constitute the core C(v) of
the game v). Denote, as before, by σ0 ”the image of N” in σF : σ0 := {ei | i ∈ N},
and put

Σ̂F := {σ ⊆ σF | σ0 ⊆ σ, |σ| < ∞}.

It is clear that collection Σ̂F belongs to ΣF . Further, due to the V -balancedness of
v we have that the sets Cσ (defined by formula (3)) are nonempty and compact for

any σ ∈ Σ̂F . In fact, by F -balancedness of family σ0 and V -balancedness of game
v we get: the set of individually rational imputations I(v) is nonempty (because of
inequality

∑
i∈N vi ≤ v(eN )), closed and bounded (due to the inequalities vi ≤

xi ≤ v(eN ) −
∑

j∈N\i vj , i ∈ N, satisfied by any x ∈ I(v) ). Hence, each set

Cσ(v), σ ∈ Σ̂F , being a closed subset of I(v) is a compact set. Besides, taking

into account F -balancedness of σ belonging to Σ̂F we obtain: Cσ(v) is nonempty

for any σ ∈ ΣF . To check this assertion, fix an arbitrary system σ ∈ Σ̂F , and
consider corresponding dual pair of problems (Aσ) and (Aσ∗). Due to the definition

of Σ̂F and V -balancedness of v we have: there exists a feasible solution of the dual
problem (A∗

σ) and values of its objective function on the set of its feasible solutions
is bounded from above by the number v(eN ). But then, by duality theorem of
linear programming we have that there exists an optimal solution x∗ of the problem
(Aσ) such that eN · x∗ ≤ v(eN ). Consider a vector x̄ = x∗ + y such that y is an
arbitrary element from RN

+ , satisfying equality eN · y = v(eN )− v∗. It is clear, that
eN · x̄ = eN · x∗eN · y = v(eN ) and τ · x̄ = τ · x∗ + τ · y ≥ v(τ) for any τ ∈ σ.
Therefore. we obtain: x̄ belongs to Cσ(v).

To complete the proof we apply the following well-known fact: any family of
compact sets with the finite intersection property has nonempty intersection1. To
apply this result let us remind first that we have already proved that Cσ(v) is

nonempty compact set for any family σ ∈ Σ̂F . Therefore, by the intersection theo-
rem mentioned above, to complete the proof of our theorem it is enough to establish
the following properties of collection Ĉ = {Cσ(v)}σ∈Σ̂F

:

(c 1) Ĉ has finite intersection property;
(c 2)

⋂
σ∈Σ̂F

Cσ(v) = C(v).
Note, that property (c 1) follows from the fact that for any finite collection of the

families σk ∈ Σ̂F , k = 1, . . . ,m, it holds

m⋂

k=1

Cσk
(v) = Cσ̂(v),

1 Remind (Hildenbrand and Kirman, 1991), that a family {Aξ}ξ∈Ξ has finite intersection
property, if any its finite subfamily has nonempty intersection.
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where σ̂ = ∪m
k=1σk. Since, as we have already mentioned, V -balancedness of v

implies non-emptyness of all the sets Cσ(v), σ ∈ Σ̂F , by (4) we obtain that any

finite subcollection of collection Ĉ has nonempty intersection:
⋂m

k=1 Cσk
(v) 6= ∅ for

any finite collection of the families σk ∈ Σ̂F , k = 1, . . . ,m.
Thus, the collection Ĉ meets the requirement (c 1). Taking into account that

members of this collection are nonempty and compact, to conclude the proof we
check the property (c 2). In turn, it is enough to show that for any coalition τ ∈ σ\σ0

belongs to some family σ from Σ̂F . It is clear that to do so we can take simply
σ = σ0 ∪ {τ}. ⊓⊔

The non-emptyness criterion, given in Theorem 3 admits refinements in several
directions. To mention just one we apply well-known Helly intersection theorem
(Rockafellar, 1970) in order to diminish the number of coalitions needed to check
V -balancedness of a game v (cf. Proposition 1 above). In the sequel we apply a
notation

Σ̂2n
F := {σ ∈ Σ̂F

∣∣ |σ| = 2n}.

Theorem 4. Fuzzy TU cooperative game v has nonempty core C(v) iff for any

system {τk}2nk=1 ∈ Σ̂2n
F and corresponding system of balancing weights {λk}2nk=1 it

holds

2n∑

k=1

λkv(τ
k) ≤ v(eN ).

5. On S
∗-representation of fuzzy TU cooperative games

Denote by σ∗
F the set of so-called ”normed fuzzy coalitions”

σ∗
F = {τ ∈ σF |

∑

N

τi = 1}.

Associate with any fuzzy game v : σF → R its ”image”, given by the following
function on the subset of σF :

v∗(τ∗) := sup {v(tτ∗)/t
∣∣ t ∈ (0, 1/‖τ∗‖∞]}, τ∗ ∈ σ∗

F , (5)

with the domain of definition to be the simplex σ∗
F (one dimension less than for

σF ).

Definition 11. We say that function v∗ defined above is S∗-representation of the
fuzzy game v.

Remark 2. It is clear, that for any homogeneous game v its S∗-representation
coincides with restriction v to the simplex σF

∗: v∗ ≡ v|σ∗

F
. Remind, that fuzzy TU

game v is called homogeneous (of degree 1), if v(tτ) = tv(τ) for any t ≥ 0 such that
tτ belongs to σF .

Below,we pay strong attention to those fuzzy games that have nonempty cores.
We mention first some properties of these games in terms of their S∗-representation.



A Fuzzy-Core Extension of Scarf Theorem and Related Topics 307

Definition 12. A fuzzy TU game v is said to be S∗-regular, if its S∗-representation
v∗ satisfies the following requirements:

(S∗.1) v(τ∗) < ∞ for any τ∗ ∈ σ∗
F ,

(S∗.2) v∗(eN/n) ≤ v(eN )/n.

We show that S∗-regularity is a necessary condition for the non-emptyness of the
core.

Proposition 2. If a fuzzy TU cooperative game v has nonempty core, then v is
S∗-regular.

Proof. Let C(v) be nonempty, and at the same time we have v∗(τ∗) = ∞ for some
τ∗ ∈ σ∗

F . Fix an arbitrary x ∈ C(v) and show that this imputation is dominated by
coalition tτ∗ under t > 0 small enough. To do so put a := ‖x‖∞ = max {|xi|

∣∣ i ∈ N}
and choose t > 0 such that inequality

v(tτ∗)/t > a (6)

holds (it is clear that such t exists due to the definition of v∗ and supposition
v∗(τ∗) = ∞ given). Define now τ := tτ∗, b := v(τ)/t and show that the vector
y ∈ Rτ with yi = b, i ∈ N(τ), belongs to Gv(τ), and moreover, it dominates x via
coalition τ in the game v. Indeed, equalities y · tτ∗ = v(tτ∗)

∑
i∈N(tτ∗) τ

∗
i = v(τ),

following from the construction of y and τ, proves inclusion y ∈ Gv(τ). Further,
from inequality (6) it follows that for any i ∈ N(τ) it holds yi > v(τ)/t > a. Thus,
y belongs to Gv(tτ

∗) and, besides, yi > a ≥ xi for any i ∈ N(tτ∗). Hence, we prove
that x is dominated by coalition τ = tτ∗ (via imputation y), which contradicts to
the initial assumption x ∈ C(v). The contradiction obtained demonstrates property
(S∗1) for any v with C(v) 6= ∅.

To prove (S∗2) suppose, to the contrary, that v∗(e∗N) > v(eN )/n. Then, accord-
ing to the definition of v∗(e∗N ) we get: there exists t > 0 such that te∗N belongs to
σ∗
F and, moreover, by (5) we obtain

v(te∗N )/t > v(eN )/n.

Applying the last inequality we prove that the coalition τ := tτ∗ dominates each
imputation from Gv(eN ). Indeed, let x be any element from Gv(eN). Without loss
of generality, we may assume that x · eN = v(eN ). Choose number c such that x+ c̄
with c̄ = (c, . . . , c) meets the requirement

(x+ c̄) · te∗N = v(te∗N ). (7)

Remove parentheses in (7), and taking account equality x · eN = v(eN ) we get

v(te∗N ) = x · te∗N + c̄ · te∗N =
t

n
v(eN ) + tc̄ · e∗N .

Consequently, we obtain the following equalities for the vector c̄ :

c · e∗N =
[
v(te∗N )−

t

n
v(eN )

]
/t =

[
v(te∗N )/t− v(eN )/n

]
.



308 Valery A. Vasil’ev

Applying this equalities and inequality (6) to evaluate the sign of number c we get:
c = c̄ · e∗N = v(te∗N )/t− v(eN )/n > 0.

Hence, due to (7) we get: vector z := x+ c̄ belongs to Gv(te
∗
N ) and, by positivity

of c, satisfies inequalities zi = xi + c > xi, i ∈ N. Therefore, fuzzy coalition te∗N
dominates imputation x ∈ Gv(eN ). Since x was taken as an arbitrary element of
Gv(eN ), the latter conclusion means that the core of the game v is empty. But this
contradicts our assumption C(v) 6= . Hence, any TU fuzzy cooperative game with
nonempty core meets requirement (S∗2). ⊓⊔

Remark 3. It follows immediately from the very definition of function v∗ that
assumption (S∗.2) is valid whenever equality

v∗(e∗N ) = v(eN )/n

takes place.

To avoid misrepresentations, let us stress that in the sequel, symbol v∗ denotes
the game Gv∗ , defined on σ∗

F by the formula

Gv∗(τ) := {x ∈ Rτ
∣∣ τ · x ≤ v∗(τ)}, τ ∈ σ∗

F .

In accordance with the definitions, given above, we say that coalition τ ∈ σ∗
F im-

proves upon (dominates) an imputation x ∈ Gv∗(e∗N ), if there exists y ∈ Rτ such
that y · τ ≤ v(τ) and yi > xi for each i ∈ N(τ). An imputation x ∈ Gv∗(e∗N ) that is
not improved upon (dominated) by any coalition τ ∈ σ∗

F is called non-dominated.
As before, the set of all members of Gv∗(e∗N) that are non-dominated is said to
be the core of the game v∗. The core of the game v∗, defined on the simplex σ∗

F ,
we denote by C(v∗) (like in situations, when games are defined on the hypercube
[0, 1]N). To exclude ambiguity and to mark games, defined on σ∗

F , we apply asterisk,
as before (if necessary).

Similar to games defined on the hypercube, it is quite easy to get the following
analog of Proposition 1, providing a useful representation of the core C(v∗).

Proposition 3. For any fuzzy TU cooperative game v∗ : σ∗
F → R it holds

C(v∗) = {x ∈ RN
∣∣ e∗N · x = v∗(e∗N ), τ∗ · x ≥ v∗(τ∗), τ∗ ∈ σ∗

F }.

By applying this representation and argumentation similar to that used in the proof
of Theorem 3, we get the following analog for games defined on the simplex σ∗

F .

Theorem 5. The core C(v∗) of a game v∗ : σ∗
F → R is nonempty if and only if for

any representation of the center of gravity e∗N = eN/n of simplex σ∗
F as a convex

combination e∗N =
∑

k∈K λ∗
kτ

k
∗ of some elements τk∗ , k ∈ K, of the simplex σ∗

F it
holds

v∗(e∗N ) ≥
∑

k∈K

λ∗
kv

∗(τk∗ ).

Proof. Due to Proposition 3 we can apply the same argumentation, as in the proof
of Theorem 3. Hence, we restrict ourselves to consideration of the non-emptyness
criterion for the set {x ∈ RN

∣∣ e∗N ·x = v∗(e∗N ), τ∗ ·x ≥ v(τ∗), τ∗ ∈ σ∗
F }, and specific
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character of the definition domain of the game v∗. Namely, doing the same way, as
in proof of Theorem 3 we get: the core C(v∗) of fuzzy TU game v∗ : σ∗

F → R is
nonempty whenever

∑
kıK λ∗

kv
∗(τk∗ ) ≤ v∗(e∗N ) for any collection {τk∗ }k∈K ⊆ σ∗

F with
corresponding nonnegative weights {λ∗

k}k∈K , satisfying equality
∑

k∈K λ∗
kτ

k
∗ = e∗N .

By summing up the components on the left and right hand-sides of this last vector
equality we obtain:

∑
k∈K λ∗

k

∑
i∈N (τk∗ )i = 1. Taking account that all the points τk∗

belong to the standard simplex, we get equality
∑

k∈K λk
∗ = 1, which completes the

proof of Theorem 5. ⊓⊔

Definition 13. A fuzzy TU cooperative game v is said to be a concave w.r.t.
coalition e∗N , if for any convex representation eN/n =

∑
k∈K λ∗

kτ
k
∗ (with τk∗ ∈ σ∗

F

and λ∗
k ∈ R+, k ∈ K, such that

∑
k∈K λ∗

k = 1) it holds

∑

k∈K

λ∗
kv

∗(τk∗ ) ≤ v∗(eN/n). (8)

It is quite easy to prove by induction that a game v∗ : σ∗
F → R. is a concave function

w.r.t. the center of gravity e∗N whenever the inequalities (8) take place just for two
summands: |K| = 2. Hence, we get the following simplified core-non-emptyness
criterion for the concave w.r.t. the center of gravity e∗N games v∗.

Corollary 1. If v∗(e∗N ) ≥ λ∗
1v

∗(τ1∗ )+λ∗
2v

∗(τ2∗ ) for any fuzzy coalitions τ1∗ , τ
2
∗ ∈ σ∗

F

and numbers λ∗
1, λ

∗
2 ∈ R+ such that λ∗

1 + λ∗
2 = 1 and e∗N = λ∗

1τ
1
∗ + λ∗

2τ
2
∗ , then the

core C(v∗) of TU game v∗ : σ∗
F → R is nonempty.

Remark 4. In case v is homogeneous (v(tτ) = tv(τ) for any τ, tτ ∈ σF ) we can
replace v∗ by initial game v in inequality (8).

Theorem 6. For any fuzzy TU game v and its S∗-representation v∗ it holds

C(v) = C(v∗).

Proof. First prove insertion C(v) ⊆ C(v∗). Let x be an element of the core C(v).
Fix some τ∗ ∈ σ∗

F and prove that x · τ∗ ≥ v∗(τ∗). To this end let us mention that
due to the inclusion x ∈ C(v) and Proposition 1 we have x · tτ∗ ≥ v(tτ∗) for any
t > 0 such that tτ∗ ∈ σF . Hence, x · τ∗ ≥ v(tτ∗)/t for any t ∈

(
0, 1/‖τ∗‖∞

]
and,

consequently, it holds

x · τ∗ ≥ sup {v(tτ∗)/t
∣∣ t ∈

(
0, 1/‖τ∗‖∞

]
} = v∗(τ∗).

Hence, due to Proposition 3 to complete the proof of inclusion x ∈ C(v∗) we have
to state that x · e∗N = v∗(e∗N ). Since it has already been proved that x · e∗N ≥ v∗(e∗N )
we just check the opposite inequality x · e∗N ≤ v∗(e∗N ). To do so we just mention
that due to the assumption x ∈ C(v) and Proposition 1 we have

x · eN = v(eN ). (9)

Further, by our assumption the core C(v) is nonempty. Hence, Proposition 2 and
Remark 3 yield equality v∗(e∗N ) = v(eN )/n. Combining this last equality and rela-
tion (9), we get required: x · e∗N = v∗(e∗N ).

To prove the opposite inclusion C(v∗) ⊆ C(v), consider an arbitrary imputation
x ∈ C(v∗), and fix some τ ∈ σF . To prove the inequality x · τ ≥ v(τ) we note first
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that by definition of σF and σ∗
F there exist number t > 0 and coalition τ∗ ∈ σ∗

F such
that τ = tτ∗. Further, inclusion x ∈ C(v∗) and definition of v∗ imply inequalities
x · τ∗ ≥ v∗(τ∗) ≥ v(tτ∗)/t. Hence, we get: x · τ∗ ≥ v(tτ∗)/t. After multiplying this
last inequality by t we obtain required: x·τ ≥ v(τ). As to the equality x·eN = v(eN ),
it follows immediately from the equality e∗N · x = v∗(e∗N ) and Remark 3. ⊓⊔

Corollary 2. The core C(v) of a fuzzy TU cooperative game v is nonempty if and
only if the core C(v∗) of its S∗-representation v∗ is nonempty.

6. Applications to some allocation problems

Below some applications of Theorems 1 and 3 to the cost and profit allocation
problems in mathematical economics and game theory are given. We derive several
fuzzy core allocation existence conditions for the well-known pure exchange model
and airport game. The most surprising result of the considerations proposed is as
follows: sufficient conditions for the non-emptyness of the fuzzy core are either the
same or very close to the classical conditions for the standard core.

6.1. Fuzzy core of a pure exchange model

We show in this subsection that an application of Theorem1 to the fuzzy domination
in a pure exchange model yields quite unexpected result: rather weak standard
conditions guaranteeing non-emptyness of the classical core of the economy provides
non-emptyness of its fuzzy core, as well (even though the fuzzy core, normally,
constitute a very ”small” subset of standard core of the economy under consideration
(Ekeland, 1979)).

Remind (Ekeland, 1979; Hildenbrand and Kirman, 1991), that pure exchange
model E is given by the following data

E = 〈N, {Xi, ui, w
i}i∈N 〉,

where N = {1, . . . , n} is a set of economic agents (participants), and Xi ⊆ Rl, wi ∈
Rl, ui : Xi → R are their consumption sets, initial endowments and utility func-
tions, respectively. An integer l ≥ 1 denotes the number of commodities involved in
exchange.

Consider fuzzy NTU cooperative game GE in strategic form, associated with the
exchange model E . According to (Aubin, 1993; Ekeland, 1979), coalitional strategies
of GE (feasible τ -allocations of E) are given by the formula

XE(τ) = {(xi)i∈N(τ) ∈
∏

i∈N(τ)

Xi

∣∣ ∑

i∈N(τ)

τix
i =

∑

i∈N(τ)

τiw
i}, τ ∈ σF .

In particular, feasible eN -allocations compose the set of all available distributions
of the total endowment

∑
i∈N wi of the economy E :

XE(eN ) =
{
(xi)i∈N ∈

∏

i∈N

Xi

∣∣ ∑

i∈N

xi =
∑

i∈N

wi
}
,

and feasible e{i}-allocations constitute singletons {wi} in case wi belongs to Xi,
otherwise XE(e{i}) is empty.

Recall standard definition of fuzzy blocking (domination via fuzzy coalitions)
used in mathematical economics (Aubin, 1993; Ekeland, 1979), and formulate clas-
sical definition of fuzzy core in pure exchange economy of type E .
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Definition 14. A coalition τ ∈ σF blocks an allocation x = (xi)i∈N ∈ XE(eN ), if
there exists

x̃ = (x̃i)i∈N(τ) ∈ XE(τ)

such that ui(x̃
i) > ui(x

i) for any i ∈ N(τ). Collection of allocations from XE(eN )
that are not blocked by any coalition from σF is denoted by CF (E) and is said to
be the fuzzy core of the model E .

Describe now a fuzzy NTU cooperative game GE
F , associated with the pure

exchange model E in order to simplify applications of Theorem 1 to the investigation
of the fuzzy core non-emptyness problem, relating to the economy E .

Definition 15. Fuzzy NTU cooperative game GE
F associated with the pure ex-

change model E is said to be NTU cooperative game defined by the formula

GE
F (τ) = {ω ∈ Rτ

∣∣ ∃(xi)i∈N(τ) ∈ XE(τ)[ωi ≤ ui(x
i), i ∈ N(τ)]}, τ ∈ σF .

We omit a straightforward proof of the following technical proposition.

Proposition 4. For any pure exchange model E the core C(GF
E ) is nonempty if

and only if the fuzzy core CF (E) is nonempty.

Rather natural and simple conditions providing that the game GF
E is F -balanced

are as follows.

Proposition 5. Suppose that consumption sets Xi of the model E are convex and
contain corresponding initial endowments wi, and its utility functions ui are quasi-
concave. Then the game GF

E is F -balanced.

Proof. Let {τk}k∈K be some F -balanced collection of fuzzy coalitions, and {λk}k∈K

are their weights. Fix an arbitrary vector ω ∈ RN satisfying relations: ωNk
∈ GF

E (τ
k)

for each k ∈ K, where Nk = N(τk), k ∈ K. Due to definition of correspondence
GF

E , for any k ∈ K there exists coalitional allocation (xk,i)i∈Nk
∈ X(τk) such that

ωi ≤ ui(x
k,i), i ∈ Nk. (10)

Put µki = λkτ
k
i , i ∈ Nk, k ∈ K, and define allocation x̄ = (x̄i)i∈N by the formula

x̄i =
∑

k∈Ki

µkix
k,i, i ∈ N, (11)

where, as before, Ki = {k ∈ K | i ∈ Nk}, i ∈ N. Taking into account equality∑
k∈K λkτ

k = eN and definition of the numbers µki we get: µki ≥ 0 for each k ∈ K
and i ∈ N and, besides,

∑
k∈Ki

µki = 1 for each i ∈ N. This relations together

with convexity of Xi, i ∈ N, and formula (11) imply inclusions: x̄i ∈ Xi for each
i ∈ N. Applying once more the fact that the bundles x̄i are convex combinations
of the elements of corresponding consumption sets Xi, due to the quasi-concavity
of utility functions ui, from (10) it follows: ui(x̄

i) ≥ ωi for any i ∈ N. To complete
the proof of inclusion ω ∈ GF

E (N) it remains to check that allocation x̄ = (x̄i)i∈N

satisfies equality
∑

i∈N x̄i =
∑

i∈N wi. Carrying out elementary transformations
needed, from (11) we get (for the left hand-side of the equality checked):

∑

i∈N

x̄i =
∑

i∈N

∑

k∈Ki

µkix
k,i =

∑

k∈K

∑

i∈Nk

µkix
k,i =

∑

k∈K

λk

( ∑

i∈Nk

τki x
k,i

)
.



312 Valery A. Vasil’ev

But the latter sum, due to the equality
∑

i∈Nk
τki x

k,i =
∑

i∈Nk
τki w

i takes the

form
∑

k∈K λk(
∑

i∈Nk
τki w

i). Change places in the summation formula for the last

expression we obtain required:
∑

i∈N (
∑

k∈Ki
µki)w

i =
∑

i∈N wi. ⊓⊔

Passing through the standard argumentation (see, e.g., (Aubin, 1993,
Ekeland, 1979), we present rather simple assumptions providing that all the
other requirements of Theorem 1 (besides the F -balancedness) are valid for the
game GE

F .

Proposition 6. Suppose that consumption sets Xi, i ∈ N, of the exchange model
E are closed, bounded from below and contain corresponding initial endowments
wi, /, i ∈ N ; and utility functions ui, i ∈ N, are continuous on corresponding con-
sumption sets. Then the sets GF

E (τ) are nonempty, close and comprehensive from

below for any fuzzy coalition τ ∈ σF , and, besides, the set ĜF
E (eN ) is nonempty and

bounded from above.

By applying Theorem 1 and Propositions 5 and 6, we conclude that under the
same assumptions that provide non-emptyness of the standard core in the pure ex-
change model E we guarantee realizability of so considerably more subtle optimality
principle as fuzzy core CF (E).

Theorem 7. Suppose initial endowments wi belong to the corresponding consump-
tion sets Xi for any i ∈ N and, besides, consumption sets Xi, i ∈ N, are convex,
closed and bounded from below, utility functions ui, i ∈ N, are continuous and qua-
siconcave. Then fuzzy core CF (E) of pure exchange model E is nonempty.

6.2. Non-dominated cost allocations of airport game

Remind that in terms of (Peleg and Sudhölter, 2003), a cost allocation problem is an
ordinary game (N, c), where c is the cost function c : 2N → R, representing the least
cost of serving the members of a standard coalition S by the most efficient means.
Hence, to solve the cost allocation problem we are to find some vector x ∈ RN

such that eN · x = c(N), eS · x ≤ c(S), S ∈ 2N (recall, that 2N denotes the family
of all the nonempty subsets of N). To sharpen requirements to the solution of our
problem, we may extend function c in appropriate way from 2N to the hypercube
[0, 1]N and consider an analog of the standard core we deal with earlier:

D(dc) = {x ∈ RN
∣∣ eN · x = dc(N), τ · x ≤ dc(τ), τ ∈ σF }, (12)

where dc(eS) = c(S) for any S ∈ 2N . It can easily be checked that Theorem 3 implies
the following non-emptyness criterion for D(dc) : D(dc) is nonempty whenever dc is
D-balanced. Here, we mean dc is D-balanced, if for any F -balanced family {τk}k∈K

and corresponding family of balancing weights {λk}k∈K ⊆ R+ it holds

∑

k∈K

λkdc(τ
k) ≥ dc(eN ).

To give an example of a cost allocation problem with natural and nontriv-
ial extension of cost function consider a slight modification of airport game from
(Peleg and Sudhölter, 2003). Suppose that we have an airport with one runway to
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be constructed, and that there are n different aircrafts characterized by the posi-
tive numbers ci, i = 1, . . . , n, being the costs of building a runway to accommodate
the aircraft i ∈ N = {1, . . . , n}. The cost function c representing the least cost of
serving the members of coalition S ∈ 2N is given by

c(S) = max {ci
∣∣ i ∈ S}, and c(∅) = 0.

Consider an extension dc of airport game c to the set σF , defined by the formula

dc(τ) = max {τici
∣∣ i ∈ N}, τ = (τ1, . . . , τn) ∈ σF . (13)

Proposition 7. Function dc, given by the formula (13) is D-balanced.

Proof. Let {τk}k∈K ⊆ σF and {λk}k∈K ⊆ R+ be an F -balanced family of fuzzy
coalitions and corresponding balancing weights, respectively. Denote by i0 ∈ N the
player with maximal cost: ci0 = max {ci | i ∈ N}. By definition of function dc we
have

dc(τ
k) ≥ τki0ci0 , k ∈ K. (14)

Multiplying each inequality in (14) by corresponding balancing weight λk, k ∈ K,
and summing up the inequalities obtained we get

∑

k∈K

λkdc(τ
k) ≥ (

∑

k∈K

λkτ
k
i0
)ci0 .

From this inequality (taking into account equations
∑

k∈K λkτki = 1, i ∈ N)we

obtain required:
∑

k∈K λkdc(τ
k) ≥ ci0 = dc(eN ). ⊓⊔

Corollary 3. For any airport game (N, c) its fuzzy D-core, given by the formula
(12) is nonempty.

Remark 5. Airport games give a number of examples of sharp diminishing of D0-
core under the transition to the fuzzy D-core. Recall that the D0-core is given by
the formula

D0(c) := {x ∈ RN
∣∣ eN · x = c(N), eS · x ≤ c(S), S ∈ 2N},

To complete this subsection, we present rather simple 3-person airport game with
c1 = 2, c2 = 3, c3 = 5, which has the cores discussed differing from each other as
strongly, as possible

D0(c) = conv {(2, 1, 2), (2, 0, 3), (0, 3, 2), (0, 0, 5)},

D(dc) = {(0, 0, 5)}.

7. Conclusion

In conclusion, we consider an accessibility problem for the fuzzy TU cooper-
ative games. Accessibility under discussion is similar to that investigated in
(Vasil’ev, 1987) for the classical cooperative games (for more details, concerning
the classical case, see (Vasil’ev, 2006)). A natural analog of the classical domination
for the fuzzy coalitions is given by definition below.
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Definition 16. We say that an imputation y ∈ I(v) dominates an imputation
x ∈ I(v), if there exists a coalition σ ∈ σF such that

1) xi < yi, i ∈ N(τ), and 2) τ · y ≤ v(τ).

Domination relation, defined by conditions 1), 2) we denote by αF
F :

x αF
v y ⇔ ∃τ ∈ σF [(xi < yi, i ∈ N(τ)) & (τ · y ≤ v(τ))], x, y ∈ I(v).

Similar to the definition, given in (Vasil’ev, 1987), we propose the following notion.

Definition 17. A sequence {xr}∞r=0 ⊆ I(v) of imputations of a fuzzy TU game v
is said to be αF

v -monotone, if xr αF
v xr+1 for any r ≥ 0.

Accessibility Problem (discrete version). Suppose, the core C(v) of a fuzzy
TU cooperative game v is nonempty, and x is an arbitrary imputation outside the
core (x ∈ I(v) \ C(v)). Does there exist any αF

v -monotone convergent sequence of
imputations {xr}∞r=0 ⊆ I(v) such that x0 = x, and limr→∞ xr belongs to the core
C(v)?

We propose also a continuous version of the αF
v -monotone sequence in the fol-

lowing way.

Definition 18. We say that a trajectory x : T → I(v) with T = [0, 1] is an αF
v -

monotone, if there exists a function δ : T → R+ \ {0} such that x(t′) αF
v x(t) for

any t, t′ ∈ T with t′ < t, t− t′ < δ(t).

Accessibility Problem (continuous version). Suppose, the core C(v) of a
fuzzy TU cooperative game v is nonempty, and x0 ∈ I(v) is an arbitrary imputation
that doesn’t belong to the core C(v). Whether there exist an αF

v -monotone conver-
gent trajectory x : T → I(v) with x(0) = x0 and limt→1 x(t) belonging to the core
C(v)?
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