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Abstract The Shapley value, one of the most common solution concepts
in Operations Research applications of cooperative game theory, is defined
and axiomatically characterized in different game-theoretical models. In this
paper, we focus on the Shapley value for cooperative games where the set of
players is finite and the coalition values are compact intervals of real num-
bers. In this study, we study the properties of the interval Shapley value on
the class of size monotonic interval games, and axiomatically characterize
its restriction to a special subclass of cooperative interval games by using
fairness property, efficiency and the null player property. Further, we intro-
duce the interval Banzhaf value and the interval egalitarian rule. Finally,
the paper ends with a conclusion and an outlook to future studies.
Keywords: Shapley value, Banzhaf value, egalitarian rule, interval uncer-
tainty, fairness property.

1. Introduction

The Shapley value, which is proposed by Lloyd Shapley in his 1953 Phd dissertation,
is one of the most common single-valued solution concepts in cooperative game
theory. The Shapley value associates to each game v ∈ GN one payoff vector in R

N .
The Shapley value is introduced and characterized for cooperative games with a
finite player set and where coalition values are real numbers, it has captured much
attention being extended in new game theoretical models and widely applied for
solving reward/cost sharing problems in Operations Research (OR) and economic
situations, sociology, computer science, etc.

The Shapley value probably is the most eminent one-point solution concept for
transferable utility games (TU games). Ever since its original characterization by
Shapley himself, much effort has been put in the endeavor to provide alternative
characterizations. Various axiomatizations of the Shapley value have been given.
In the literature, the Shapley value and its characterizations are: Shapley (1953),
Owen (1972), Young (1985), Hart and Mas-Colell (1989), Monderer et al. (1992)
and van den Brink (2002). Uncertainty on coalition values, which is a challenge
of the modern world, led to new models of cooperative games and corresponding
Shapley-like values (Branzei et al. (2003), Timmer et al. (2003), Alparslan Gök et
al. (2009a)).
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This paper focuses on the characterization of the interval Shapley value which
was introduced by Alparslan Gök et al. (2009a). A cooperative interval game (Al-
parslan Gök et al. (2009c)) is an ordered pair < N,w > where N = {1, . . . , n} is
the set of players, and w : 2N → I(R) is the characteristic function which assigns
to each coalition S ∈ 2N a closed and bounded interval w(S) ∈ I(R), such that
w(∅) = [0, 0]. The interval Shapley value associates to each cooperative interval
game a payoff vector whose components are compact intervals of real numbers.

The interval Shapley value assigns a payoff vector components which are com-
pact intervals of real numbers to each cooperative interval game. Alparslan Gök
et al. (2010) give an axiomatization of the interval Shapley value by using addi-
tivity, efficiency, symmetry and dummy player properties on an additive cone of
cooperative interval games. Different from this, they focus on two alternative char-
acterizations of the interval Shapley value on the same additive cone of cooperative
games arising from several OR and economic situations with interval data. For ex-
ample, peer group games (Branzei et al. (2010)) are useful in modeling sequential
production situations, auctions and flow situations. Airport situations with interval
data (Alparslan Gök et al. (2009b)), some connection problems where the cost of
the connections are affected by interval uncertainty (Moretti et al. (2011)), lot sizing
problems with uncertain demands (Kimms and Drechsel (2009)), and sequencing
problems, where parameters are compact intervals of real numbers (Alparslan Gök
et al. (2009a)) can be solved using interval games in the additive cone under con-
sideration.

This paper is organized as follows. We give basic notions and facts from the
theory of interval calculus in Section 2. The properties of the interval Shapley value
is studied on the class of size monotonic interval games and an axiomatic charac-
terization of the interval Shapley value is given on a special subclass of cooperative
interval games in Section 3. In Section 4 and Section 5, we introduce the interval
Banzhaf value on the class of size monotonic interval games and the interval egal-
itarian rule on the class of cooperative interval games. Finally, we conclude this
paper, including an outlook to future research challenges.

2. Preliminaries

In this section, we recall the notions of cooperative interval games in Alparslan Gök
(2009, 2010).

A cooperative interval game is an ordered pair < N,w > whereN = {1, 2, . . . , n}
is the set of players, and w : 2N → I(R) is the characteristic function such that
w(∅) = [0, 0], where I(R) is the set of all nonempty, compact intervals in R. For each
S ∈ 2N , the worth set (or worth interval) w(S) of the coalition S in the interval
game < N,w > is of the form [w(S), w(S)], where w(S) is the minimal reward
which coalition S could receive on its own, and w(S) is the maximal reward which
coalition S could get. The family of all interval games with player set N is denoted
by IGN .

Let I, J ∈ I(R) with I =
[

I, I
]

, J =
[

J, J
]

, |I| = I − I and α ∈ R+. Then,

(i) I + J =
[

I + J, I + J
]

;

(ii) αI =
[

αI, αI
]

.

By (i) and (ii) we see that I(R) has a cone structure.
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In this paper we also need a partial subtraction operator. We define I − J , only
if |I| ≥ |J |, by I − J =

[

I − J, I − J
]

. Note that I − J ≤ I − J . We recall that I is

weakly better than J , which we denote by I < J , if and only if I ≥ J and I ≥ J .

For w1, w2 ∈ IGN we say that w1 < w2 if w1(S) < w2(S), for each S ∈ 2N .

For w1, w2 ∈ IGN and λ ∈ R+ we define < N,w1 + w2 > and < N, λw >
by (w1 + w2)(S) = w1(S) + w2(S) and (λw)(S) = λ · w(S) for each S ∈ 2N .
So, we conclude that IGN endowed with “<” is a partially ordered set and has a
cone structure with respect to addition and multiplication with non-negative scalars
described above. For w1, w2 ∈ IGN with |w1(S)| ≥ |w2(S)| for each S ∈ 2N ,
< N,w1 − w2 > is defined by (w1 − w2)(S) = w1(S)− w2(S).

The model of interval cooperative games is an extension of the model of classical
TU -games. We recall that a classical TU -game < N, v > is defined by v : 2N → R,
v(∅) = 0. We denote the size of a coalition S ⊂ N by |S|, the family of such games by
GN , and recall that GN is a (2|N |−1)-dimensional linear space for which unanimity
games form an interesting basis. Let S ∈ 2N \ {∅}. The unanimity game based on
S, uS : 2N → R is defined by

uS(T ) =

{

1, S ⊂ T,
0, otherwise.

The reader is referred to Peters (2008) and Branzei et al. (2008) for a survey on
classical TU -games.

Interval solutions are useful to solve reward/cost sharing problems with interval
data using cooperative interval games as a tool. The interval payoff vectors, which
are the building blocks for interval solutions, are the vectors whose components
belong to I(R). We denote by I(R)N the set of all such interval payoff vectors.

We call a game < N,w > size monotonic if < N, |w| > is monotonic, i.e.,
|w| (S) ≤ |w| (T ) for all S, T ∈ 2N with S ⊂ T . For further use we denote by
SMIGN the class of size monotonic interval games with player set N .

The interval marginal operators and the interval Shapley value were defined on
SMIGN in Alparslan Gök et al. (2009a) as follows.

Denote by Π(N) the set of permutations σ : N → N of N = {1, 2, . . . , n}. The
interval marginal operator mσ : SMIGN → I(R)N , corresponding to σ, associates
with each w ∈ SMIGN the interval marginal vector mσ(w) of w with respect to
σ defined by mσ

i (w) = w(P σ(i) ∪ {i}) − w(P σ(i)) for each i ∈ N , where P σ(i) :=
{

r ∈ N |σ−1(r) < σ−1(i)
}

, and σ−1(i) denotes the entrance number of player i.

For size monotonic games < N,w >, w(T ) − w(S) is defined for all S, T ∈ 2N

with S ⊂ T, since |w(T )| = |w| (T ) ≥ |w| (S) = |w(S)|. Now, we notice that for each
w ∈ SMIGN the interval marginal vectors mσ(w) are defined for each σ ∈ Π(N),
because the monotonicity of |w| implies w(S∪{i})−w(S∪{i}) ≥ w(S)−w(S), which
can be rewritten as w(S ∪ {i})−w(S) ≥ w(S ∪ {i})−w(S). So, w(S ∪ {i})−w(S)
is defined for each S ⊂ N and i /∈ S. Note that all the interval marginal vectors of
a size monotonic game are efficient interval payoff vectors.

3. Properties of the interval Shapley value

In this section we study some properties of the interval Shapley value on the class
of size monotonic interval games.
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The interval Shapley value Φ : SMIGN → I(R)N is defined by

Φ(w) :=
1

n!

∑

σ∈Π(N)

mσ(w), for each w ∈ SMIGN . (1)

We can write (1) as follows

Φi(w) =
1

n!

∑

σ∈Π(N)

(w(P σ(i) ∪ {i})− w(P σ(i))). (2)

The terms after the summation sign in (2) are of the form w(S ∪{i})−w(S), where
S is a subset of N not containing i.

We note that there are exactly |S|!(n − 1 − |S|)! orderings for which one has
P σ({i}) = S. The first factor, |S|!, corresponds to the number of orderings of S and
the second factor, (n − 1 − |S|)!, is just the number of orderings of N \ (S ∪ {i}).
Using this, we can rewrite (2) as

Φi(w) =
∑

S:i/∈S

|S|!(n− 1− |S|)!

n!
(w(S ∪ {i})− w(S)).

Let us observe that
∑

S:i/∈S

|S|!(n− 1− |S|)!

n!
= 1.

Next, we recall that efficiency, null player and additivity axioms for solutions
g : SMIGN → I(R)N .

Efficiency (E): For every w ∈ SMIGN it holds that
∑

i∈N
gi (w) = w (N) .

Let w ∈ SMIGN and i ∈ N . Then, i is called a null player if w(S∪{i}) = w(S),
for each S ∈ 2N\{i}.

Null Player (NP): If i ∈ N is a null player in an interval game w ∈ SMIGN ,
then gi (v) = [0, 0] .

Additivity (A): For every w,w′ ∈ SMIGN it holds that g (w + w′) = g (w) +
g (w′) .

Now, we mention the fairness property. Fairness property is introduced in van
den Brink (2002).

Let w ∈ SMIGN and i, j ∈ N . Then, i and j are called symmetric players, if
w(S ∪ {j})− w(S) = w(S ∪ {i})− w(S), for each S with i, j /∈ S.

Symmetry (S): If i, j ∈ N are symmetric players in w ∈ SMIGN , then
gi (w) = gj (w) .

Fairness state that if to an interval game w ∈ SMIGN we add an interval game
w′ ∈ SMIGN in which players i and j are symmetric, then the interval payoffs of
players i and j change by the same amount.

Fairness (F): If i, j ∈ N are symmetric players in w ∈ SMIGN , then

gi (w
′ + w)− gi (w

′) = gj (w
′ + w)− gj (w

′) for all w′ ∈ SMIGN .

Fairness requires two players’ interval payoffs to change by the same amount when-
ever a game is added where these players are symmetric. This property is quite
plausible because adding such a game does not affect the differential of these play-
ers productivities measured by interval marginal contributions.



An Axiomatization of the Interval Shapley Value 247

4. An axiomatic characterization of interval Shapley value

In this section, we give the characterization of interval Shapley value by using
fairness property on the special subclass of cooperative interval games. Firstly, we
mention about the relationship between our axioms.

Every interval solution that fulfills symmetry and additivity also satisfies fair-
ness. Further, every interval solution that fulfills the null player property and fair-
ness also satisfies symmetry. These propositions are an extension of the propositions
obtained by Rene to cooperative interval games.

Proposition 1. If g : SMIGN → I(R)N fulfills symmetry and additivity, then g
also satisfies fairness.

Proof. We know that g : SMIGN → I(R)N fulfill symmetry and additivity. Let
g : SMIGN → I(R)N satisfy symmetry and additivity. If i, j ∈ N are symmetric
in w′ ∈ SMIGN , then for every w ∈ SMIGN it holds that

gi (w
′ + w)− gi (w

′) = gi (w
′) + gi (w)− gi (w

′) (from A)
= gi (w) (from S)
= gj (w)

= gj (w) + gj (w
′)− gj (w

′) (from A)
= gj (w

′ + w) − gj (w
′) .

Thus, g fulfills fairness.

Proposition 2. If g : SMIGN → I(R)N fulfills the null player property and fair-

ness, then f also satisfies symmetry.

Proof. Let g : SMIGN → I(R)N fulfill the null player property and fairness. For
the null game w0 ∈ SMIGN given by w0 (S) = [0, 0] for all S ⊂ N, the null player
property implies that gi (w0) = [0, 0] for all i ∈ N. If i, j ∈ N are symmetric players
in w ∈ SMIGN , then

gi (w) = gi (w0 + w) − gi (w0) (from F)
= gj (w0 + w) − gj (w0)
= gj (w) .

Thus, g fulfills symmetry.

We know that the interval Shapley value is characterized by efficiency, the null
player property, symmetry and additivity. By Proposition 1 it also guarantees fair-
ness. Now, we give the main result of this paper.

Theorem 1. An interval solution g : SMIGN → I(R)N is equal to the interval

Shapley value if and only if it fulfills efficiency, the null player property and fairness.

Proof. The proof is a straightforward generalization from the classical case and can
be obtained by following the steps of Theorem 2.5 in van den Brink (2002).

Logical independence of the three axioms of Theorem 1 can be illustrated by
the following two well-known solutions. Interval Banzhaf value fulfills the null player
property and fairness but it does not satisfy efficiency. Interval egalitarian rule fulfills
effciency and fairness but it does not satisfy the null player property.
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5. The interval Banzhaf value

A cooperative game describes a situation in which a finite set of n players can
generate certain payoffs by cooperation. A one-point solution concept for coopera-
tive games is a function which assigns to every cooperative game a n-dimensional
real vector which represents a payoff distribution over the players. The study of
solution concepts is central in cooperative game theory. Two well-known solution
concepts are the Shapley value as proposed by Shapley (1953), and the Banzhaf
value, initially introduced in the context of voting games by Banzhaf (1965). Now,
we introduce the Banzhaf value by using interval uncertainty.

The classical Banzhaf value β : GN → R
N given by

βi (v) :=
1

2|N |−1

∑

i∈S

(v (S)− v (S\ {i}))

for all i ∈ N.
The Banzhaf value considers that every player is equally likely to enter to any

coalition whereas the Shapley value assumes that every player is equally likely to
join to any coalition of the same size and all coalitions with the same size are
equally likely. In addition, the Shapley value is efficient, while the Banzhaf value
is not efficient. Thus, the Shapley value distributes the total utility among players
while the total amount that players get from Banzhaf’s allocation depends on the
structure of the TU game.

The interval Banzhaf value is defined for SMIGN since the interval marginal
operators is defined for SMIGN .

The interval Banzhaf value β : SMIGN → I(R)N is defined by

β(w) :=
1

2|N |−1

∑

i∈S

(w (S)− w (S\ {i}) , for each w ∈ SMIGN .

Example 1. Let < N,w > be a cooperative interval game with N = {1, 2, 3} and
w (1) = w (13) = [7, 7] , w (12) = [12, 17] , w (123) = [24, 29] , and w (S) = [0, 0]
otherwise. The interval Shapley value of this game can be calculated as follows: Then
the interval marginal vectors are given in the following table, where σ : N → N
is identified with (σ (1) , σ (2) , σ (3)) . Firstly, for σ1 = (1, 2, 3) , we calculate the
interval marginal vectors. Then,

mσ1

1 (w) = w (1) = [7, 7] ,

mσ1

2 (w) = w (12)− w (1) = [5, 10] ,

mσ1

3 (w) = w (123)− w (12) = [12, 12] .

The others can be calculated similarly, which is shown in Table 1. Table 1 illustrates
the interval marginal vectors of the cooperative interval game in Example 1. The
average of the six interval marjinal vectors is the interval Shapley value of this game
which can be shown as:

Φ(w) = ([
27

2
, 16], [

13

2
, 9], [4, 4]).

The interval Banzhaf value of this game can be calculated as follows: The interval
Banzhaf value is defined as

β(w) =
1

2|N |−1

∑

i∈S

(w (S)− w (S\ {i}) .
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Table 1: Interval marginal vectors

σ mσ

1 (w) mσ

2 (w) mσ

3 (w)

σ1 = (1, 2, 3) [7, 7] [5, 10] [12, 12]

σ2 = (1, 3, 2) [7, 7] [17, 22] [0, 0]

σ3 = (2, 1, 3) [12, 17] [0, 0] [12, 12]

σ4 = (2, 3, 1) [24, 29] [0, 0] [0, 0]

σ5 = (3, 1, 2) [7, 7] [17, 22] [0, 0]

σ6 = (3, 2, 1) [24, 29] [0, 0] [0, 0]

Then,

β1(w) =
1

22

∑

1∈S

(w (S)− w (S\ {1})

=
1

22
(w (1) + w (12)− w (2) + w (13)− w (3) + w (123)− w (23))

=
1

22
([7, 7] + [12, 17]− [0, 0] + [7, 7]− [0, 0] + [24, 29]− [0, 0])

=
1

4
([50, 60]) = [12

1

2
, 15].

The others can be calculated similarly:

β2(w) = [5
1

2
, 8], β3(w) = [3, 3] .

Then, the interval Banzhaf value can be shown as

β(w) = ([12
1

2
, 15], [5

1

2
, 8], [3, 3]).

Remark 1. The interval Banzhaf value satisfies the null player property, and fair-
ness but does not fulfill efficiency.

In Example 1, the interval Banzhaf value does not satisfy efficiency.

3
∑

i=1

βi(w) = β1(w) + β2(w) + β3(w)

= [12
1

2
, 15] + [5

1

2
, 8] + [3, 3]

= [21, 26] 6= [24, 29] = w (N)

6. The interval egalitarian rule

A family of monotonic solutions to general cooperative games (coalitional form
games where utility is not assumed to be transferable) is the egalitarian rule. The
egalitarian rule is introduced by Kalai and Samet (1985).

The classical egalitarian rule γ : GN → R
N is given by

γi (v) :=
v (N)

|N |
,



250 Osman Palanci, S. Zeynep Alparslan Gök, Gerhard-Wilhelm Weber

for all i ∈ N.
The interval egalitarian rule is defined for IGN . The interval egalitarian rule

γ : IGN → I(R)N is defined by

γ(w) =
w (N)

|N |
, for each w ∈ IGN .

Example 2. Consider again the cooperative interval game in Example 1. Then, the
interval egalitarian rule of this game is:

γi(w) =
w (N)

|N |
=

[24, 29]

3
= [8, 9

2

3
], i = 1, 2, 3.

Remark 2. The interval egalitarian rule satisfies efficiency and fairness but does
not fulfill the null player property.

Example 3. Consider the cooperative interval game < N,w > with N = {1, 2, 3}
and w (2) = w (12) = [7, 7] , w (3) = w (13) = [12, 17] , w (23) = w (N) = [24, 29] ,
and w (S) = [0, 0] otherwise. The interval egalitarian rule of this game is:

γi(w) =
w (N)

|N |
=

[24, 29]

3
= [8, 9

2

3
], i = 1, 2, 3

Here, the null player is player 1 and γ1(w) = [8, 9
2

3
]. Thus, the interval egalitarian

rule does not satisfy the null player property.

7. Conclusion and Outlook

We end this paper by giving a concluding remark and an invitation to future research
and application. The Shapley value and the Banzhaf value are the most common
single-valued solutions in cooperative game theory. In this context, we give the
characterization of the interval Shapley value by using fairness property in the
smaller class of cooperative interval games. Then, we introduce the interval Banzhaf
value and the egalitarian rule by using interval uncertainty.

We notice that whereas the Shapley value and the Banzhaf value are defined
and axiomatically characterized for arbitrary cooperative TU-games, the interval
Shapley value and the Banzhaf value is defined only for a subclass of cooperative
interval games, called size monotonic games. The interval Shapley value is axiomat-
ically characterized but the interval Banzhaf value and the interval egalitarian rule
are not axiomatically characterized. There exists a gap to be filled by characterizing
the interval Banzhaf value and the interval egalitarian rule. In fact, it is possible to
characterize the interval Banzhaf value and the interval egalitarian rule in the next
future.

Finally, the partial subtraction operator, introduced in Alparslan Gök et al.
(2009a), is an essential tool in interval game theory. But, it is possible to obtain
the solutions for cooperative interval games by using the Moore’s substraction op-
erator1. As a future work it is interesting to find characterizations of the interval
Shapley value and the interval Banzhaf value on the whole class of size monotonic
games and to calculate the interval Banzhaf value by using the Moore’s subtraction
operator.

1 The Moore’s subtraction operator (Moore (1979)) is defined by I ⊖ J = [I − J, I − J ].
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