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Abstract The new model of multistage game with perfect information, on
a closed time interval is considered. On each stage of the game player chooses
one of the alternatives and time to perform them. The payoffs depend upon
trajectory and the time, at which game terminates. As a solution of this
game subgame perfect ǫ - Nash equilibrium is taken.

Keywords: Perfect information, Nash equilibrium, Time-claiming alterna-
tive.

1. Introduction

The following finite stage game with perfect information is considered. In each
vertex of the game tree belonging to the set of personal moves of player the finite
number of basic alternatives is fixed and for each given basic alternative a closed
time interval is defined. The elements of this time interval are interpreted as time
instants at which the basic alternative can be realized in a given vertex. Each basic
alternative in the multistage game with Time-claiming alternatives is associated
with an infinite number of alternatives, the basic alternative with corresponding
time values we shall call bunch of alternatives.

As usual the strategy of player is a mapping which corresponds to each vertex
from the set of personal moves of the player the pair consisting from the index
of basic alternative and time necessary to realize this alternative. If the n-tuple
of strategies is chosen by players the trajectory of the game path can be uniquely
defined. This path consists from the sequence of basic alternatives and corresponding
time parameters chosen by players. Payoff function of player for each trajectory of
the game continuously depends upon the time when the game terminates and it is a
uniformly bounded function. However it is proved that payoff function of the player
not necessary continuously depends upon his strategy (part of his strategy, time
at which the alternative must be perform). This makes impossible the existence of
subgame perfect Nash equilibrium. The example of this case is presented and the
existence of subgame perfect ǫ - Nash equilibrium is proved.

This type of games arises in game-theoretical modeling of many real life and
business situations.

⋆ The authors acknowledge Saint-Petersburg State University for a research grants No.9-
37-345-2015 and 9-38-205-2014.
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2. Difference between classical multistage game with perfect

information and multistage game with Time-claiming alternatives

Description of multistage game with Time-claiming alternatives has some differences
from multistage game with perfect information.

Multistage game with perfect information is defined on the tree like graph.
Denote the game as Γ and graph as G = (X,F ), where X is a finite set of vertices
and F is a multivalued mapping from X to X (∀z ∈ X,Fz ⊂ X).

Consider a partition of the set of vertices X :

X1 · · ·Xn, Xn+1, X = ∪n+1
i=1 Xi, Xk ∩Xl = ∅, k 6= l,

where Fz = ∅ for z ∈ Xn+1. Set Xi, i = 1 · · ·n is a set of personal moves of player
i and set Xn+1 is a set of final positions. On the set of final positions Xn+1 payoffs
H1(z) · · ·Hn(z), z ∈ Xn+1 are defined. We call a strategy of player i, mapping ui

which to each position z ∈ Xi uniquely correspond the position y ∈ Fz . Denote
the set of all possible strategies of player i as Ui. We call an ordered set u =
(u1 · · ·ui · · ·un), where ui ∈ Ui the situation in the game Γ . Define the payoff
function Ki, for each player i = 1 · · ·n in the game Γ as follows:

Ki(u1 · · ·ui · · ·un) = Hi(zl), i = 1 · · ·n,

where zl ∈ Xn+1 is a final position which corresponds to the situation
(u1 · · ·ui · · ·un) in the game Γ . Function Ki, i = 1 · · ·n is defined on the set of
situations U =

∏n

i=1 Ui. Thus multistage game with perfect information has the
following form

Γ = (N, {Ui}i∈N , {Ki}i∈N ),

where N is a set of players.
Multistage game with Time-claiming alternatives is defined on the tree like ex-

tended form of the graph G. Denote the extended tree like graph as G(Y, Φ), where
Y is the set of positions and Y = X × [t0, T ], where X is the set of positions from
the graph G and [t0, T ] is a closed time interval, in which the game takes place. Φ
is a multivalued mapping from Y to Y (∀z ∈ Y , Φz ⊂ Y ), Φz = Fz × [t, T ], where
z = (z, t), z ∈ X , t ∈ [t0, T ].

Denote a pair of positions (z, z′), where z = (z, t), z′ = (z′, t′), z′ ∈ Φz =
Fz × [t;T ] for any possible pair of values t, t′ (∀t′ ∈ [t, T ], ∀t ∈ [t0, T ]), as an arc
p = (z, z′). Denote a sequence of arcs p = (p1, p2 · · · pk · · · ), where p1 = (z1, z

′

1),
p2 = (z2, z

′

2) · · · pk = (zk, z
′

k), · · · and z′1 = z2, z
′

2 = z3 · · · z′k = zk+1 · · · for any
possible values ti, t

′

j (∀t′j ∈ [ti, T ], ∀ti ∈ [t0, T ]), i, j = 1, 2 · · ·k · · · , as a path in the

graph Γ . In the multistage game with Time-claiming alternatives the length l(p) of
the path p = (p1, p2 · · · pk) is a number of arcs in the path or number of different
positions z minus one from graph Γ , l(p) = k. Consider a partition of the set of
positions Y :

Y1 · · ·Yn, Yn+1, Y = ∪n+1
i=1 Yi, Yk ∩ Yl = ∅, k 6= l,

where Φz = ∅ for z ∈ Yn+1. Set Yi = Xi × [t0, T ] is the set of personal moves
of player i and Yn+1 = Xn+1 × [t0, T ]. On the set of final positions Yn+1 pay-
offs H1(z) · · ·Hn(z), z = (z, t) ∈ Yn+1 are defined. Functions Hi(z) = Hi(z, t),
i = 1 · · ·n continuously depend upon the parameter t and are uniformly bounded
functions on the closed interval [t0, T ]. We call strategy of player i mapping ui
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which to each position z ∈ Yi correspond the position z′ ∈ Φz . Denote the set of
all possible strategies of player i as U i. We call an ordered set u = (u1 · · ·ui · · ·un),
where ui ∈ U i, situation in the game Γ . Define the payoff function Ki for each
player i = 1 · · ·n in the game Γ , as follows:

Ki(u1 · · ·ui · · ·un) = Hi(zl), i = 1 · · ·n,

where zl ∈ Yn+1 is a final position which corresponds to the situation
(u1 · · ·ui · · ·un) in the game Γ . Function Ki, i = 1 · · ·n is defined on the set of
situation U =

∏n
i=1 U i. The length of all paths in the game Γ is uniformly bounded,

because the set of positions is finite. We call the length of the game Γ the length
of the longest path in the game Γ . By construction the lengths of the games Γ and
Γ are the same.

3. Definition of multistage game with Time-claiming alternatives

The multistage game with Time-claiming alternatives has the following normal
form:

Γ = (N, {U i}i∈N , {Ki}i∈N )

Suppose all paths in the game Γ have the same length l, then the game proceeds
as follows:

1. Let z0 = (z0, t0) ∈ Yi1 = Xi1 × [t0, T ] then player i1 chooses

z1 = (z1, t1) ∈ Φz0
= Fz0 × [t0, T ], t1 < T

2. if z1 = (z1, t1) ∈ Yi2 = Xi2 × [t0, T ] then player i2 chooses

z2 = (z2, t2) ∈ Φz1
= Fz1 × [t1, T ], t2 < T

. . .
k. if zk−1 = (zk−1, tk−1) ∈ Yik = Xik × [t0, T ] then player ik chooses

zk = (zk, tk) ∈ Φzk−1
= Fzk−1

× [tk−1, T ], tk < T

. . .
l. if zl−1 = (zl−1, tl−1) ∈ Yil = Xil × [t0, T ] then player il chooses

zl = (zl, tl) ∈ Φzl−1
= Fzl−1

× [tl−1, T ] (Fzl−1
⊂ Xn+1) and the game terminates.

The game can terminate if player i chooses z = (z, t), where z ∈ Xn+1 (where t
is any instant from the closed interval [t0, T ])

4. Existence of subgame perfect ǫ - Nash equilibrium in multistage

game with Time-claiming alternatives

The following theorem can be proved.

Theorem 1. In any multistage game Γ there exists a subgame perfect ǫ-equilibrium
u∗

It is shown in the example that in multistage game with Time-claiming alterna-
tives sometimes is impossible to construct a subgame perfect equilibrium, because
of noncontinuous dependence of payoff function of players upon time (part of the
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strategy). During the backward induction process in multistage game with perfect
information on each stage player is maximizing his payoff choosing the basic alter-
native and in this game model player in addition chooses time to perform this basic
alternative. Consider subgame Γ (z,t) (z ∈ X, t ∈ [t0, T ]). Suppose that in this sub-
game there exist a subgame perfect Nash equilibrium u∗

(z,t) = (u∗

(z,t),1 · · ·u
∗

(z,t),n).

Let Ki(z, t;u
∗

(z,t),1 · · ·u
∗

(z,t),n), i ∈ N be the payoff function of player i in this Nash
equilibrium. Since the NE u∗

(z,t) is fixed this function depends only on initial con-
ditions of the subgame, and we can write

Vi(z, t) = Ki(z, t;u
∗

(z,t),1 · · ·u
∗

(z,t),n), i ∈ N.

Functions Vi(z, t), i ∈ N we shall call value functions. Also introduce the following
function

Vi(zk, tk)(t) = max
z∈Fz

k

{Vi(z, t), t ∈ [tk, T )} = Vi(ẑ, t), where xk ∈ Xi

Vj(zk, tk)(t) = Vj(ẑ, t), j 6= i

Vi(zk, tk)(t) = Hi(xk, tk)∀t ∈ [tk, T ], if xk ∈ Xn+1, i ∈ N

Vi(zk, T )(t) = Hi(zk, T ), i ∈ N

Vi(zk, tk) = sup
t∈[tk,T ]

Vi(zk, tk)(t) (1)

Problem takes place when player chooses time to perform basic alternative,
because the value in the game Γ (Vi(zk, tk)(t)) sometimes cannot be reached (see
example). Function Hi(z, t), z ∈ Xn+1 continuously depends upon the parameter
t and is uniformly bounded in the closed interval [t0, T ] ⊃ [ti, T ]. Then function
Vi(zk, tk)(t) is also uniformly bounded on the closed interval and sup

t∈[tk,T ]

Vi(zk, tk)(t)

exists. Therefore in the game Γ we can use subgame perfect ǫ - Nash equilibrium
as a solution in the game.

5. Example

Consider an example from (Papayoanou, 2010). Game Γ takes place on the graph
G = (X,F ) below (see Fig. 1). The set of players N consists of two players,
N = {Alpha,Beta}. On the first stage of the game Γ , in the position z0 player
Alpha has two alternatives z1, z3 (Accept or Reject financial proposal from player
Beta). If player Alpha chooses the alternative z3 then the game terminates, if player
Alpha chooses the alternative z1 then the game proceeds and player Beta makes
his move. On the second stage of the game Γ , in the position z1 player Beta has
two alternatives z2, z6 (Offer to Alpha a better financial proposal or Compete with
player Alpha). If player Beta chooses the alternative z6 then the game terminates,
if player Beta chooses the alternative z2 then the game proceeds and player Alpha
again makes a move. On the third stage of the game Γ , in the position z2 player
Alpha has two alternatives z4, z5 (Accept the better financial proposal from player
Beta or Compete with player Beta). In either cases the game terminates, payoffs
are defined for both players at the end of the game (see Fig. 1).
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Fig. 1: Example

Often it is important to determine the time necessary to make a decision. Con-
sider related example, which was proposed using the approach of multistage games
with time claiming alternatives. In this example it is possible to simulate more
properly and efficiently this economic situation, because the model of Multistage
game with Time-claiming alternatives considers also a time necessary to make a de-
cision (move). Game Γ takes place on the graph G = (Y, Φ) below (see Fig. 2). The
set of players N has not changed. On the first stage of the game Γ , in the position
z0 = (z0, t0) player Alpha has two bunches of alternatives z1 = (z1, t1), z3 = (z3, t3),
where t1, t3 ∈ [t0, T ]. In this model player Alpha is not just choosing the alternative
Accept or Reject financial proposal from player Beta, but also he is selecting the
time instant to choose the alternative (basic alternative). If player Alpha chooses
the alternative z3 = (z3, t3) then the game terminates at the moment of time t3 and
player Alpha gets the payoff

HAlpha(z3, t3) =
160

1 + t3
,

player Beta gets the payoff

HBeta(z3, t3) =
280

1 + t3
.

If player Alpha chooses the alternative z1 = (z1, t1) then the game proceeds and
player Beta makes a move. On the second stage of the game Γ , in the position z1 =
(z1, t1) player Beta has two bunches of alternatives z2 = (z2, t2), z6 = (z6, t6), where
t2, t6 ∈ [t1, T ] (Offer to Alpha a better financial proposal or Compete with player
Alpha and choose time instant to make it). If player Beta chooses the alternative
z6 = (z6, t6) then the game terminates at the moment t6 and player Alpha gets the
payoff

HAlpha(z6, t6) = ln(t6 + 1)− 25,
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player Beta gets the payoff

HBeta(z6, t6) = −20(t6 − 4)
2
+ 730.

If player Beta chooses the alternative z2 = (z2, t2) then the game proceeds and
playerAlpha again makes his move. On the third stage of the game Γ , in the position
z2 = (z2, t2) player Alpha has two bunches of alternatives z4 = (z4, t4), z5 = (z5, t5),
where t4, t5 ∈ [t2, T ] (Accept the better financial proposal from player Beta or
Compete with player Beta and choose time instant to make it). In either cases the
game terminates. If player Alpha chooses the alternative z4 then he gets the payoff

HAlpha(z4, t4) = −0, 35(t4 − 6)
2
+ 204,

player Beta gets the payoff

HBeta(z4, t4) = −t4
2 + 690.

If player Alpha chooses the alternative z5 then he gets the payoff

HAlpha(z5, t5) = −(t5 − 6)2 + 209,

player Beta gets the payoff (see Fig. 2)

HBeta(z5, t5) = −t5
2 + 410.

Fig. 2: Example
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Payoff functions depending upon the time on which the game Γ terminates in
this example have the following form:

Fig. 3: Example

We use standard backward induction procedure to find the solution of the game.
The backward induction in this game is based on the length of the game (which is a
number of arcs in the maximal path l = 3). We have to solve subgames Γ (zi,ti), zi ∈
X for any starting time ti ∈ [0, 10]. Denote by VAlpha(k, zi, ti) and VBeta(k, zi, ti),
values of subgames Γ(zi,ti) with length k for player Alpha and Beta (the exact
upper bound of values of players payoffs when a fixed subgame perfect ǫ - Nash
equilibrium is used).
Consider subgame Γ (z2,t2), where in the position z2 = (z2, t2) player Alpha makes a
move. z2 is a starting position of this subgame and t2 ∈ [0, 10] is a time chosen by the
player Beta on the previous stage of the game Γ (in the position z1 = (z1, t1)). In
this subgame playerAlpha chooses between two bunches of alternatives z4 = (z4, t4),
z5 = (z5, t5) (Φz2

= {z4, z5}). Since the positions z4, z5 ∈ Yn+1 and t4, t5 are time
instants, when the game Γ terminates the payoffs are defined in this positions and
depend upon t4, t5 and are equal to HAlpha(z4, t4), HAlpha(z5, t5) (see Fig. 4).
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Fig. 4: Example

Since it is impossible for player Alpha to choose a moments of time t4, t5 < t2,
because the subgame Γ z2,t2 starts at the moment of time t2 we must construct a
solution for the player Aplha for each possible starting time t2. The value of the
subgame Γ (z2,t2) for player Alpha is

VAlpha(1, z2, t2) = max{ sup
t4∈[t2,10]

(−0, 35(t4 − 6)2+204); sup
t5∈[t2,10]

(−(t5 − 6)2+209)}.

Consider different cases, where t2 ∈ [0; 6], t2 ∈ (6; 8, 8], t2 ∈ (8, 8; 10]:

1. t2 ∈ [0; 6], where t = 6 is determined from the condition HAlpha(z4; 6) =
sup

t∈[0,10]

HAlpha(z4, t) then the optimal behavior of player Alpha in position

z2 = (z2, t2) is defined by formula uAlpha(z2, t2) = (z5; t5), where t5 = 6.

VAlpha(1, z2, t2) = max{ sup
t4∈[t2,10]

(−0, 35(t4 − 6)
2
+ 204); sup

t5∈[t2,10]

(−(t5 − 6)
2
+

+209)} = sup
t5∈[t2,10]

(−(t5 − 6)2 + 209) = −(6− 6)2 + 209 = 209

VBeta(1, z2, t2) = −62 + 410 = 374

(Since in the position z2 = (z2, t2) player Beta is not making a move)

2. t2 ∈ (6; 8, 8], where t = 8, 8 is determined from the condition HAlpha(z4; 8, 8) =
HAlpha(z5; 8, 8) then the optimal behavior of player Alpha in position z2 =
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(z2, t2) is defined by formula uAlpha(z2; t2) = (z5; t5), where t5 = t2.

VAlpha(1, z2, t2) = max{ sup
t4∈[t2,10]

(−0, 35(t4 − 6)
2
+ 204); sup

t5∈[t2,10]

(−(t5 − 6)
2
+

+209)} = sup
t5∈[t2,10]

(−(t5 − 6)
2
+ 209) = −(t2 − 6)

2
+ 209)

VBeta(1, z2, t2) = −t22 + 410

3. t2 ∈ (8, 8; 10] then the optimal behavior of player Alpha in position z2 = (z2, t2)
is defined by formula uAlpha(z2; t2) = (z4; t4), where t4 = t2.

VAlpha(1, z2, t2) = max{ sup
t4∈[t2,10]

(−0, 35(t4 − 6)
2
+ 204); sup

t5∈[t2,10]

(−(t5 − 6)
2
+

+209)} = sup
t4∈[t2,10]

(−0, 35(t4 − 6)
2
+ 204) = −0, 35(t2 − 6)

2
+ 204

VBeta(1, z2, t2) = −t22 + 690

Introduce the following function:

VAlpha(1, z2, t2)(t) = max{−0, 35(t4 − 6)
2
+ 204;−(t5 − 6)

2
+ 209,

where t ∈ [t2, 10]},

it is easy to see that sup
t∈[t2,10]

VAlpha(1, z2, t2)(t) =

= sup
t∈[t2,10]

[max{−0, 35(t4 − 6)
2
+ 204;−(t5 − 6)

2
+ 209, where t ∈ [t2, 10]}] =

= max{ sup
t4∈[t2,10]

(−0, 35(t4 − 6)2 + 204); sup
t5∈[t2,10]

(−(t5 − 6)2 + 209)} =

= VAlpha(1, z2, t2),

where t corresponds to the moments of time t4 or t5: if VAlpha(1, z2, t2)(t) =

−(t− 6)
2
+209 then t corresponds to t5, if VAlpha(1, z2, t2)(t) = −0, 35(t− 6)

2
+204

then t corresponds to t4. On the Fig. 5 we can see function VAlpha(1, z2, t2)(t), where
t2 = 0, if subgame Γ (z2,t2) started at the moment of time t2 = 0. If the subgame

Γ (z2,t2) starts for example at the moment of time t2 = 5, then we must consider all
values of function VAlpha(1, z2, t2)(t) on the Fig. 5 for t ∈ [5, 10]. In this sense the
function on the Fig. 5 corresponds to the solution constructed earlier.
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Fig. 5: Example

Consider subgame Γ (z1,t1), where in the position z1 = (z1, t1) player Beta makes
a move. z1 is a starting position and t1 ∈ [0, 10] is a time chosen by the player
Alpha on the previous stage of the game Γ (in the position z0 = (z0, t0)). In this
subgame player Beta chooses between the alternatives z2 = (z2, t2), z6 = (z6, t6)
(Φz1

= {z2, z6}). Since position z6 ∈ Yn+1 and t6 is the time instant, when the
game Γ terminates the payoff in this position is equal to HBeta(z6, t6). z = (z2, t2) /∈
Yn+1, which means that if player Beta in the position z1 = (z1, t1) chooses a basic
alternative z2 ∈ X and any time instant t2 ∈ [t1, T ], then player Beta must take in
account which alternative is going to choose player Alpha on the next stage in the
position z = (z2, t2) for each moment of time t2 and calculate his payoff accordingly,
VBeta(1, z2, t2) (see Fig. 6).

The concept of Nash equilibrium obtained by backward induction suggests that
on the first step of the subgame player who makes a move on this stage expects that
in all subsequent subgames players use a fixed predetermined Nash equilibrium. In
our case it means that player Beta in the subgame Γ (z2,t2) expects that player
Alpha in the following subgame uses Nash equilibrium strategy, i.e. he expects to
get the payoff VAlpha(1, z2, t2) (which is a result of using Nash equilibrium strategy
by the player Alpha).
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Fig. 6: Example

The decision of player Beta in this subgame depends upon the time t1. The
value of the subgame Γ (z1,t1) for player Beta is

VBeta(2, z1, t1) = max{ sup
t2∈[t1,10]

VBeta(1, z2, t2); sup
t6∈[t1,10]

(−20(t6 − 4)
2
+ 730)}.

Consider different cases, where t1 ∈ [0; 4], t1 ∈ (4; 8, 8], t1 ∈ (8, 8; 10]:

1. t1 ∈ [0; 4], where t = 4 is determined from the condition HBeta(z6; 4) =
max

t∈[0,10]
HBeta(z6, t) then the optimal behavior of player Beta in position z1 =

(z1, t1) is defined by formula uBeta(z1, t1) = (z6; t6), where t6 = 4. Then sub-
game Γ (z1,t1) terminates, because z6 ∈ Yn+1.

VBeta(2, z1, t1) = max{ sup
t2∈[t1,10]

VBeta(1, z2, t2); sup
t6∈[t1,10]

(−20(t6 − 4)
2
+ 730)} =

= sup
t6∈[t1,10]

(−20(t6 − 4)2 + 730) = −20(4− 4)2 + 730 = 730

VAlpha(2, z1, t1) = ln(4 + 1)− 25 = −23, 4

2. t1 ∈ (4; 8, 8] then the optimal behavior of player Beta in position z1 = (z1, t1) is
defined by formula uBeta(z1; t1) = (z6; t6), where t6 = t1. Then subgame Γ (z1,t1)

terminates, because z6 ∈ Yn+1.

VBeta(2, z1, t1) = max{ sup
t2∈[t1,10]

VBeta(1, z2, t2); sup
t6∈[t1,10]

(−20(t6 − 4)
2
+ 730)} =

= sup
t6∈[t1,10]

(−20(t6 − 4)
2
+ 730) = −20(t1 − 4)

2
+ 730

VAlpha(2, z1, t1) = ln(t1 + 1)− 25
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3. t1 ∈ (8, 8; 10] then the optimal behavior of player Beta in position z1 = (z1, t1)
is defined by formula uBeta(z1; t1) = (z2; t2), where t2 = t1. Then on the next
stage uAlpha(z2; t2) = (z4; t4), where t4 = t2.

VBeta(2, z1, t1) = max{ sup
t2∈[t1,10]

VBeta(1, z2, t2); sup
t6∈[t1,10]

(−20(t6 − 4)
2
+ 730)} =

= sup
t2∈[t1,10]

VBeta(1, z2, t2) = VBeta(1, z2, t1)

VAlpha(2, z1, t1) = VAlpha(1, z2, t1) = −0, 35(t1 − 6)
2
+ 204

The solution here is constructed using the solution for the player Alpha on the
previous step. Consider the following function:

VBeta(2, z1, t1)(t) = max{VBeta(1, z2, t);−20(t− 4)
2
+ 730, where t ∈ [t1, 10]},

it is easy to see that sup
t∈[t1,10]

VBeta(2, z1, t1)(t) = VBeta(2, z1, t1),

where t is a moment of time t2 or t6: if VBeta(2, z1, t1)(t) = VBeta(1, z2, t) then t

corresponds to t2, if VBeta(2, z1, t1)(t) = −20(t− 4)
2
+ 730 then t corresponds to

t6. On the Fig. 5 we can see function VBeta(2, z1, t1)(t), where t1 = 0, if subgame
Γ (z1,t1) started at the moment of time t1 = 0. If the subgame Γ (z1,t1) starts for
example at the moment of time t1 = 5, then we must consider all values of the
function VBeta(2, z1, t1)(t) on the Fig. 5 for t ∈ [5, 10]. In this sense the function on
the Fig. 5 corresponds to the solution constructed earlier.

Fig. 7: Example

It is shown in the solution for the playerBeta that the function VBeta(2, z1, t1)(t),
where t is a time instant chosen by the player Beta (t2, t6) noncontinuously depends
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upon the parameter t. Which means that if subgame Γ z1,t1 starts at the moment
of time t1 ∈ (6, 4; 10] then

VBeta(2, z1, t1) = max{ sup
t2∈[t1,10]

VBeta(1, z2, t2); sup
t6∈[t1,10]

(−20(t6 − 4)
2
+ 730)}

can not be reached.

Consider subgame Γ (z0,t0) = Γ , where in the position z0 = (z0, t0) player Alpha
makes a move. z0 is a starting position and t0 = 0 is a starting moment of the whole
game. In this subgame player Alpha chooses between two alternatives z1 = (z1, t1),
z3 = (z3, t3) (Φz0

= {z1, z3}). Since the position z3 ∈ Yn+1, t3 is the time instant,
when the game Γ terminates the payoff in this position is defined and is equal to
HAplha(z3, t3). z1 = (z1, t1) /∈ Yn+1, this means that if player Alpha in the position
z0 = (z0, t0) chooses a basic alternative z1 ∈ X and any time instant t1 ∈ [t0, T ],
then player Alpha must determine which alternative is going to choose player Beta
z2 or z6 on the next stage and the player Alpha on the stage after z4 or z5. In the
position z1 = (z1, t1) for each moment of time t1 player Alpha can calculate his
payoff according to the optimal behavior of player Beta on this stage and optimal
behavior of player Alpha on the next one, VAlpha(2, z1, t1) (see Fig. 6) (see Fig. 8).

Fig. 8: Example

if player Alpha chooses the alternative z1 = (z1, t1) (uAlpha(z0; t0) = (z1; t1)),
where t1 ∈ (6, 4; 8, 8] then on the next stage player Beta chooses the alternative
z2 = (z2, t2) (uBeta(z1; t1) = (z2; t2)), where t2 ∈ [t1; 10]. Suppose t2 = 8, 8 + ǫ
(where ǫ is sufficiently small). Then on the stage after player Alpha chooses the
alternative z4 = (z4, t4) (uAlpha(z2; t2) = (z4; t4)), where t4 = t2 = 8, 8 + ǫ. The
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value of the subgame Γ (z0,t0) = Γ for player Alpha is

VAlpha(3, z0, t0) = max{ sup
t3∈[0,10]

(
160

1 + t3
); sup

t1∈[0,10]

VAlpha(2, z1, t1)} =

= sup
t1∈[0,10]

VAlpha(2, z1, t1) = VAlpha(2, z1, 8, 8) =

= −0, 35((8, 8 + ǫ)− 6)2 + 204 = 201, 2− ǫ.

Supremum is not reached, although it is possible to choose t close enough to 8, 8
(t + ǫ, where ǫ is sufficiently small) in which value of the function is close enough
to the supremum.

The value of the subgame Γ (z0,t0) for player Beta is

VBeta(3, z0, t0) = VBeta(2, z1; 8, 8) = VBeta(1, z2, 8, 8) = 612, 6− ǫ

The solution here is constructed using the solution for the player Alpha and Beta
on the previous steps. Consider the following function:

VAlpha(3, z0, t0)(t) = max{
160

1 + t
;VAlpha(2, z1, t), where t ∈ [0, 10]},

it is easy to see that sup
t∈[0,10]

VAlpha(3, z0, t0)(t) =

= sup
t∈[0,10]

[max{
160

1 + t
;VAlpha(2, z1, t), where t ∈ [0, 10]}] =

= max{ sup
t3∈[0,10]

(
160

1 + t3
); sup

t1∈[0,10]

VAlpha(2, z1, t1)} = VAlpha(3, z0, t0),

where t is a moment of time t1 or t3: if VAlpha(3, z0, t0)(t) = VAlpha(2, z1, t) then
t corresponds to t1, if VAlpha(3, z0, t0)(t) =

160
1+t

then t corresponds to t3. Function
VAlpha(3, z0, t0)(t) has the following form (see Fig. 9).
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Fig. 9: Example

It is shown in the solution for the player Alpha that the function
VAlpha(3, z0, t0)(t), where t is a time instant chosen by the player Alpha (it can
be t3 or t1 depends on which basic alternative is chosen) noncontinuously depends
upon the parameter t and VAlpha(3, z0, t0) = sup

t∈[0,10]

VAlpha(3, z0, t0)(t) cannot be

reached.

Subgame perfect ǫ-Nash equilibrium u∗ has the form:

u∗

Aplha = (u∗

Aplha(z0, t0), u
∗

Aplha(z2, t2)) = ((z1; 8, 8 + ǫ), (z4; 8, 8 + ǫ));
u∗

Beta = u∗

Beta(z1, t1) = (z2; 8, 8 + ǫ)

The payoffs in Subgame perfect ǫ-Nash equilibrium u∗

t :

K
∗

Aplha = 201, 2− ǫ′; K
∗

Beta = 612, 6− ǫ′,

where ǫ′ is sufficiently small.

6. Conclusion

The model of multistage game with time claiming alternatives can be successfully
used in the business or science applications where time is a decisive parameter in
the decision making process.
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