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Abstract This paper presents a model of partnership formation in which
there are two classes of player (called for convenience male and female).
There is a continuum of players and n types of male and female. Each player
begins searching at time zero and the mating season is of length µ. Each
player searches until he/she finds a mutually acceptable prospective partner
and then this pair both leave the pool of searchers. Hence, as the season pro-
gresses, the proportion of players still searching for a partner decreases and
the distribution of types changes appropriately. The rate at which prospec-
tive partners are found is a non-decreasing function of the proportion of
players still searching. The value of pairing with a type i partner at time t is
assumed to be vie

−γt, where γ is the discount rate and v1 > v2 > . . . > vn.
At a Nash equilibrium, each searcher accepts a prospective partner if and
only if the value obtained from such a partnership (ignoring previously in-
curred discounts) is greater or equal to the expected value obtained from
further search. Some general results are given. In addition, we derive the
form of the equilibrium when there are two types and present two examples.

Keywords: partnership formation, dynamic game, stopping problem, game
with a continuum of players.

1. Introduction

In the economics literature, such games are often termed job search games and
have developed from the classical problem of one-sided choice (see Stigler, 1961).
It is assumed that a job searcher observes a sequence of offers with values from a
known distribution (employers are not choosy). The cost of observing a job offer is
assumed to be constant. Janetos (1980) was the first to consider such a model in
the context of mate choice. These ideas were later developed by Real (1990).

In many species, both sexes are choosy. Parker (1983) was the first to consider a
model of two-sided mate choice. McNamara and Collins (1990) presented a model
under which searchers explicitly observe a sequence of prospective partners, unlike
in Parker’s model. However, the conclusions are very similar (players are split into
a finite number of types, such that type i males only mate with type i females).
Real (1991) looked at associative mating in more detail.

The models described above assume that the distribution of the values of
prospective partners is constant over time. If mating is non-seasonal, then this
distribution tends to a steady state distribution, which depends on the strategies
used within the population (see Burdett and Coles, 1999, Smith, 2006). However,
if mating is seasonal, this distribution changes over time. Collins and McNamara
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(1993), as well as Ramsey (2008), consider such models of one-sided choice. John-
stone (1997) gives numerical results for a model of two-sided choice in which time
is discrete. Searchers generally become less choosy as the season progresses, but
searchers of low quality may become more choosy just before the end of the sea-
son in the hope of obtaining a high quality mate in the last time period, when no
searcher is choosy. Alpern and Reyniers (2005), as well as Alpern and Katrantzi
(2009), apply a more analytic approach to such problems, while Mazalov and Falko
(2008) prove some general results. In the last three models, time is discrete and
the values of prospective partners have a continuous distribution. In the model
presented here, time is continuous and the values of prospective partners have a
discrete distribution.

Section 2 presents the model and gives some general results. Section 3 considers
realizations of the game in which there are just two types of prospective partner
and presents two examples. The form of a Nash equilibrium is presented, together
with a theorem regarding the number of Nash equilibria that can exist. Section 4
gives a brief conclusion.

2. The Model

Consider a large population in which there are two classes of players and the num-
bers of individuals in these classes are equal. Each individual in this population
wishes to form a partnership with a player of the other class. For convenience, these
classes will be referred to as males and females. However, these classes could be
also interpreted as e.g. employers (job positions) and job seekers. It is assumed that
partnership formation is seasonal, each player begins searching for a partner at the
same time and the period of time available for searching (the time horizon) is µ.
Unless specifically specified otherwise, it is assumed that µ is finite.

There are n types of both sexes. The value of the i-th type is vi (independently
of sex), where v1 > v2 > . . . > vn > 0. The proportion of players who are of type
i (again, independently of sex) is denoted by pi. Each player searches until he/she
finds a partner, at which time the pair involved leave the pool of searchers. Hence,
the number of males searching always equals the number of females searching. Also,
the size of the pool of searchers and the distribution of their values change over
time according to the profile of strategies, π, used in the population. A profile π
defines the types of prospective partners each searcher finds acceptable at all times
t, 0 ≤ t < µ. The payoff of a searcher obtaining a partner of type i at time t is vie

−γt,
where γ, γ > 0, is the discount rate. If a player does not find a partner, then his/her
payoff is defined to be 0. Hence, we consider a game which is symmetric with respect
to sex. According to such a model, only the relative values of prospective partners
are important. Hence, without loss of generality, we may assume that vn = 1.

We derive results on equilibria which are symmetric with respect to sex, i.e.
players use strategies which are only dependent on their type and not their sex. At
such an equilibrium, the distribution of the types of players who are still searching
is also independent of sex. Thus, define the proportion of players who are of type
i and still searching at time t to be pi(t). Note that pi(0) ≡ pi. Let p(t) be the
proportion of players who are still searching at time t, i.e. p(t) =

∑n
i=1 pi(t). Also,

let qi(t) be the probability that a player is of type i given that he/she is searching

at time t, i.e. qi(t) = pi(t)
p(t) . Note that these functions (and the reward functions

defined below) depend on the strategy profile used in the population. However,
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this dependency will not be reflected in the notation, unless we need to distinguish
between the dynamics of the game under different strategy profiles.

The rate at which individuals find prospective partners is given by the function
λ, a non-decreasing function of the proportion of players still searching. Prospective
partners are chosen at random from the pool of searchers, i.e. a prospective partner
encountered at time t is of type i with probability qi(t). It is assumed that p ≤
λ(p) ≡ λ[p(t)] ≤ 1 and time is scaled so that λ(1) = 1. These assumptions take
into account that finding prospective partners is likely to become harder as the
number of searchers decreases. We consider the following two extreme cases: i)
λ(p) = p, ∀p ∈ [0, 1], ii) λ(p) = 1, ∀p ∈ [0, 1]. The first case corresponds to random
mixing. A searcher encounters members of the other sex at a constant rate of 1
and the individual encountered is chosen at random from all the individuals of the
other sex (i.e. is still searching for a partner with probability p). The second case
corresponds to what is termed the ”singles bar model”, where those still searching
concentrate their search on individuals of the other sex who have not yet got a
partner. Under these assumptions, µ is the expected number of individuals of the
opposite sex that an individual meets during the search period (in the single bars
model, the number of prospective partners that a searcher expects to meet).

At a Nash equilibrium, no player can increase their expected reward by uni-
laterally changing strategy. Non-intuitive Nash equilibria may exist. For example,
the following strategy profile is always a Nash equilibrium: type 1 searchers only
accept prospective partners of type 2 and type 2 searchers only accept prospec-
tive partners of type 1. However, such a profile would not evolve via selection.
Hence, we assume that an equilibrium must satisfy the optimality criterion (see
McNamara and Collins, 1990) stating that a searcher accepts a prospective partner
if and only if his/her value is at least as great as the searcher’s expected reward
from future search (ignoring discounts already incurred). Let this expected future
reward of a type i player searching at time t be given by ri(t). Hence, at time t a
type i player should accept a prospective partner of value ≥ ri(t). Such a strategy
is called a threshold strategy. Let Ai(t) be the set of mutually acceptable types of
prospective partners of a type i player at time t. Define vi(t) to be the expected
value of a prospective partner who is mutually acceptable to a type i searcher and
still searching at time t. Hence,

vi(t) =

∑

j∈Ai(t)
vjpj(t)

∑

j∈Ai(t)
pj(t)

. (1)

Now consider the dynamics of the game under such a strategy profile. Suppose
a player of type i is searching at time t. The probability that such a player finds a
partner in the time interval [t, t+ δ] is given by δλ(p)

∑

j∈Ai(t)
qj(t). It follows that

pi(t+ δ) = pi(t)[1 − δλ(p)
∑

j∈Ai(t)

qj(t)] +O(δ2)

pi(t+ δ)− pi(t)

δ
= −pi(t)λ(p)

∑

j∈Ai(t)

qj(t) +O(δ).

Letting δ → 0, we obtain the differential equation

dpi(t)

dt
= −pi(t)λ(p)

∑

j∈Ai(t)

qj(t). (2)
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In the case of the random mixing model, this leads to

dpi(t)

dt
= −pi(t)

∑

j∈Ai(t)

pj(t). (3)

In the case of the singles bar model, this gives

dpi(t)

dt
= −

pi(t)
∑

j∈Ai(t)
pj(t)

p(t)
. (4)

Let fi be the density function of the random variable Ti, the time at which a
type i player finds a mutually acceptable partner (by definition Ti = µ when such
a player does not find a partner). Let αi(t) be the rate at which type i individuals
find acceptable partners. It follows that

αi(t) =
λ[p(t)]

∑

j∈Ai(t)
pj(t)

p(t)
.

It follows that for 0 < t < µ,

fi(t) = αi(t) exp

[

−

∫ t

0

αi(s)ds

]

P (Ti = µ) = 1−

∫ µ

0

αi(t) exp

[

−

∫ t

0

αi(s)ds

]

dt = exp

[

−

∫ µ

0

αi(t)dt

]

.

The future expected reward of a searcher of type i at time t (ignoring previous
discounts) is given by

ri(t) =

∫ µ

t

vi(s)αi(s) exp

[

−

∫ s

t

γ + αi(τ)dτ

]

ds. (5)

In particular, under the random mixing model, using Equations (1) and (5), since
λ[p(t)] = p(t), we obtain

ri(t) =

∫ µ

t





∑

j∈Ai(s)

vjpj(s)



 exp



−

∫ s

t

γ +
∑

j∈Ai(τ)

pj(τ)dτ



 ds. (6)

Similarly, under the singles bar model, we obtain

ri(t) =

∫ µ

t

[
∑

j∈Ai(s)
vjpj(s)

∑n
j=1 pj(s)

]

exp

[

−

∫ s

t

γ +

∑

j∈Ai(τ)
pj(τ)

∑n
j=1 pj(τ)

dτ

]

ds. (7)

We now present some general results.

Theorem 1. If each player uses a threshold strategy and i < j, then ri(t) ≥ rj(t).

Proof. An individual of type i still searching at time t can obtain a future expected
reward of rj(t) by accepting a prospective partner at time s, where s ≥ t, if and
only if such a prospective partner is mutually acceptable to a type j searcher (note
that such a prospective partner finds a type i individual acceptable, since vi > vj).
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Theorem 2. At any equilibrium, there exists some t0 < µ, such that all searchers
accept any prospective partner when t ≥ t0.

Proof. From the definition of ri(t), independently of the strategy profile used, ri(t)
is a continuous function and limt→µ ri(t) = 0 for each i, 1 ≤ i ≤ n. It follows that
there exists some t0 < µ for which ri(t) ≤ vn for t ≥ t0 and each i, 1 ≤ i ≤ n.

Theorem 3. At equilibrium, type i individuals always find prospective partners of
type i acceptable.

Proof. Suppose that type i players do not find prospective partners of type i ac-
ceptable for t ∈ (t1, t2). Thus ri(t) > vi for t ∈ (t1, t2). Hence, from Theorem 1,
rj(t) > vi for j ∈ {1, 2, . . . , i} and t ∈ (t1, t2). Thus, at such an equilibrium, a type i
player does not find a partner in the time interval (t1, t2). From Theorem 2, we may
assume that type i players start accepting prospective partners of type i at time t2.
From the continuity of ri(t), it follows that ri(t2) = vi. Also, for t ∈ (t1, t2),

ri(t) = e−γ(t2−t)ri(t) < vi.

This is a contradiction and hence at equilibrium type i individuals always accept
prospective partners of type i.

3. Equilibria in Games with Two Types of Individual

Assume that there are two types of prospective partner of values v1 > 1 and v2 =
1. From Theorem 3 and the optimality condition, type 2 individuals always find
any prospective partner acceptable. Consider a strategy profile in which type 1
searchers accept a prospective partner of type 2 if and only if t ≥ t1 and type 2
searchers always accept any prospective partner. To highlight the dependency of
an individual’s future expected reward on the strategy profile used, the expected
future reward of a type i individual at time t is denoted ri(t; t1). Other notation is
changed analogously. We have r1(t; t1) = r2(t; t1), ∀t ≥ t1. Also, from Equation (2),

dpi(t; t1)

dt
= −pi(t; t1)λ[p(t; t1)],

where p(t; t1)=p1(t; t1)+p2(t; t1). Let R(t; t1)=
p′

1
(t;t1)

p′

2
(t;t1)

. For t ≥ t1, R(t; t1) =
p1(t;t1)
p2(t;t1)

and thus p1(t; t1) = k(t1)p2(t; t1), where k(t1) = p1(t1;t1)
p2(t1;t1)

. Hence, for t > t1, the

expected value of a prospective partner, u(t1), is independent of the time at which
an encounter occurs. We have

u(t1) =
p1(t1; t1)v1 + p2(t1; t1)

p1(t1; t1) + p2(t1; t1)
=

k(t1)v1 + 1

k(t1) + 1
. (8)

Hence, the future expected reward of a player still searching at time t, t ≥ t1 is
u(t1) times the expected discount factor from time t onwards (this discount factor is
eγ(t−τ) when the next prospective partner is met at time τ , τ < µ, and 0 otherwise).
It should be noted that the time at which the first prospective partner after time t
is seen, denoted here by τ , has the following density function

f(τ) = λ[p(τ ; t1)] exp

{

−

∫ τ

t

λ[p(s; t1)]ds

}

.
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It follows that

r1(t; t1) = r2(t; t1) = u(t1)

∫ µ

t

λ[p(τ ; t1)] exp

{

−γ(τ − t)−

∫ τ

t

λ[p(s; t1)]ds

}

dτ. (9)

Since p(t; t1) is decreasing and λ non-increasing in t, r1(t; t1) is decreasing in t.
Hence, if r1(t1; t1) ≤ 1, then the optimal response of any individual still searching
at time t, where t ≥ t1, is to accept the next prospective partner. Hence, the strategy
profile considered above can only describe an equilibrium profile with t1 > 0 when
r1(t1; t1) = 1. Random pairing (i.e. each individual accepts the first prospective
partner encountered) is an equilibrium profile if and only if r1(0; 0) ≤ 1.

Assume that for t < t1 searchers only pair with prospective partners of the same
type. From Equation (2),

dpi(t; t1)

dt
= −

[pi(t; t1)]
2λ[p(t; t1)]

p1(t; t1) + p2(t; t1)
, i ∈ {1, 2}.

Hence, R(t; t1) =
[p1(t;t1)]

2

[p2(t;t1)]2
. It follows that p1(t; t1) > p2(t; t1) if and only if p1 > p2,

i.e. p1 > 0.5. Moreover, for t < t1, the ratio p1(t;t1)
p2(t;t1)

is

1 increasing in t when p1 < 0.5,
2 constant (equal to 1) when p1 = 0.5,
3 decreasing in t when p1 > 0.5.

It follows from the above analysis that u(t1) is

1 increasing in t and < 0.5(v1 + 1) when p1 < 0.5,
2 constant, equal to 0.5(v1 + 1), when p1 = 0.5,
3 decreasing in t and > 0.5(v1 + 1) when p1 > 0.5.

The analysis above enables us to formulate the following theorem:

Theorem 4. Let p1 ≥ 0.5. For any λ, there is a unique equilibrium profile. When
r1(0; 0)≤ 1, at equilibrium each searcher accepts the first prospective mate encoun-
tered. Otherwise, type 2 players accept any prospective partner and type 1 players
only accept type 2 prospective partners when t ≥ t∗, where t∗ satisfies r1(t

∗; t∗) = 1.

Proof. From Equation (9), we have

r1(t1; t1) = u(t1)

∫ µ

t1

λ[p(τ ; t1)] exp

{

−γ(τ − t1)−

∫ τ

t1

λ[p(s; t1)]ds

}

dτ.

Note that u(t1) is non-increasing in t1 and from the form of the system of differential
equations defining the dynamics of the game, pi(t + t1; t1) is decreasing in t1 for
i = 1, 2. Hence, r1(t1; t1) is decreasing in t1. Since r1(t1; t1) is continuous in t1 and
r1(µ;µ) = 0, either r(0; 0) ≤ 1, or there is a unique t∗ > 0, such that r(t∗; t∗) = 1.

When r(0; 0) ≤ 1 and the rest of the population accept the first prospective
partner encountered, then the best response of any player is to also accept the first
prospective partner encountered. Hence, random mating is an equilibrium profile.
Since in this case r(t1; t1) < 1, ∀t1 > 0, it is the unique equilibrium profile.

Now suppose that t∗>0, r(t∗; t∗)=1 and the population use the corresponding
strategy profile. All searchers should accept any prospective partner encountered
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after time t∗. It remains to show that when t < t∗, type 1 players should not accept
type 2 prospective partners. Consider a type 1 player who accepts any prospective
partner from time t0, where t0 < t∗. From the above analysis, the expected value of
the first prospective partner encountered after time t is non-increasing in t. Hence,
the expected future reward of a type 1 player at time t0, r1(t0; t

∗), satisfies

r1(t0; t
∗) ≥ u(t∗)

∫ µ

t0

λ[p(τ ; t∗)] exp

{

−γ(τ − t0)−

∫ τ

t0

λ[p(s; t∗)]ds

}

dτ.

Since λ[p(t; t∗)] is decreasing in t, the integral expression above is decreasing in t0
and hence r1(t0; t

∗) > r(t∗; t∗) = 1. Hence, a type 1 individual should not accept
type 2 prospective partners when t < t∗.

Example 1 (The Singles Bar Model).
Suppose the population follow the strategy profile given by t1, i.e. type 1 players

accept type 2 prospective partners if and only if t > t1 and type 2 players are not
choosy. For t < t1, it follows from Equation (4) that

p′1(t; t1) = −
[p1(t; t1)]

2

p1(t; t1) + p2(t; t1)
; p′2(t; t1) = −

[p2(t; t1)]
2

p1(t; t1) + p2(t; t1)
. (10)

Setting

U(t; t1) = p1(t; t1)− p2(t; t1); V (t; t1) =
1

p2(t; t1)
−

1

p1(t; t1)
,

we obtain the system of differential equations: U ′(t; t1)=−U(t; t1) and V ′(t; t1)=0,
together with the boundary conditions U(0; t1) = p1−p2 and V (0; t1) = 1/p2−1/p1.
This leads to the following set of equations for p1(t1; t1) and p2(t1; t1):

U(t; t1) = p1(t; t1)− p2(t; t1) = (p1 − p2)e
−t

V (t; t1) =
1

p2(t; t1)
−

1

p1(t; t1)
=

1

p2
−

1

p1
.

Solving these equations, we obtain

p1(t; t1) =
(p1 − p2)e

−t +
√

(p1 − p2)2e−2t + 4p1p2e−t

2
(11)

p2(t; t1) =

√

(p1 − p2)2e−2t + 4p1p2e−t − (p1 − p2)e
−t

2
. (12)

In particular, when p1 = p2 = 0.5, p1(t; t1) = p2(t; t1) = 0.5e−0.5t. Also,

k(t1) = 1 +
p1 − p2
2p1p2

[

(p1 − p2)e
−t1 +

√

(p1 − p2)2e−2t1 + 4p1p2e−t1

]

. (13)

For t > t1, from Equation (4), p′i(t; t1) = −pi(t; t1), i = 1, 2. Using the continuity
of the functions p1(t; t1) and p2(t; t1) to obtain the boundary conditions at t = t1,
these differential equations lead to pi(t; t1) = pi(t1; t1)e

t1−t, i = 1, 2 where p1(t1; t1)
and p2(t1; t1) can be evaluated from Equations (11) and (12), respectively.

Having derived the dynamics of the game, we now consider the future expected
reward of players at time t1. From Equation (9), it follows that

r(t1; t1)=u(t1)

∫ µ

t1

exp[−(γ + 1)(τ − t1)]dτ =
u(t1)[1−exp{−(γ + 1)(µ− t1)}]

1 + γ
, (14)

where u(t1) can be found using Equations (8) and (13).
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Theorem 5. In any realization of the game based on the singles bar model with
two types of prospective partner, there are at most three Nash equilibria.

Proof. When p1 ≥ 0.5, there is a unique equilibrium. Hence, assume that p1 < p2
and let z(t) = u(t)[1− exp{(1+ γ)(t−µ)}]. Since z(t) is a differentiable function, it
suffices to show that if z′(t0) = 0, then z′′(t0) < 0. In this case, z(t) has at most one
extreme point, which must be a maximum. Hence, there exist at most two solutions
of the equation z(t) = 1 + γ. The theorem then follows from the fact that if t∗

defines a Nash equilibrium, then either t∗ = 0 and z(0) < 1 + γ or z(t∗) = 1 + γ.
Differentiating, we obtain

z′(t) = u′(t)[1− exp{(1 + γ)(t− µ)}]− (1 + γ)u(t) exp[(1 + γ)(t− µ)].

Hence, if z′(t0) = 0, then

(1 + γ)u(t0) exp[(1 + γ)(t0 − µ)] = u′(t0)[1 − exp{(1 + γ)(t0 − µ)}]. (15)

Differentiating again, we obtain

z′′(t) = u′′(t)− exp[(1 + γ)(t− µ)][u′′(t) + 2(1 + γ)u′(t) + (1 + γ)2u(t)].

Together with Equation (15), this gives

z′′(t0)={u′′(t0)−[1+γ]u′(t0)}{1−exp[(1+γ)(t0−µ)]}−2(1+γ)u′(t0) exp[(1+γ)(t0−µ)].

Since u′(t)>0 for p1<0.5, if u
′′(t0)<u

′(t0), then z′′(t0)<0 for any γ>0. We also have

u′(t) =
(v1 − 1)k′(t)

[k(t) + 1]2
; u′′(t) =

[k(t) + 1](v1 − 1)k′′(t)− 2(v1 − 1)[k′(t)]2

[k(t) + 1]3
, (16)

where k(t) = p1(t;t1)
p2(t;t1)

for t ≤ t1. Note that

k′(t) =
p2(t; t1)p

′

1(t; t1)− p1(t; t1)p
′

2(t; t1)

[p2(t; t1)]2
=

p1(t; t1)[p2(t; t1)− p1(t; t1)]

p2(t; t1)[p2(t; t1) + p1(t; t1)]
, (17)

where the second equality follows from the system of differential equations given in
(10). Similarly, differentiating again, we obtain

k′′(t)=
p1(t; t1){[p2(t; t1)]

3−3[p2(t; t1)]
2p1(t; t1)+[p1(t; t1)]

2p2(t; t1)+[p1(t; t1)]
3}

p2(t; t1)[p1(t; t1) + p2(t; t1)]3
. (18)

Hence, from the pair of equations (16), there are at most three Nash equilibria if

[k′(t)− k′′(t)][k(t) + 1] + 2[k′(t)]2 ≥ 0.

From Equations (17) and (18), this is equivalent to

6p21(t; t1)[p2(t; t1)− p1(t; t1)]

p2(t; t1)[p1(t; t1) + p2(t; t1)]2
≥ 0.

This equation is satisfied, since p2(t; t1) ≥ p1(t; t1) ≥ 0.
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Numerical calculations indicate that three Nash equilibria can exist, e.g. when
v1 = 1.1, γ = 0.02, µ = 50, there are three Nash equilibria given by t∗,1 = 0 (i.e. each
individual accepts the first prospective partner), t∗,2 ≈ 1.151 and t∗,3 ≈ 46.514.

Example 2 (The Random Mixing Model).
Suppose the population follow the strategy profile given by t1, i.e. type 1 players

accept type 2 prospective partners if and only if t > t1 and type 2 players are not
choosy. For t < t1, it follows from Equation (3) that

p′1(t; t1) = −[p1(t; t1)]
2; p′2(t; t1) = −[p2(t; t1)]

2.

From the boundary conditions, p1(0; t1) = p1 and p2(0; t1) = p2, we obtain

p1(t; t1) =
p1

p1t+ 1
; p2(t; t1) =

p2
p2t+ 1

. (19)

It follows that

u(t1) =
(v1 + 1)p1p2t1 + p1v1 + p2

1 + 2p1p2t1
; k(t1) =

p1p2t1 + p1
p1p2t1 + p2

.

For t > t1, it follows from Equation (3) that

p′1(t; t1) = −p1(t; t1)[p1(t; t1)+p2(t; t1)]; p′2(t; t1) = −p2(t; t1)[p1(t; t1)+p2(t; t1)].

Solving these equations, using the boundary conditions obtained at t = t1, from the
continuity of the functions p1(t; t1) and p2(t; t1), it follows that

p1(t; t1) =
k(t1)p2

p2t+ p2k(t1)(t− t1) + 1
; p2(t; t1) =

p2
p2t+ p2k(t1)(t− t1) + 1

. (20)

Having derived the dynamics of the game, we now consider the future expected
reward of players at time t1. From Equation (9), it follows that

r1(t1; t1) = u(t1)

∫ µ

t1

[1 + k(t1)](1 + p2t1)p2 exp[−γ(τ − t1)]

{[1 + k(t1)]p2τ − p2k(t1)t1 + 1}2
dτ. (21)

Equation (21) was used to investigate the number of equilibria when p1 < 0.5.
From Theorem 4, t∗ =0 describes an equilibrium profile when r1(0; 0)≤ 1 and the
strategy profile corresponding to t∗, t∗>0, is a Nash equilibrium when r1(t

∗; t∗)=1.
Realizations of the game were found for which both r1(0; 0)≤1 and there exist two
solutions of the equation r1(t1; t1)=1, t1>0, i.e. there can be three equilibria. Unfor-
tunately, no proof has been found that this is the maximum number of equilibria,
but also no counterexample has been found. For example, when γ=0.02 and p=0.1,
there are multiple equilibria for v1 ∈ (1.751, 1.768). In particular, when v1 = 1.76,
the three Nash equilibria are given by t∗,1=0, t∗,2≈0.197 and t∗,3≈1.686.

4. Conclusion

This article has presented a model of seasonal mating where the values of males and
females have a discrete distribution and time is continuous. The game is symmetric
with respect to sex, i.e. the sex ratio equals one and the distribution of the values
of players is independent of sex. The rate at which prospective partners are found is



On a Large Population Partnership Formation Game with Continuous Time 277

non-increasing in the proportion of players still searching for a mate. In particular,
two extreme cases were considered. In one case, players concentrate their search on
unmated individuals. In the other case, individuals of the opposite sex are met at
a constant rate and the probability that such an individual is unmated is equal to
the proportion of unmated individuals in the population as a whole.

Some general results and the form of the equilibrium when prospective part-
ners take one of two values were presented. It was proved that under the singles
bar model, there are at most three Nash equilibria. Numerical results indicate that
this may be true for the random mixing model, but this hypothesis has not been
proven. When three Nash equilibria exist, at one of these equilibria, individuals are
not choosy (corresponding to t∗,1=0). At the other two equilibria, corresponding to
t∗,2 and t∗,3 where 0<t∗,2<t∗,3, the most attractive searchers (type 1) are initially
choosy. From the equilibrium conditions, when the vast majority of the population
accept any prospective partner, then selection strictly favours non-choosy players.
Hence, considering evolutionary dynamics, it is expected that the equilibrium cor-
responding to t∗,2 will not evolve, i.e. it is not an evolutionarily stable strategy. At
the choosy Nash equilibria, the proportion of the pool of searchers that are type
1 increases over time, meaning that it pays type 1 searchers to wait for a type 1
prospective partner to appear. At the non-choosy Nash equilibrium, the proportion
of the pool of searchers that are type 1 is constant. Hence, if it does not pay to wait
for a type 1 partner initially, it never pays to wait for such a partner.

Future research will derive Nash equilibria when there are more types.
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