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Abstract Generalization of the theory of the bargaining set, the kernel,
and the nucleolus for cooperative TU-games, where objections and counter–
objections are permited only between the members of a family of coalitions A
and can use only the members of a family of coalitions B ⊃ A, is considered.

Two versions of objections and two versions of counter–objections generalize
the definitions for singletons. These definitions provide 4 types of generalized
bargaining sets. For each of them, necessary and sufficient conditions on A

and B for existence these bargaining sets at each game of the considered
class are obtained.

Two types of generalized kernels are defined. For one of them, the conditions
that ensure its existence generalize the result for B = 2N of Naumova (2007).
Generalized nucleolus is not single–point and its intersection with nonempty
generalized kernel may be the empty set. Conditions on A which ensure that
the intersections of the generalized nucleolus with two types of generalized
bargaining sets are nonempty sets, are obtained. The generalized nucleolus
always intersects the first type of the generalized kernel only if A is contained
in a partition of the set of players.
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1. Introduction

The theory of the bargaining set, the kernel, and the nucleolus for cooperative
TU-games was born in papers (Aumann, Maschler, 1964, Davis, Maschler, 1963 (1),
Davis, Maschler, 1967 (2), Maschler, Peleg, 1966, Schmeidler, 1969). First the
proofs of existence theorems for the kernel and the bargaining set Mi

1 used fixed
point theorems, Schmeidler, 1969 defined the nucleolus which always exists and be-
longs to these sets. In these papers for each imputation x of TU–cooperative game,
an objection of a player i against a player j at x and a counter–objection to this ob-
jection were defined. An imputation x0 belongs to the bargaining set Mi

1 if for each
players i, j for each objection of i against j at x0 there exists a counter–objection.
At the same time some objections and counter–objections between coalitions were
defined and it was shown that the existence theorem is not fulfilled if objections
and counter–objections are permited between all pairs of disjoint coalitions.

This paper considers the case when objections and counter–objections are per-
mited only between the members of a family of coalitions A. Moreover, objections
and counter–objections can use only the members of a family of coalitions B ⊃ A.
Two versions of objections and two versions of counter–objections generalize the def-
initions for singletons. These definitions provide four generalized bargaining sets.
Naumova, 1976, Naumova, 1978, Naumova, 2007 considered two of these bargaining
sets for B = 2N .
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We consider a class of n–person TU–games with nonnegative values of character-
istic functions. For each of 4 types of generalized bargaining sets, necessary and suf-
ficient conditions on A and B for existence these bargaining sets at each game of the
considered class are obtained. Sufficiency results are proved as in (Naumova, 2007),
necessity results are new.

Two types of generalized kernels are possible. In this paper only one of them is
considered. This generalized kernel is contained in the largest bargaining set and
its narrowing is contained in two generalized bargaining sets. The conditions that
ensure their existence generalize the result for B = 2N of Naumova, 2007.

Generalized nucleolus must use in its definition only elements of B which are
suitable for objections or for counter–objections. It is not single–point and its in-
tersection with nonempty generalized kernel may be the empty set. Conditions on
A which ensure that the intersection of the generalized nucleolus with two types of
generalized bargaining sets are nonempty sets, are obtained. The generalized nucle-
olus always intersects the generalized kernel only in trivial case (when ”essential”
elements of A are contained in a partition of the set of players).

2. Definitions

For simplicity, this paper considers not all coalition structures but only the case
generated by the grand coalition.

Let Γ 0 be the set of cooperative TU–games (N, v) such that v({i}) = 0 for all
i ∈ N and v(S) ≥ 0 for all S ⊂ N . (Such games are 0-normalizations of games
(N, v) with

∑

i∈S v({i}) ≤ v(S) for all S ⊂ N .) Let V 0
N be the set of v such that

(N, v) ∈ Γ 0.
Denote x(S) =

∑

i∈S xi.
For (N, v) ∈ Γ 0, an imputation is a vector x = {xi}i∈N such that x(N) = v(N)

and xi ≥ v({i}) for all i ∈ N .
Consider two versions of generalized objections.
Let (N, v) ∈ Γ 0, K,L ⊂ N , x be an imputation for (N, v).
A strong B–objection of K against L at x is a pair (C, yC), such that C ∈ B,

K ⊂ C, L ∩ C = ∅, yC = {yi}i∈C , y(C) = v(C), yi > xi for all i ∈ K, and yi ≥ xi

for all i ∈ C.
A coalition C ∈ B is suitable for strong B–objection of K against L if K ⊂ C,

L ∩C = ∅.
Let K ∩L = ∅ and x(L) > 0. A weak B–objection of K against L at x is a pair

(C, yC), such that C ∈ B, K ⊂ C, L 6⊂ C, yC = {yi}i∈C , y(C) = v(C), yi > xi for
all i ∈ K, and yi ≥ xi for all i ∈ C.

A coalition C ∈ B is suitable for weak B– objection of K against L if K ⊂ C,
L 6⊂ C.

Consider two versions of generalized counter–objections.
A weak B–counter–objection to strong or weak B–objection (C, yC) of K against

L at x is a pair (D, zD) such that D ∈ B, L ⊂ D, K 6⊂ D, z(D) = v(D), zi ≥ xi for
all i ∈ D, zi ≥ yi for all i ∈ C ∩D.

A coalition D ∈ B is suitable for weak B– counter–objection to objection of K
against L if L ⊂ D, K 6⊂ D.

A strong B–counter-objection to strong or weak B–objection (C, yC) of K
againstL at x is a pair (D, zD) such that D ∈ B, L ⊂ D, K ∩D = ∅, z(D) = v(D),
zi ≥ xi for all i ∈ D, zi ≥ yi for all i ∈ C ∩D.
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A coalition D ∈ B is suitable for strong B–counter–objection to objection of K
against L if L ⊂ D, K ∩D = ∅.

Now we define 4 types of generalized bargaining sets.
Let A be a set of subsets of N . An imputation x of (N, v) belongs to the strong–

weak bargaining set Msw
A,B(N, v) if for all K,L ∈ A, for each strong B–objection of

K against L at x, there exists a weak B–counter-objection.
In (Naumova, 2007) the strong–weak bargaining set Msw

A,2N (N, v) is called the

bargaining set Mi
A(N, v).

An imputation x of (N, v) belongs to the weak–weak bargaining set Mww
A,B(N, v)

if for all K,L ∈ A for each weak B–objection of K against L at x, there exists a
weak B–counter-objection.

An imputation x of (N, v) belongs to the strong–strong bargaining set
Mss

A,B(N, v) if for all K,L ∈ A, for each strong B–objection of K against L at
x, there exists a strong B–counter-objection.

In (Naumova, 2007) the strong–strong bargaining set Mss
A,2N (N, v) is called the

strong bargaining set M̄i
A(N, v).

An imputation x of (N, v) belongs to the weak–strong bargaining set Mws
A,B(N, v)

if for all K,L ∈ A, for each weak B–objection of K against L at x, there exists a
strong B–counter-objection.

For each of these 4 bargaining sets, a permited objection is justified if it has no
permited counter–objection.

Note that
Mws

AB(N, v) ⊂ Mww
AB(N, v) ⊂ Msw

AB(N, v)

and
Mws

AB(N, v) ⊂ Mss
AB(N, v) ⊂ Msw

AB(N, v).

If A is the set of all singletons and B is the set of all subsets of N , then
Mws

AB(N, v) = Mww
AB(N, v) = Mss

AB(N, v) = Msw
AB(N, v) = Mi

1(N, v).
For families of coalitions A, B with A ⊂ B, consider the following generalizations

of the kernel.
Let K,L ⊂ N and x be an imputation of (N, v). K B–outweighs L at x if

K ∩ L = ∅, x(L) > v(L), and sBK,L(x) > sBL,K(x), where

sBP,Q(x) = max{v(S)− x(S) : S ∈ B, P ⊂ S,Q 6⊂ S}.

The set KAB(N, v) is the set of all imputations x of (N, v) such that no K ∈ A
can B–outweigh any L ∈ A at x.

In (Naumova, 2007) the set KA2N (N, v) is denoted by KA(N, v).
Let K,L ⊂ N and x be an imputation of (N, v). K B–weakly outweighs L at x

if K ∩ L = ∅, x(L) > 0, and sBK,L(x) > sBL,K(x).

The set K0
AB(N, v) is the set of all imputations x of (N, v) such that no K ∈ A

can B–weakly outweigh any L ∈ A at x.
Then K0

AB(N, v) ⊂ KAB(N, v) because v(L) ≥ 0 for all L ∈ A.
If A is the set of all singletons and B is the set of all subsets of N , then KAB

and K0
AB coincide with the kernel.

Another generalization of the kernel is possible.
LetK,L ⊂ N and x be an imputation of (N, v). K B–prevails L at x ifK∩L = ∅,

x(L) > v(L), and tBK,L(x) > tBL,K(x), where

tBP,Q(x) = max{v(S)− x(S) : S ∈ B, P ⊂ S,Q ∩ S = ∅}.
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The set K̄AB(N, v) is the set of all imputations x of (N, v) such that no K ∈ A
can B–prevail any L ∈ A at x.

Now we define a generalization of the nucleolus.
Let B be a set of subsets of N , for each imputation y of (N, v), let θB(N, v, y) =

{v(S)− y(S)}S∈B with decreasing coordinates.
For (N, v) ∈ Γ 0, the B–nucleolus of (N, v) NuclB(N, v) is the set of all impu-

tations x of (N, v) such that θB(N, v, x) 6>lex θB(N, v, y) for all imputations y of
(N, v).

If B = 2N then B–nucleolus is the nucleolus defined in (Schmeidler, 1969).

3. Existence condition for KAB(N, v)

A set of coalitions A generates the undirected graph G = G(A), where A is the set
of nodes and K,L ∈ A are adjacent iff K ∩ L = ∅.

Consider the following property of A.
C0) If a single node is taken out from each component of G(A), then the union

of the remaining elements of A does not contain N .

Theorem 1. Let A be a set of subsets of N . If A satisfies condition C0 then
K0

AB(N, v) 6= ∅ and K0
AB(N, v) 6= ∅ for all v ∈ V 0

N .
If {i}, S ∈ A implies {i} ∪ S ∈ B and KAB(N, v) 6= ∅ for all v ∈ V 0

N , then A
satisfies condition C0.

The proof of this theorem coincides with the proof of Theorem 2 in
(Naumova, 2007).

Remark 1. If B = A then C0 is not necessary. The following example demon-
strates this fact.

Example 1. N = {1, 2, 3}, A = {{1}, {2}, {1, 3}}. Then KAA(N, v) 6= ∅ for all
v ∈ V 0

N .

Proof. For (N, v), consider 2 cases.
Case 1. v({1, 3}) ≥ v(N). Take x = (0, 0, v(N)). If x 6∈ KAA(N, v), then {2}

overweights {1, 3} at x. But sA{1,3},{2}(x) = v({1, 3}) − v(N) ≥ 0, sA{2},{1,3}(x) =
0− x2 = 0.

Case 2. v({1, 3}) < v(N). Take y ∈ R3 such that y1 = y2 = (v(N)−v({1, 3}))/2,
y3 = v({1, 3}). Then
sA{1,3},{2}(y) = v({1, 3})− y1 − y3 = −y1,

sA{2},{1,3}(y) = 0− y2 = −y2 = −y1,

sA{2},{1}(y) = 0− y2,

sA{1},{2}(y) = max{−y1, v({1, 3})− y1 − y3} = −y1 = −y2.

Thus, y ∈ KAA(N, v). ⊓⊔

4. Existence conditions for generalized bargaining sets

Lemma 1. Let (C, yC) be a weak or strong B–objection of K against L at x. Let
D ⊂ N , D be suitable for weak or strong B–counter–objection to objection of K
against L. Then there exists a counter-objection (D, zD) to this objection if and
only if

v(D)− x(D) ≥ (y − x)(C ∩D).



Generalized Nucleolus, Kernels, and Bargainig Sets 235

Corollary 1. If (C, yC) is a justified permited B–objection of K against L at x,
then v(C) − x(C) > v(D) − x(D) for all D which are suitable for permited B–
counter–objection.

The proof of this Lemma coincides with the proof of Lemma 1 in
(Naumova, 2007).

Theorem 2. Let A ⊂ B, (N, v) ∈ Γ 0. Then
KAB(N, v) ⊂ Msw

AB(N, v),
K0

AB(N, v) ⊂ Mww
AB(N, v),

K̄AB(N, v) ⊂ Mss
AB(N, v).

Proof. Let x ∈ KAB(N, v) and (C, yC) be a strong B–objection of K against L at x.
If x(L) ≤ v(L) then by Lemma 1, there exists a weak B–counter–objection (L, zL) to
this objection as C ∩L = ∅. If sBK,L(x) ≤ sBL,K(x) then there exists D ∈ B such that
D is suitable for counter–objection to this objection and v(D)−x(D) ≥ v(C)−x(C).
By Corollary to Lemma 1, (C, yC) is not justified.

Similarly, we prove that K̄AB(N, v) ⊂ Mss
AB(N, v).

Let x ∈ K0
AB(N, v) and (C, yC) be a weak B–objection ofK against L at x. Then

x(L) > 0, hence sBK,L(x) ≤ sBL,K(x) and, as in the case x ∈ KAB(N, v), (C, yC) is
not justified. ⊓⊔

Now we describe the results of the author in (Naumova, 2007) that will be used
later.

Let N = {1, . . . , n}, X ⊂ Rn, A be a collection of subsets of N , {≻x}x∈X be a
collection of binary relations. Then x0 ∈ X is an equilibrium vector on A if K 6≻x0 L
for all K,L ∈ A.

For b > 0, K ∈ A denote

X(b) = {x ∈ Rn : xi ≥ 0, x(N) = b},

FK(b) = {x ∈ X(b) : L 6≻x K for all L ∈ A}.

Then x is an equilibrium vector on A iff x ∈
⋂

K∈A FK(b).

The following theorem is Theorem 1 in (Naumova, 2007).

Theorem 3. Let a family of binary relations {≻x}x∈X(b) on A satisfy the condi-
tions:
1) for all K ∈ A, the set FK(b) is closed;
2) if xi = 0 for all i ∈ K, then x ∈ FK(b);
3) for each x ∈ X(b), the set of coalitions {L ∈ A : K ≻x L for some K ∈ A}
does not cover N .

Then there exists an equilibrum vector x0 ∈ X(b) on A.

For all 4 types of generalized bargaining sets, sufficient conditions of their exis-
tence will be obtained using this theorem.
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Definition 1. Let A be a family of subsets of N and B ⊃ A. A directed graph Gr
is called AB–strong–weak–admissible if A is the set of its vertices and there exists
a map f defined on the set of edges of Gr, that takes each oriented edge (K,L) to
a pair f(K,L) = (Q, r) (Q ∈ B, r ∈ R1, r = r(Q)) and satisfies the following 3
conditions:

C1. If f(K,L) = (Q, r(Q)), then K ⊂ Q, Q ∩ L = ∅, |Q| > 1.
C2. If f(K,L) = (Q, r), f(R,P ) = (S, r(S)), L ⊂ S, K 6⊂ S, then Q ∩ S 6= ∅.
C3. If f(K,L) = (Q, r(Q)), f(R,P ) = (S, r(S)), L ⊂ S, K 6⊂ S, then r(Q) >

r(S).

Condition C1 means that Q is suitable for strong B–objection of K against L.
Condition C2 means that if S is suitable for weak B–counter–objection to objection
of K against L, then Q ∩ S 6= ∅. Condition C3 means that if S is suitable for weak
B–counter–objection to objection of K against L. then r(Q) > r(S).

Example 2. Let A1 = {K,L,M}, where K ⊂ L, K 6= L, M ∩ L = ∅, M ∪ L = N .
Let B consist of all unions of members of A. Let Gr1 be a digraph, where A1 is
the set of vertices and {(K,M), (M,L)} is the set of edges. Then Gr1 is not A1B–
strong–weak–admissible. Indeed, if Gr1 is A1B–strong–weak–admissible and f is the
corresponding map, then, by C1, f(M,L) = (M, r), f(K,M) = (Q, t), Q ∩M = ∅,
but this contradicts C2.

Example 3. Let N = {a, b, c, d}, A = {{a}, {b}, {c}, {c, d}}, B contain all unions of
elements of A. The following digraph is AB–strong–weak–admissible.

Indeed, take
f({c}, {b}) = ({a, c}, 2),
f({b}, {c, d}) = ({a, b}, 1),
f({c, d}, {a}) = ({b, c, d}, 3).

Theorem 4. Let A be a set of subsets of N and B ⊃ A. Then Msw
AB(N, v) 6= ∅ for

all v ∈ V 0
N if and only if for each AB–strong–weak–admissible graph Gr the set of

the ends of its edges does not cover N .

Proof. Let for each AB–strong–weak–admissible graph Gr the set of the ends of its
edges does not cover N . For each imputation x define the following binary relation
≻x on A. K ≻x L iff K has a justified strong B–objection against L at x. We check
that this relation satisfies all conditions of Theorem 3. Condition (1) was checked
in (Naumova, 2007), condition (2) follows from v ∈ V 0

N .
Let us check condition (3). For x, define AB–strong–weak–admissible graph as

follows. (K,L) is the edge iff K ≻x L and f(K,L) = (Q, v(Q) − x(Q)) for some
justified strong B–objection of K against L. Then the map f satisfies conditions
C1, C2, C3 in the definition of strong–weak–admissible graph. Indeed, C1 follows
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from the definition of strong objection, C3 follows from Corollary to Lemma 1, C2
follows from Lemma 1. Then condition (3) follows from our supposition.

Let there exist a AB–strong–weak–admissible graph Gr such that the set of
the ends of its edges covers N . We construct v ∈ V 0

N such that Msw
AB(N, v) = ∅

as follows. v(N) = 1, v(T ) = 0 if there is no edge (K,L) such that f(K,L) =
(T, r(T )). Otherwise, we define first v(Q) for Q with minimal r(Q). For all such Q
take v(Q) > 1.

Suppose that v(Q) is defined for all Q with r(Q) < r̄. Let

α(r̄) = max{v(Q) : r(Q) < r̄}.

If r(T ) = r̄, then take v(T ) > nα + n + 1. By this way, all v(T ) will be defined
inductively.

Suppose that x ∈ Msw
AB(N, v). We prove that for each edge (K,L) of Gr, x(L) =

0. Let f(K,L) = (Q, r(Q)). Take yi = (v(Q) − x(Q))/|Q| for each i ∈ Q, then due
to C1, (Q, yQ) is a strong objection of K against L at x. Let S be suitable for
weak counter–objection. If v(S) = 0 then x(S) = 0 and x(L) = 0. If v(S) > 0 then
S ∩Q 6= ∅, r(Q) > r(S),

(y − x)(S ∩Q) ≥ (v(Q)− x(Q))/|Q| − x(S) > (v(Q)− 1)/n− 1 > α(r(Q)) > v(S).

As (y − x)(S ∩ Q) > v(S), by Lemma 1, there is no counter–objection (S, zS) to
objection (Q, yQ). Thus only the case x(L) = 0 is possible. Since the ends of the
edges of Gr cover N , we get x(N) = 0 and this contradicts x(N) = 1. ⊓⊔

Remark 2. Note that the second part of the proof used v with v(S) > v(N).
In (Naumova, 2007)for B = 2N and |N | ≤ 5, this part of the theorem was proved
using v(S) ∈ {0, 1}, but that proof is not suitable for arbitrary B.

Similarly, for each of 3 remaining types of generalized bargaining sets, we define
its type ofAB– admissible graphs and obtain the corresponding versions of existence
theorems.

Definition 2. Let A be a family of subsets of N and B ⊃ A. A directed graph Gr
is called AB–strong–strong–admissible if A is the set of its vertices and there exists
a map g defined on the set of edges of Gr, that takes each oriented edge (K,L) to
a pair g(K,L) = (Q, r) (Q ∈ B, r ∈ R1, r = r(Q)) and satisfies the following 3
conditions:

C1. If g(K,L) = (Q, r(Q)), then K ⊂ Q, Q ∩ L = ∅, |Q| > 1.
C2’. If g(K,L) = (Q, r(Q)), g(R,P ) = (S, r(S)), L ⊂ S, K ∩ S = ∅, then

Q ∩ S 6= ∅.
C3’. If g(K,L) = (Q, r(Q)), g(R,P ) = (S, r(S)), L ⊂ S, K ∩ S = ∅, then

r(Q) > r(S).

Theorem 5. Let A be a set of subsets of N and B ⊃ A. Then Mss
AB(N, v) 6= ∅ for

all v ∈ V 0
N iff for each AB–strong–strong–admissible graph Gr the set of the ends

of its edges does not cover N .
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Definition 3. Let A be a family of subsets of N and B ⊃ A. A directed graph Gr
is called AB–weak-weak–admissible if A is the set of its vertices and there exists a
map f defined on the set of edges of Gr, that takes each oriented edge (K,L) to
a pair f(K,L) = (Q, r) (Q ∈ B, r ∈ R1, r = r(O)) and satisfies the following 3
conditions:

C1’. If f(K,L) = (Q, r(Q)), then K ⊂ Q, L 6⊂ Q, |Q| > 1.
C2. If f(K,L) = (Q, r(Q)), f(R,P ) = (S, r(S)), L ⊂ S, K 6⊂ S, then Q∩S 6= ∅.
C3. If f(K,L) = (Q, r(Q)), f(R,P ) = (S, r(S)), L ⊂ S, K 6⊂ S, then r(Q) >

r(S).

Theorem 6. Let A be a set of subsets of N and B ⊃ A. Then Mww
AB(N, v) 6= ∅ for

all v ∈ V 0
N iff for each AB–weak–weak–admissible graph Gr, the set of the ends of

its edges does not cover N .

Example 4. Let A = {K,L,M}, where L∪M = N , L∩M = ∅, K ⊂ L, K 6= L and
B consist of all unions of members of A. Then there exists (N, v) ∈ Γ 0 such that
Mww

AB(N, v) = ∅ and Msw
AB(N, v) 6= ∅ for all v ∈ V 0

N . Indeed the graph with edges
(K,M) and (M,L) is AB–weak–weak–admissible since we can take f(K,M) =
(L, 1) and f(M,L) = (K ∪M, 2). Moreover, in view of Example 2, there is no AB–
strong–weak–admissible graph with the same set of vertices such that the ends of
its edges cover N .

Definition 4. Let A be a family of subsets of N and B ⊃ A. A directed graph Gr
is called AB–weak-strong–admissible if A is the set of its vertices and there exists
a map f defined on the set of edges of Gr, that takes each oriented edge (K,L) to
a pair f(K,L) = (Q, r) (Q ∈ B, r ∈ R1, r = r(O)) and satisfies the following 3
conditions:

C1’. If f(K,L) = (Q, r(Q)), then K ⊂ Q, L 6⊂ Q, |Q| > 1.
C2’. If f(K,L) = (Q, r(Q)), f(R,P ) = (S, r(S)), L ⊂ S, K ∩ S = ∅, then

Q ∩ S 6= ∅.
C3’. If f(K,L) = (Q, r(Q)), f(R,P ) = (S, r(S)), L ⊂ S, K ∩ S = ∅, then

r(Q) > r(S).

Theorem 7. Let A be a set of subsets of N and B ⊃ A. Then Mws
AB(N, v) 6= ∅ for

all v ∈ V 0
N iff for each AB–weak–strong–admissible graph Gr, the set of the ends of

its edges does not cover N .

5. Conditions for intersection of B–nucleolus with generalized
bargaining sets

Definition 5. S ∈ A is unessential for A if S∩T 6= ∅ for all T ∈ A and S ⊃ T1∪T2

for all T1, T2 ∈ A with T1 ∩ T2 = ∅.

If S is unessential for A then there are no objections neither of S against any
L ∈ A nor against S and unions with S are not suitable for objections and counter–
objections. Hence we can take off all unessential elements for A from A.

Denote A0 = {S ∈ A : S is not unessential for A}.

Theorem 8. Let B0 consist of the unions of elements of A0. Then NuclB0(N, v)∩
Mww

A0B0(N, v) 6= ∅ for all v ∈ V 0
N iff A0 is contained in a partition of N .
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Proof. Let A0 be contained in a partition of N , then the proof that NuclB0(N, v) ⊂
Mww

AB(N, v) is the same as for the case of singletons.

Let NuclB0(N, v) ∩Mww
A0B0(N, v) 6= ∅ for all v ∈ V 0

N .
Step 1. We prove that if there exist S, P,Q ∈ A such that P 6= Q, P ∩ Q 6= ∅,

P∩S = ∅, Q∩S = ∅ then there exists v ∈ V 0
N withNuclB0(N, v)∩Mww

A0B0(N, v) = ∅.
Let Q 6⊂ P . Consider the following (N, v). Let ǫ > 0.

v(T ) =







1 for T = N,
1 + ǫ for T = P ∪ S,
0 otherwise.

Let y ∈ NuclB0(N, v)∩Mww
A0B0(N, v). Note that Q 6⊂ P ∪S and y(P ∪S) < v(P ∪S),

therefore by Lemma 1, if y(Q) > 0 then S has a justified objection (P ∪ S, zP∪S)
against Q. Hence y(Q) = 0. As y ∈ NuclB0(N, v), we have y(P ∪ S) = 1. There
exist i0 ∈ P ∩Q, j0 ∈ P ∪ S with yj0 ≥ 1/n. Let 0 < δ < 1/(2n). Take yδ such that

yδi =







yi0 + δ for i = i0,
yj0 − δ for i = j0,
yi otherwise.

Then θB
0

(N, v, y) >lex θB
0

(N, v, yδ). Indeed, Q ∈ B0, v(Q) − y(Q) = 0 > v(Q) −
yδ(Q) > −1/(2n) and if v(T ) − y(T ) < v(T ) − yδ(T ) then j0 ∈ T , v(T ) = 0
and v(T ) − yδ(T ) < −1/(2n), hence v(Q) − yδ(Q) > v(T ) − yδ(T ). Thus y 6∈
NuclB0(N, v).

Step 2. Let S ∩ T 6= ∅ for all S, T ∈ A. Then no objections are possible and
Mww

A0B0(N, v) is the set of all imputations. Each S ∈ A is unessential, hence B0 = ∅,
NuclB0(N, v) is the set of all imputations., and NuclB0(N, v) = Mww

A0B0(N, v).
Let P ∩ T = ∅ for some P, T ∈ A. If {Q ∈ A : Q ∩ P = ∅} ∪ {P} = A0 then it

was proved at Step 1 that A0 is contained in a partition of N .
Else there exist T1, T2, S ∈ A0 such that T1∩T2 = ∅, S ∩Ti 6= ∅ for i = 1, 2, and

T2 6⊂ S. We prove that this case is impossible. Consider the following v ∈ V 0
N . Let

ǫ > 0.

v(Q) =







1 for Q = N,
1 + ǫ for Q = S ∪ T1,
0 otherwise.

Suppose that x ∈ NuclB0(N, v) ∩Mww
A0B0(N, v). As T1 ∪ S 6⊃ T2 and x(T1 ∪ S) <

v(T1∪S), there exists an objection of T1 against T2. As this objection is not justified,
x(T2) = 0. Now the proof is the same as at Step 1. As x ∈ NuclB0(N, v), x(T1∪S) =
1, there exist i0 ∈ S ∩ T2, j0 ∈ T1 ∪ S with xj0 ≥ 1/n. Take 0 < δ < 1/(2n) and xδ

as at Step 1. Then θB
0

(N, v, x) >lex θB
0

(N, v, xδ) and x 6∈ NuclB0(N, v). ⊓⊔

Corollary 2. Let B consist of the unions of elements of A. Then NuclB0(N, v) ∩
K0

AB(N, v) 6= ∅ for all v ∈ V 0
N iff A0 is contained in a partition of N .

Remark 3. Note that it does not follow from this theorem that NuclB0(N, v)∩
KAB(N, v) 6= ∅ for all v ∈ V 0

N iff A0 is contained in a partition of N because only
K0

AB(N, v) is contained in Mww
AB(N, v). However, this can be proved by exactly the

same constructions as in Theorem 8
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Theorem 9. Let B0 consist of the unions of elements of A0. Then NuclB0(N, v)∩
KAB(N, v) 6= ∅ for all v ∈ V 0

N iff A0 is contained in a partition of N .

Now we describe conditions on A that ensure intersection of B–nucleolus with
the bargaining set Msw

AB(N, v).
For i ∈ N , denote Ai = {T ∈ A : i ∈ T }.

Definition 6. A collection of coalitions A is weakly mixed at N if A = ∪k
i=1B

i,
where
1) each Bi is contained in a partition of N ;
2) Q ∈ Bi, S ∈ Bj, and i 6= j imply Q ∩ S 6= ∅;
3) for each i ∈ N , Q ∈ Ai, S ∈ A with Q ∩ S = ∅, there exists j ∈ N such that
Aj ⊃ Ai ∪ {S} \ {Q}.

Weakly mixed collections of coalitions were introduced in (Naumova, 2012) for
another problem associated with A–nucleolus.

Remark 4. If k ≤ 2 then condition 3 follows from conditions 1 and 2.

Example 5. Let N = {1, 2, . . . , 5}, C = B1 ∪ B2, where
B1 = {{1, 2, 3}, {4, 5}},
B2 = {{1, 4}, {2, 5}},
then C is weakly mixed at N .

Example 6. Let N = {1, 2, . . . , 6}, C = B1 ∪ B2 ∪ B3, where
B1 = {{1, 2}, {3, 4}},
B2 = {{1, 3}, {2, 4}},
B3 = {{1, 4, 5}, {2, 3, 6}},
then C satisfies conditions C0, (1), and (2), but does not satisfy (3) (for i = 1 and
Q = {1, 2}), hence C is not weaky mixed at N .

Theorem 10. Let A be a weakly mixed at N collection of coalitions, B consist of
all unions of elements of A. Then NuclB(N, v) ⊂ Msw

AB(N, v) for all v ∈ V 0
N .

Proof. Let x ∈ NuclB(N, v). Suppose that for some v, x 6∈ Msw
AB(N, v). Then there

exist S,Q ∈ A such that S ∩ Q = ∅ and S has a justified strong objection (T, zT )
at x against Q. Then T ∩Q = ∅ and x(Q) > v(Q). Take i0 ∈ Q such that xi0 > 0.
Since A is weakly mixed, there exists j0 ∈ N such that Aj0 ⊃ Ai0 ∪ {S} \ {Q}. Let
δ > 0, y ∈ Rn, where

yi =







xi − δ for i = i0,
xi + δ for i = j0,
xi otherwise.

Let P ∈ B and y(P ) < x(P ). Then i0 ∈ P and j0 6∈ P . Since j0 ∈ S, P 6⊃ S.
There exists P 0 ∈ A such that P 0 ⊂ P , i0 ∈ P 0 and j0 6∈ P 0. By the definition

of j0, only the case P 0 = Q is possible, hence P ⊃ Q and P can be used for weak
counter–objection to any objection of S against Q.

Since (T, zT ) is a justified strong objection of S against Q at x, we have i0 6∈ T ,
j0 ∈ S ⊂ T , and v(T )− x(T ) > v(P )− x(P ).

If δ is small enought, v(T ) − y(T ) > v(P ) − y(P ) for all P ∈ B such that
v(P )−y(P ) > v(P )−x(P ). Since v(T )−y(T ) < v(T )−x(T ), hence θB(N, v, x) >lex

θB(N, v, y) and x 6∈ NuclB(N, v). ⊓⊔
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Theorem 11. Let A do not contain singletons, do not contain S such that S∩T 6= ∅
for all T ∈ A and B consist of all unions of elements of A. If NuclB(N, v) ∩
Msw

AB(N, v) 6= ∅ for all v ∈ V 0
N then A is a weakly mixed at N collection of coalitions.

Proof. Step 1. We prove that if there exist S, P,Q ∈ A such that P 6= Q, P ∩Q 6= ∅,
P ∩S = ∅, Q∩S = ∅ then there exists v ∈ V 0

N with NuclB(N, v)∩Msw
AB(N, v) = ∅.

We can suppose that P 6⊃ Q.
Take the following v ∈ V 0

N .

v(T ) =

{

1 for T = N,S, P,
0 otherwise.

Let x ∈ NuclB(N, v) ∩Msw
AB(N, v). Let x(Q) > 0, then x(S) < 1 and there exists

a strong objection of S against Q at x. Since P 6⊃ Q, such strong objection is a
justified strong objection. Thus x(Q) = 0.

As x ∈ NuclB(N, v), x(P ) = x(S) = 1/2. Hence, as x(Q) = 0, there exists
i0 ∈ P \ Q such that xi0 > 0. Fix j0 ∈ P ∩ Q. Let 0 < δ < x(i0)/2. Take the
following y ∈ Rn.

yi =







xi0 − δ for i = i0,
xi + δ for i = j0,
xi otherwise.

Consider 2 cases.
Case 1. i0 6∈ T for all T ∈ A \ {P}. Then y(T ) ≥ x(T ) for all T ∈ B and

y(Q) > x(Q), hence x 6∈ NuclB(N, v).
Case 2. i0 ∈ T for some T ∈ A\ {P}. Then T 6= S, v(T )− x(T ) ≤ −xi0, v(T )−

y(T ) ≤ −xi0 + δ, v(Q) − x(Q) = 0, v(Q) − y(Q) = −δ. The condition δ < x(i0)/2
implies v(Q)−y(Q) > v(T )−y(T ) for such T . Therefore, θB(N, v, x) >lex θB(N, v, y)
and x 6∈ NuclB(N, v).

Step 2. Now we check the fulfilment of three conditions in the definition of weakly
mixed at N collection of coalitions.

Let Bi be components of the undirected graph G = G(A), where A is the set of
nodes and K,L ∈ A are adjacent iff K ∩ L = ∅. Then the fulfilment of condition
(2) follows from the definition of Bi and the fulfilment of condition (1) was proved
at Step 1.

Let us check the condition (3). Suppose that A does not satisfy this condition,
i.e., there exist i0 ∈ A, Q ∈ Ai0 , S ∈ A such that S ∩ Q = ∅ and for each j ∈ N ,
Aj 6⊃ Ai0 \ {Q} ∪ {S}. Take the following v ∈ V 0

N .

v(T ) =







1 for T = N,S,
2 for T ∈ Ai0 \ {Q},
0 otherwise.

Let x ∈ NuclB(N, v) ∩ Msw
AB(N, v). Suppose that x(Q) > 0, then x(S) < 1 and

there exists a strong objection (S, yS) of S against Q at x. Let (D, zD) be a weak
counter–objection to this objection. Then D ⊃ Q, v(D) ≥ x(D) ≥ x(Q) > 0 hence
D 6= Q. There exists D′ ∈ A such that D ∩ D′ = ∅. As D ∩ Q 6= ∅, it follows
by the proved at Step 1, that D′ ∩ Q 6= ∅, thus D 6⊃ Q and D is not suitable for
counter–objection. This contradiction proves that x(Q) = 0.
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There exists j0 ∈ N such that xj0 ≥ 1/n. Then j0 6∈ Q and j0 6= i0. Let
0 < δ < 1/(2n). Take the following xδ ∈ Rn.

xδ
i =







xi0 − δ for i = j0,
xi + δ for i = i0,
xi otherwise.

Consider 2 cases.
Case 1. j0 6∈ S. Let xδ(T ) < x(T ), then j0 ∈ T , i0 6∈ T , hence T 6= S and v(T ) =

0 in this case. Then v(T )−x(T ) ≤ −xj0 , v(T )−xδ(T ) ≤ −xj0 +δ, v(Q)−x(Q) = 0,
v(Q) − xδ(Q) = −δ. Since δ < 1/(2n), we have v(Q) − xδ(Q) > v(T ) − xδ(T ) and
x 6∈ NuclB(N, v).

Case 2. j0 ∈ S. Then due to our supposition, there exists P ∈ Ai0 \ Aj0 \ {Q},
hence v(P ) = 2 and

v(P ) − x(P ) > v(P )− xδ(P ) ≥ 1.

If v(T )−x(T ) < v(T )−xδ(T ) then j0 ∈ T , i0 6∈ T and either T = S or v(T ) = 0.
For T = S, v(T )− xδ(T ) ≤ 1− xj0 + δ < 1. For v(T ) = 0, v(T )− xδ(T ) < 0. Thus
v(P )− xδ(P ) > v(T )− xδ(T ) and x 6∈ NuclB(N, v). ⊓⊔
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