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Abstract In the article a complete proof of decomposition theorem is given.
This theorem concerns the so called canonical extension of the order rela-
tion on the set of probabilistic measures. Here we study a structure for an
extension of the order relation given on some set A on the generated vector
space R

A. Corresponding description of the extension with help of stochas-
tic matrices is found (Theorem 2). Decomposition theorem reveals the most
significant properties of the canonical extension of orders. In particular the
consequences of the theorem are two important statements:
1. The coincidence of the canonical extension of any order with its convex
hull and
2. Truth of Choquet condition for the canonical extension (see the corollary
1 and the corollary 2 in the section 3.1).
The complete proof of decomposition theorem is quite complicated. As the
first step for the proof of this theorem we prove an assertion of existence of
optimal surplus vector (Theorem 1). This theorem having game-theoretical
interpretation also can be formulated in economic terms (Remark 1). A
geometric interpretation of decomposition theorem is given (example 1).

Keywords: extension of order on the set of probabilistic measures, extension
of order on the generated vector space, decomposition theorem, stochastic
matrix.

1. Introduction

In our previous works examined some mathematical models for decision making
in which the goal structure by partial order relations is given. Examples of such
models are games with ordered outcomes in the normal form; games on graphs
with ordered final positions or ordered plays; games against nature with ordered
outcomes; many-criterion optimization models with partial ordered set of criteria.
Since such models have several chance mechanisms (mixed strategies in games in
the normal form; chance moves in games on graphs; probability distributions on
the set of states in games against nature etc.) then to evaluate chosen strategies,
we need to construct for given order relation its extension to the set of probability
measures. In our works we have used so called the canonical extension of order to the
set of probability measures which was introduced by the author (see Rozen, 1976).
The canonical extension is based on the fact that any order relation ω on a set A is
approximated by the set C (ω) consisting of all isotonic functions from the ordered
set 〈A,ω〉 into R, that is, the following equivalence holds:

a1
ω

≤ a2 ⇔ (∀f ∈ C (ω)) f (a1) ≤ f (a2) . (1)

The canonical extension ω̃ of the order ω on the set of probabilistic measures
can be given by the formula similar to (1):
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µ1

ω̃

≤ µ2 ⇔ (∀f ∈ C (ω)) f̄ (µ1) ≤ f̄ (µ2) . (2)

Remark that in (2) µ1, µ2 are arbitrary probabilistic measures and f̄ is the usual
extension of the function to the set of probabilistic measures, i.e. f̄ (µ) = (f, µ) (the
right part is the standard scalar product). We use the construction of canonical
extension of an order on the set of probabilistic measures to prove an existence of
equilibrium points and also for description of Nash equilibrium points in games with
ordered outcomes (see Rozen, 2010, Rozen, 2011).

In this article, we study the so-called decomposition theorem which stands a
structure for an extension of order relation given on some set A on vector space
R

A. Corresponding description of this extension with help of stochastic matrices is
found.

Consider an arbitrary n-element set A = {a1, . . . , an} and some order relation
ω on A. We denote by R

A the set of all n-component vectors x =
(

x1, . . . , xn
)

whose components state in 1–1 correspondence with elements of the set A. The set
R

A forms a vector space under so-component operation of addition of vectors and
multiplication of vectors on real numbers. Put for any vector x ∈ R

A and any subset
B ⊆ A

x (B)
df
=
∑

ak∈B

xk.

We denote by C (ω) the set of all isotonic function ϕ from the ordered set 〈A,ω〉
into R and by C+ (ω) the set of all isotonic function ϕ from ordered set 〈A,ω〉 into
R+.

Then we define binary relations ω̄ and ω̄+ on R
A in the following manner:

x
ω̄

≤ y ⇔ (∀ϕ ∈ C (ω)) (ϕ, x) ≤ (ϕ, y) , (3)

x
ω̄+

≤ y ⇔ (∀ϕ ∈ C+ (ω)) (ϕ, x) ≤ (ϕ, y) . (4)

where x, y ∈ R
A and ϕ (x) =

n
∑

i=1

ϕ (ai)x
i.

The relation ω̄ is called the canonical extension of order ω and ω̄+ the positive
canonical extension of order ω on vector space R

A.
We now indicate some properties of extensions ω̄ and ω̄+ (for the proof see

Rozen, 2014).
1.Relations ω̄ and ω̄+ are extensions of the order ω on vector space RA (i.e. ω̄ and

ω̄+ are closed conic orders on R
A, whose restrictions on A coincide with ω). Denote

by K (ω̄) and K (ω̄+) positive cones of these orders respectively. By definition an
arbitrary vector x ∈ R

A belongs to K (ω̄+) if and only if (∀ϕ ∈ C+ (ω)) (ϕ, x) ≥ 0
and belongs to K (ω̄) if and only if (∀ϕ ∈ C (ω)) (ϕ, x) ≥ 0 holds.

2. The relations ω̄ and ω̄+ are convex ones. Recall that the convexity of an
arbitrary relation ρ on vector space R

A means that the conditions

(x1, y1) ∈ ρ, (x2, y2) ∈ ρ, α1, α2 ≥ 0, α1 + α2 = 1

imply
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(α1x1 + α2x2, α1y1 + α2y2) ∈ ρ.

3. The formulas (3) and (4) are not effective since the sets C (ω) and C+ (ω) are
infinite even for finite A. An effective method for definition of these extensions are
given in the following. The canonic extension ω̄+ can be presented by the equivalence

x
ω̄+

≤ y ⇔ (∀B ∈ M (ω))x (B) ≤ y (B) , (5)

and the canonic extension ω̄ by the equivalence

x
ω̄

≤ y ⇔ (∀B ∈ M (ω))x (B) ≤ y (B) , x (A) = y (A) , (6)

where x, y ∈ R
A and M (ω) is the set of all majorantly stable subsets in ordered

set 〈A,ω〉 (recall that subset B ⊆ A is called majorantly stable if conditions a ∈

B, a′
ω̄

≥ a imply a′ ∈ B).
4. Positive conesK (ω̄+) andK (ω̄) of orders ω̄+ and ω̄ can be effective presented

by the following:

K (ω̄+) =
{

x ∈ R
A : (∀B ∈ M (ω))x (B) ≥ 0

}

, (7)

K (ω̄) =
{

x ∈ R
A : (∀B ∈ M (ω))x (B) ≥ 0, x (A) = 0

}

. (8)

2. An optimal surplus vector

2.1. Existence of optimal surplus vector

Consider an arbitrary n-element set A = {a1, . . . , an} and some order relation ω on
A.

Definition 1. A support for vector x ∈ R
A is called a majorant stable subset

B∗ ⊆ A such that for any majorantly subset B ⊇ B∗ the condition x (B) ≥ x (A)
holds.

Remark that subset B∗ = A is the trivial support for any vector x ∈ R
A. If all

components of vector x ∈ R
A are positive then it has the trivial support only. But

for vector with negative or null components can be non-trivial support.

Definition 2. We say that a vector of RA is a central one if the sum of its compo-
nents is equal to zero.

Theorem 1 (existence of optimal surplus vector). Consider n-elements set
A = {a1, . . . , an} and an order relation ω on A. Assume x =

(

x1, . . . , xn
)

∈ K (ω̄+).

Then there exists a vector v =
(

v1, . . . , vn
)

∈ R
A
+ such that the difference y = x− v

is a central one and y ∈ K (ω̄+). Moreover, we can choose vector v such that the
following additional conditions satisfy:

(a) 0 ≤ vi ≤ xi for all i = 1, . . . , n where xi ≥ 0;
(b) vi = 0 for all i = 1, . . . , n where xi < 0;
(c) Let B∗ be a support of vector x. Then vi = 0 for all i = 1, . . . , n where

ai /∈ B∗.
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Any vector v satisfying indicated in theorem 1 conditions is called an optimal
surplus vector for vector x ∈ K (ω̄+).

Proof (of theorem 1). Put δ = x (A) =
∑

ai∈A

xi. Since (∀ϕ ∈ C+ (ω)) (ϕ, x) ≥ 0 then

fixing ϕ ≡ 1, we have δ ≥ 0. In the case δ = 0, vector x is a central one hence
the statement of theorem 1 is evident. Further we consider only δ > 0. Fix some
support B∗ of vector x. Put I+B∗ =

{

i = 1, . . . , n : xi > 0, ai ∈ B∗
}

. Consider the set

D of all vectors v =
(

v1, . . . , vn
)

∈ R
A
+ satisfying the conditions:























0 ≤ vi ≤ xi
(

i ∈ I+B∗

)

,

vi = 0
(

i ∈ I+B∗

)

,
n
∑

i=1

vi = δ.

(9)

Using the definition of support, we have
∑

i∈I+

B∗

xi ≥
∑

ai∈B∗

xi ≥ δ hence D 6= ∅.

Any vector v ∈ D is called a surplus vector for vector x with support B∗. Remark
that for v ∈ D, the vector y = x− v is a central one since y (A) = x (A) − v (A) =
δ − δ = 0. Hence a vector v∗ ∈ R

A is an optimal surplus vector if and only if
v∗ ∈ D and (x− v∗) ∈ K (ω̄+). To prove the existence a required vector v∗ put
fv (B) =

∑

ai∈B

(

xi − vi
)

for arbitrary v ∈ D and B ∈ M (ω). Consider for arbitrary

v ∈ D the function g (v) = min
B∈M(ω)

fv (B). Since the function g (v) is continuous one

and defined on compact set it has the greatest value on D.

Lemma 1. Let v∗ ∈ D be the vector which delivers for function g (v) the greatest
value on D.Then g (v∗) ≥ 0.

Let us show that indicated vector v∗ is an optimal surplus vector for vector
x with support B∗. Indeed, it is evident that the vector v∗ is a surplus vector.
To check its optimality we need to prove the inclusion (x− v∗) ∈ K (ω̄+). Using
lemma 1 we obtain min

B∈M(ω)
fv∗ (B) = g (v∗) ≥ 0 hence for any majorantly stable

subset B ∈ M (ω) the inequality fv∗ (B) ≥ 0 holds i.e.
∑

ai∈B

(

xi − vi
∗

)

≥ 0. Last

inequality in according with (6) means (x− v∗) ∈ K (ω̄+) which was to be proved.
⊓⊔

2.2. Game-theoretical interpretation of optimal surplus vector

It follows from the proof of theorem 1 that an optimal surplus vector is a vector
which delivers an external extremum for max

v∈D
min

B∈M(ω)
fv (B). Hence the problem

for finding of optimal surplus vector have game-theoretical interpretation. Consider
the following antagonistic game in which the set of strategies of player 1 is the
set D consisting of all surplus vectors, the set of strategies of player 2 is the set
M (ω) of all majorantly stable subsets of ordered set 〈A,ω〉 and payoff function is
defined above function fv (B) v ∈ D,B ∈ M (ω). For any B ∈ M (ω) there exists
max
v∈D

fv (B) (since fv (B) considered as a function of v is defined on compact set

D and it is continuous one). In our case the set M (ω) is finite hence there exists
min

B∈M(ω)
max
v∈D

fv (B). We obtain:
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min
B∈M(ω)

max
v∈D

fv (B) ≤ max
v∈D

fv (A) = max
v∈D

∑

ai∈A

(

xi − vi
)

= max
v∈D

n
∑

i=1

(

xi − vi
)

=

= max
v∈D

(

n
∑

i=1

xi −
n
∑

i=1

vi

)

= max
v∈D

(δ − δ) = 0.

(10)

It is shown in the proof of theorem 1 that

max
v∈D

min
B∈M(ω)

fv (B) = max
v∈D

g (v) = g (v∗) ≥ 0. (11)

It follows from (10) and (11) the equalities

max
v∈D

min
B∈M(ω)

fv (B) = min
B∈M(ω)

max
v∈D

fv (B) = 0. (12)

Therefore indicated antagonistic game has a solution in pure strategies and the
value of the game is equal to zero. Moreover any optimal surplus vector is an optimal
pure strategy of the player 1 in this game.

Remark 1. Theorem 1 which concerns of optimal surplus vector admits the fol-
lowing economic interpretation. Consider n economic products A = {1, . . . , n} the
set of which is partially ordered under its utility by order relation ω for some per-
son. We consider components of vector x ∈ R

A as ”asset” or as ”liability” for the
person depending on the sign its component (xi > 0 means that the person can let
for sale the corresponding quantity of i-th product which considered as his ”asset”
and xi < 0 means that the person need to buy

∣

∣xi
∣

∣ units of i-th product which
considered as his ”liability”). Any vector ϕ ∈ C+ (ω) can be interpreted here as a
vector of prices (remark that the price of any product must be non negative and the
isotonic condition means that a product with more utility has a higher price). Then
the condition x ∈ K (ω̄+) means in this interpretation that for vector x the total
value of the ”asset” exceeds the total value of ”liabilities”, i.e. that for vector x no
deficit at any price agreed with utilities. In such interpretation, theorem th1 asserts
that for any vector x ∈ K (ω̄+) there exists the so-called ”vector of excess” v such
that its extraction leads to a total equality of ”assets” and ”liabilities” and more-
over the resulting vector x− v has not the deficit also. In addition, the excess shall
be withdrawn only from the ”asset” and without transfer of ”asset” into ”liability”
(see conditions (a) and (b)). Finally the condition (c) means that it is possible ”ex-
traction of excess” from the products which are contained in the support of vector
x only.

3. Decomposition Theorem

3.1. Representation of canonic extension of order with a decomposition
matrix

We introduce first some auxiliary concepts. Consider a finite set A = {a1, . . . , an}
and some order relation ω on A. The corresponding ordered set is denoted briefly
by 〈A,ω〉.
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Definition 3. Probabilistic vector on A is called a vector µ =
(

µ1, . . . , µn
)

∈ R
A

with conditions: µi ≥ 0 (i = 1, . . . , n),
n
∑

i=1

µi = 1. The set of all probabilis-

tic vectors on A we denote by S (A). Spectrum of vector µ =
(

µ1, . . . , µn
)

is

Sp µ =
{

i = 1, . . . , n : µi > 0
}

.

Remark 2. Any probabilistic vector on A can be considered as a probabilistic
measure on the set A. Particularly, a vector for which one component is equal to 1 an
others components equal to 0, is a degenerate probabilistic measure concentrated at
the corresponding point. The set S (A) is a simplex whose vertices are all degenerate
probabilistic vectors.

Remark 3. Introduced above two canonic extensions of order ω on the vector space
R

A are coincides on the simplex S (A) (see (5) and (6)).

Definition 4. A decomposition matrix for ordered set 〈A,ω〉 is called real non-
negative matrix ∆ = ‖dji‖ with format n× n satisfying the following conditions:

(1) The sum of elements of any row of matrix ∆ is equal to 1 (i.e. the matrix ∆
is a stochastic one):

∑n

j=1 d
j
i = 1 (for all i = 1, . . . , n);

(2) The ratio dji 6= 0 implies ai
ω

≤ aj.

Remark that in the decomposition matrix ∆ = ‖dji‖ the lower index indicates
the row number and the upper index the column number.

Theorem 2 (decomposition theorem). Consider n-element ordered set 〈A,ω〉
and fix µ ∈ S (A). A vector ν ∈ S (A) is a majorant for vector µ under the canonic
extension ω̄ if and only if it can be presented in the form: ν = µ∆ where ∆ is a
decomposition matrix for the ordered set 〈A,ω〉.

Proof (of theorem 2). Necessity. Suppose ν
ω̃

≥ µ. We need to prove the existence of
decomposition matrix ∆ for ordered set 〈A,ω〉 such that ν = µ∆. The proof is by
induction under the number of elements of spectrum of the probabilistic vector µ.

The base of induction. Assume ν
ω̃

≥ µ where µ is a degenerate probabilistic
measure concentrated at one point ai ∈ A. It easy to show that in this case the
matrix ∆ which is obtained from the identity matrix with format n×n by replacing
of its i-th row on the row

(

ν1, . . . , νn
)

of component of vector ν is a decomposition
matrix of the ordered set 〈A,ω〉. Moreover the equality µ∆ = ν holds.

Induction step. Assume the required assertion is true for any probabilistic vec-

tor with spectrum of k − 1 elements (k = 2, . . . , n) and suppose ν
ω̃

≥ µ, where
|Sp µ| = k. Without loss of generality we can put Sp µ = {1, . . . , k}. Let us write a
decomposition of the vector µ in the form µ = µ1τ (a1) + . . .+ µkτ (ak), τ (ai) is a
the degenerate probability measure concentrated at one point ai (i = 1, . . . , k) and
µ1 > 0, . . . , µk > 0, µ1 + . . .+ µk = 1. We have

µ = µ1τ (a1) +
(

1− µ1
)

(

µ2

1− µ1
τ (a2) + . . .+

µk

1− µ1
τ (ak)

)

. (13)

Using (13) we obtain µ = α1µ1 + α2µ2 where

α1 = µ1, α2 = 1− µ1, µ1 = τ (a1) , µ2 =
µ2

1− µ1
τ (a2) + . . .+

µk

1− µ1
τ (ak) .
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It follows from theorem 1 that there exist probabilistic vectors ν1, ν2 ∈ S (A) such
that

1) α1ν1 + α2ν2 = ν;

2) ν1
ω̄

≥ µ1;

3) ν2
ω̄

≥ µ2.
Using the assertion of base of induction for vector µ1 and induction assumption for
vector µ2, we obtain the existence of decomposition matrices ∆1, ∆2 of the ordered
set 〈A,ω〉 with conditions ν1 = µ1∆1, ν2 = µ2∆2. Let ∆ be a matrix which is
obtained from the matrix ∆2 by replacing of its 1-th row on the 1-th row of matrix
∆1. It is easy to check that ∆ is a decomposition matrix for the ordered set 〈A,ω〉
and the following equalities hold:

ν1 = µ1∆, ν2 = µ2∆. (14)

Multiplying the first equality in (14) by α1, the second by α2, summing up and
using equality 1), we get ν = µ∆, which was to be proved.

Sufficiently. Assume ν = µ∆ for some vectors µ, ν ∈ S (A) where ∆ = ‖dji‖ is a
decomposition matrix for the ordered set 〈A,ω〉. Let us formulate the following

Rule (rule for decomposition). The vector ν = µ∆ can be obtained from

the vector µ by the formal replacement τ (ai) →
n
∑

i=1

dji τ (aj) in the equality µ =

n
∑

i=1

µiτ (ai) (in fact indicated replacement means that instead of element ai we stand

a convex linear combinations of elements a1, . . . , an with coefficients which are in
i-th row of decomposition matrix).

Indeed

n
∑

i=1

µi

n
∑

j=1

dji τ (aj) =
n
∑

i=1

n
∑

j=1

(

µidji

)

τ (aj) =
n
∑

j=1

τ (aj)
n
∑

i=1

µidji =
n
∑

j=1

νjτ (aj) = ν.

Now we proof the sufficient condition in theorem 2. Fix arbitrary index i =
1, . . . , n, let index j takes values such that dji 6= 0. According to condition (2) for

decomposition matrix we have ai
ω

≤ aj hence τ (ai)
ω̄

≤ τ (aj). Using the convexity of

the order ω̄ (see the section 1.) and the condition
n
∑

j=1

dji = 1 we obtain

τ (ai)
ω̄

≤
n
∑

j=1

dji τ (aj) . (15)

Multiplying both parts of (15) by µi ≥ 0, summing over all i = 1, . . . , n and using
once more the convexity of the order ω̄ we get in accordance with rule for decom-

position: µ
ω̃

≤ ν i.e. ν
ω̃

≥ µ which completes a proof of decomposition theorem. ⊓⊔

3.2. Some consequences of decomposition theorem

We now indicate some important consequences of decomposition theorem. Accord-
ing with property 2 (see the section 1.) the relation ω̄ on the set S (A) consisting
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of probabilistic vectors is a convex one. The following proposition strengthens this
result. Note preliminarily that we can identify the order relation ω given on the set
A with its image under the mapping τ : A → S (A). In this case we consider ω as a
relation which on vertices of simplex S (A) is given.

Corollary 1. The canonic extension ω̄ coincides with smallest (under inclusion)
convex relations on simplex S (A) which contain the order relation ω.

Proof (of corollary 1). Denote by ω̂ the smallest (under inclusion) convex relations
on simplex S (A) which contain the order relation ω. We need to prove the equality
ω̂ = ω̄. Indeed, since the relation ω̄ is a convex one and ω ⊆ ω̄, we have the inclusion
ω̂ ⊆ ω̄. The converse inclusion follows from decomposition theorem. Indeed, assume

µ
ω̄

≤ ν and let ∆ = ‖dji‖ be a decomposition matrix for the ordered set 〈A,ω〉 such
that ν = µ∆. Fix an index i = 1, . . . , n. According with property (2) for decompo-

sition matrices we have ai
ω

≤ aj provided dji 6= 0 hence τ (ai)
ω̂

≤ τ (aj). Multiplying

final ratios by dji > 0, summing over all j = 1, . . . , n and using the convexity of the

order ω̂ we get τ (ai)
ω̂

≤
∑

d
j

i
>0

dji τ (aj) =
n
∑

j=1

dji τ (aj). Then multiplying last ratios by

µi ≥ 0, summing over all i = 1, . . . , n and using the convexity of the order ω̂ we get
n
∑

i=1

µiτ (ai)
ω̂

≤
n
∑

j=1

dji τ (aj). Since the left part of last ratio is µ and the right part in

accordance with rule for decomposition is equal to ν, we get µ
ω̂

≤ ν which was to be
proved. ⊓⊔

Corollary 2 (Choquet condition). Assume ν
ω̄

≥ α1µ1 + α2µ2 for some proba-
bilistic vectors µ1, µ2, ν ∈ S (A) and real numbers α1, α2 ≥ 0, α1 + α2 = 1. Then
there exist probabilistic vectors ν1, ν2 ∈ S (A) such that

1) α1ν1 + α2ν2 = ν;

2) ν1
ω̃

≥ µ1;

3) ν2
ω̃

≥ µ2.

Indeed, let ∆ be the decomposition matrix of the ordered set 〈A,ω〉 with condi-
tion ν = (α1µ1 + α2µ2)∆. Then ν = α1 (µ1∆)+α2 (µ2∆). Put ν1 = µ1∆, ν2 = µ2∆.
Obviously, the condition 1) of corollary 2 holds and conditions 2) and 3) hold in
accordance with decomposition theorem.

Remark 4. Choquet condition is important for some questions of mathematical
economics (see for example Kiruta et al., 1980).

3.3. An example: a geometric interpretation of decomposition theorem

Example 1. Consider the ordered set 〈A,ω〉 where A = {a1, a2, a3} and the or-
der relation ω by its diagram is given (Fig. 1). Let the following matrix ∆ be a
decomposition matrix for the ordered set 〈A,ω〉

∆ =





1/4 0 3/4
0 2/3 1/3
0 0 1




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Fig. 1: Diagram of ordered set

Moreover, the rows and columns of this matrix correspond to elements of the set
A. Clearly-geometrically the decomposition matrix ∆ can be presented with three
intervals of unit length corresponding to elements a1, a2, a3 and each of this intervals
covered by intervals whose lengths are defined by the corresponding row of the
decomposition matrix (Fig. 2). In accordance with the properties of decomposition
matrices, an interval corresponding to element aj can be included in the coverage of

interval corresponding to element ai provided ai
ω

≤ aj . Such a coverage shall name
the agreed floor under the order ω.

Fig. 2: Geometrical interpretation of decomposition matrix

Fix arbitrary probabilistic vector µ ∈ S (A), for example, µ = (1/2, 1/3, 1/6),
and find the product of this vector by the decomposition matrix ∆. We obtain

µ∆ =
(

1
2 ,

1
3 ,

1
6

)





1/4 0 3/4
0 2/3 1/3
0 0 1



 =
(

1
8 ,

2
9 ,

3
8 + 1

9 + 1
6

)

.

Next, we represent the probability vector µ in the form of unit interval, consisting
of three subintervals whose length are µ (a1) = 1/2, µ (a2) = 1/3, µ (a3) = 1/6. A
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probabilistic vector ν can be presented in a similar way. A coverage of vector µ
by some vector ν means a partition of the unit interval corresponding to vector ν
in disjoint subintervals whose union coincides with union interval corresponding to
vector µ. Clearly-geometrically, the equality ν = µ∆ means that a coverage of the
vector µ by the vector ν can be obtained from the Fig. 2 with contraction of its
parts in 2, 3 and 6 times, respectively (see Fig. 3).

Fig. 3

Obviously, such coverage remains to be agreed floor under the order ω.

Now we are able to interpret the sufficient condition of decomposition theorem.
Namely, assume the equality ν = µ∆ holds for some probabilistic vectors µ, ν ∈
S (A) and for decomposition matrix ∆. Then there exists a coverage of µ by vector
ν which is agreed floor under the order ω. Fix arbitrary some isotonic mapping
ϕ : A → R+. We need to prove the inequality (ϕ, µ) ≤ (ϕ, ν). In our example a
truth of this inequality for arbitrary isotonic mapping ϕ : A → R+ is shown in the
following way. We have

(ϕ, µ) = µ (a1)ϕ (a1) + µ (a2)ϕ (a2) + µ (a3)ϕ (a3) =
1

2
ϕ (a1) +

1

3
ϕ (a2) +

1

6
ϕ (a3) ;

(ϕ, ν) = ν (a1)ϕ (a1) + ν (a2)ϕ (a2) + ν (a3)ϕ (a3) =

=

(

1

8
ϕ (a1) +

3

8
ϕ (a3)

)

+

(

2

9
ϕ (a2) +

1

9
ϕ (a3)

)

+
1

6
ϕ (a3) .

Thus clearly-geometrically values (ϕ, µ) and (ϕ, ν) are areas of two step figures;
because the second figure contains the first figure then the area of the second figure
is more than the area of the first figure i.e. (ϕ, µ) ≤ (ϕ, ν) (the excess area indicated
by hatching in Fig. 4).

The proof of necessary condition in decomposition theorem is significantly more
complex: for arbitrary two probabilistic vectors µ, ν ∈ S (A) the inequality (ϕ, µ) ≤
(ϕ, ν) holds for any isotonic mapping ϕ : A → R+ only in the case of existence of
a coverage of vector µ by vector ν which is agreed floor under the order ω, that is
equivalent the existence of decomposition matrix for the ordered set 〈A,ω〉 satisfying
the condition ν = µ∆.
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