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Abstract We consider a game-theoretic model of competition and cooper-
ation of transport companies on a graph. First, a non-cooperative n-person
game which is related to the queueing system M/M/n is considered. There
are n competing transport companies which serve the stream of passengers
with exponential distribution of time with parameters µ(i) , i = 1, 2, ..., n re-
spectively on the graph of routes. The stream of passengers from a stop k to
another stop t forms the Poisson process with intensity λkt . The transport
companies announce the prices for the service on each route and the pas-
sengers choose the service with minimal costs. The incoming stream λkt is
divided into n Poisson flows with intensities λ

(i)
kt
, i = 1, 2, ..., n. The problem

of pricing for each player in the competition and cooperation is solved.
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1. Introduction

We consider a game-theoretic model of competition and cooperation of transport
companies on a graph. First, a non-cooperative n-person game which is related to the
queueing system M/M/n is considered. There are n competing transport companies
which serve the stream of passengers with exponential distribution of time with
parameters µ(i) , i = 1, 2, ..., n respectively on the graph of linear route. Each
transport company carry passengers from stop 1 to another stop t, t = 2, ...,m. Thus
the linear route consists of m−1 pathes, i. e. r12 = v1v2, r13 = v1v3,..., r1m = v1vm.
The stream of passengers from a stop 1 to another stop t forms the Poisson process
with intensity λ1t . The transport companies announce the prices for the service on
each path and the passengers choose the service with minimal costs. This approach
was used in the Hotelling’s duopoly (Hotelling, 1929), (D’Aspremont et al., 1979),
(Mazalova, 2013) to determine the equilibrium price in the market. But the costs
of each customer are calculated as the price for the service and expected time in

queue. The incoming stream is divided into n Poisson flows with intensities λ
(i)
1t ,

i = 1, 2, ..., n, where
n
∑

i=1

λ
(i)
1t = λ1t.

Paragraph 2 is devoted to the competition of n players on the graph of linear
route (see Melnik, 2014). The problem of pricing for each player is solved. Such
articles as (Altman, Shimkin, 1980), (Levhari, Luski, 1978), (Hassin, Haviv, 2003),
and (Chen et al., 2005), (Luski, 1976) are devoted to the similar game-theoretic
problems of queuing processes.

In paragraph 3 cooperation is considered. In this case the additional player is in-
troduced. This player serves the stream of passengers with exponential distribution
of time with parameter µ0 and has fixed prices for the service on each path. When
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coalition S is formed, s players from this coalition play game as single player with
the intensity of service µ(s) =

∑

i∈S

µ(i) and other n− s players form the equilibrium

in this game. So, the characteristic function is defined as a payoff of the coalition
in Nash equilibrium in competition among n− s+ 1 players. Shapley value is used
as a solution of this game.

v v v v v
1 2 3 m-1 m
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12 m-1m23

Fig. 1: Linear route

2. Game-theoretic model of pricing

Consider a noncooperative non-zero-sum n-player game associated with the opera-
tion of the queueing system M/M/n on a graph of linear route (Fig. 1). n transport
companies serve passengers on a graph G =< V,E >, V designates a vertex set
and E indicates an edge set.

Suppose that all vertices are numbered: V = {v1, ..., vm}. Each player i has one
route, from v1 to all other vertices vj , j = 2, ...,m. Player i serves the input flow
of passengers with the exponential distribution of the service time described by the

parameter µ(i), i = 1, 2, ..., n. Player i assigns prices for its service c
(i)
1j on all pathes

r1j , j = 2, ...,m.

Assume that passengers minimize their costs (ticket price plus expected service
time) and choose the lowest-cost service. Consequently, the input flow λ1j , j =

2, ...,m is partitioned into n Poisson processes with intensities λ
(i)
1j , i = 1, ..., n,

where
n
∑

i=1

λ
(i)
1j = λ1j , j = 2, ...,m.

The passengers costs incurred by choosing service i on path r1j equal

c
(i)
1j +

j−1
∑

k=1

1

µ(i) −
m
∑

s=k+1

λ
(i)
1s

, i = 1, ..., n, j = 2, ...,m,

where
1

µ(i) −
m
∑

s=k+1

λ
(i)
1s

, i = 1, ..., n, k = 1, ...,m− 1,



Cooperation in Transportation Game 225

are the delays on the edge ekk+1. Assume, that if the price for the service c
(i)
1j of

transport company i is too high, the passenger flow λ
(i)
1j = 0. The balance equations

are

c
(1)
1j +

j−1
∑

k=1

1

µ(1) −
m
∑

s=k+1

λ
(1)
1s

− c
(i)
1j −

j−1
∑

k=1

1

µ(i) −
m
∑

s=k+1

λ
(i)
1s

= 0,

for i = 2, ..., n, j = 2, ...,m,

n
∑

i=1

λ
(i)
1j = λ1j , j = 2, ...,m, (1)

and the payoff function

Hi(c
(1)
12 , ..., c

(n)
12 , ..., c

(1)
1n , ..., c

(n)
1n ) =

m
∑

j=2

c
(i)
1j λ

(i)
1j .

To find the best reply of the first transport company, we use the Lagrange

method (Taha, 2011). So, we fix c
(i)
1j , j = 2, ...,m, i = 2, ..., n and find the maximum

of the payoff function H1 under the constraints (1).

L1 =

m
∑

j=2

c
(1)
1j λ

(1)
1j +

m
∑

j=2

γj

(

n
∑

i=1

λ
(i)
1j − λ1j

)

+

+

n
∑

i=2

m
∑

j=2

kij









c
(1)
1j +

j−1
∑

k=1

1

µ(1) −
m
∑

s=k+1

λ
(1)
1s

− c
(i)
1j −

j−1
∑

k=1

1

µ(i) −
m
∑

s=k+1

λ
(i)
1s









.

So,

∂L1

∂c
(1)
1s

= λ
(1)
1s +

n
∑

i=2

kis = 0, s = 2, ...,m,

∂L1

∂λ
(1)
1s

= c
(1)
1s +

s−2
∑

l=0

n
∑

i=2

m
∑

j=2+l

kij

(µ(1) −
m
∑

h=l+2

λ
(1)
1h )

2

+ γs, s = 2, ...,m,

∂L1

∂λ
(k)
1s

= −

s−2
∑

l=0

m
∑

i=2

n
∑

j=2+l

kij

(µ(k) −
m
∑

h=l+2

λ
(k)
1h )2

+ γs, s = 2, ...,m, k = 2, ..., n.

Similarly, we can construct the Lagrange function for other players. So the equilib-
rium is found from the following system

c
(i)
1s =

s−2
∑

l=0

m
∑

j=2+l

λ
(i)
1j









1

(µ(i) −
m
∑

h=l+2

λ
(i)
1h)

2)
+

1
n
∑

k=2,k 6=i

(µ(k) −
m
∑

h=l+2

λ
(k)
1h )2









,

for i = 2, ..., n, s = 2, ...,m,
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c
(1)
1j +

j−1
∑

k=1

1

µ(1) −
m
∑

s=k+1

λ
(1)
1s

−−c
(i)
1j −

j−1
∑

k=1

1

µ(i) −
m
∑

s=k+1

λ
(i)
1s

= 0 (2)

for i = 2, ..., n, j = 2, ...,m,

λ1s =
m
∑

i=1

λ
(i)
1s , s = 2, 3, ..., n.

3. Coalition formation

Assume that there is another player in our model – public transport, who has the

fixed service price c
(0)
1j , j = 2, ...,m and fixed intensity of service µ(0). This player

serves the passenger flow on the same linear route. When the passenger comes to
the bus stop, he chooses the service of n transport companies or public transport
according to the minimal sum of the service price and the expected waiting time.

The equilibrium in competition of n transport companies can be found from the
similar to the (2) system

c
(i)
1s =

s−2
∑

l=0

m
∑

j=2+l

λ
(i)
1j









1

(µ(i) −
m
∑

h=l+2

λ
(i)
1h)

2)

+
1

n
∑

k=2,k 6=i

(µ(k) −
m
∑

h=l+2

λ
(k)
1h )2









,

for i = 1, ..., n, s = 2, ...,m,

c
(0)
1j +

j−1
∑

k=1

1

µ(0) −
m
∑

s=k+1

λ
(0)
1s

−−c
(i)
1j −

j−1
∑

k=1

1

µ(i) −
m
∑

s=k+1

λ
(i)
1s

= 0 (3)

for i = 1, ..., n, j = 2, ...,m,

λ1s =

m
∑

i=0

λ
(i)
1s , s = 2, 3, ..., n.

Suppose that s players want to cooperate. Then they serve the passenger flow
with the parameter µ(s) =

∑

i∈S

µ(i). The coalition S announce the price for the

service c
(s)
1j , j = 2, ...,m on all pathes and the passengers, like before, choose the

service.
To determine the characteristic function of a cooperative game, it is necessary to

determine the values v(S) of this function for each coalition S. It can be done in two
ways. First, traditional, when the remaining players are united in a coalition and
play against the S. In this case, the own payoff of coalitionN \S is not important for
this coalition, its aim is to minimize the payoff of coalition S. Then, coalition N \S,
as its strategy may use cN\S = 0, thus its flow λN\S will increase, but the coalition
will receive a payoff equal to zero. The payoff of coalition S in this case is reduced.
We use a different approach, in which the characteristic function is constructed as
follows. Assume that s transport companies decide to form the coalition S. The
coalition S plays as a one player, and all other n− s transport companies are in the
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equilibrium with it, i. e. equilibrium prices are used as a strategies. This prices are
the Nash equilibrium in transportation game of n− s+1 players and can be found
from the system (3), when the number of players is n − s + 1. Then the value of
the characteristic function is a payoff of the player or coalition in the equilibrium
situation.

1 2 3

Fig. 2: Example

4. Numeric examples

Consider the following transportation game. Three transport companies and public
transport are competing on the linear route with the three stops (see Fig. 2). The
passengers come at first stop, choose the service and travel to the stop they need,
i. e. the stop 2 or 3. The balance equation are

c
(0)
12 +

1

µ(0) − λ
(0)
12 − λ

(0)
13

− c
(i)
12 −

1

µ(i) − λ
(i)
12 − λ

(i)
13

= 0, i = 1, 2, 3,

c
(0)
13 +

1

µ(0) − λ
(0)
12 − λ

(0)
13

+
1

µ(0) − λ
(0)
13

−

−c
(i)
12 −

1

µ(i) − λ
(i)
12 − λ

(i)
13

−
1

µ(i) − λ
(i)
13

= 0, i = 1, 2, 3,

3
∑

i=0

λi
12 = λ12, (4)

3
∑

i=0

λi
13 = λ13.

So the equilibrium prices for each transport company in competition can be
found from (4) and the following system

c
(i)
12 = (λ

(i)
12 + λ

(i)
13 )











1

(µ(i) − λ
(i)
12 − λ

(i)
13 )

2
+

1
3
∑

j=0, j 6=i

(µ(j) − λ
(j)
12 − λ

(j)
13 )

2











,
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c
(i)
13 = (λ

(i)
12 + λ

(i)
13 )











1

(µ(i) − λ
(i)
12 − λ

(i)
13 )

2
+

1
3
∑

j=0, j 6=i

(µ(j) − λ
(j)
12 − λ

(j)
13 )

2











+

+(λ
(i)
13 )











1

(µ(i) − λ
(i)
13 )

2
+

1
3
∑

j=0, j 6=i

(µ(j) − λ
(j)
13 )

2











, i = 1, 2, 3.

The equilibrium prices and the streams of passengers are in Table 1.

Table 1: Equilibrium in transportation game with λ12 = 5, λ13 = 10

µi c
(i)
12 c

(i)
13 λ

(i)
12 λ

(i)
13

µ1 = 17 0,04 0,06 1,59 2,77
µ2 = 16 0,033 0,053 1,54 2,28
µ3 = 16 0,033 0,053 1,54 2,28
µ0 = 15 0,033 0,041 0,32 2,67

µ12 = 33 0,055 0,089 2,84 8,62
µ3 = 16 0,024 0,031 1,88 1,26
µ0 = 15 0,033 0,041 0,27 0,11

µ13 = 33 0,055 0,089 2,84 8,62
µ2 = 16 0,024 0,031 1,88 1,26
µ0 = 15 0,033 0,041 0,27 0,11

µ23 = 32 0,053 0,086 2,8 8,26
µ1 = 17 0,026 0,036 1,95 1,7
µ0 = 15 0,033 0,041 0,26 0,04

µ123 = 49 0,102 0,154 0,89 9,58
µ0 = 15 0,033 0,041 4,11 0,42

Using the results from Table 1 we can construct the characteristic function,
which is the payoff of a player or coalition in the Nash equilibrium situation. The
values of characteristic function are in Table 2.

Table 2: Characteristic function

v({1}) 0, 215
v({2}) 0, 168
v({3}) 0, 168

v({12}) 0, 925
v({23}) 0, 859
v({13}) 0, 925

v({123}) 1, 56

In cooperation players can get a total payoff equal to 1, 56. As a rule the division
we use the Shapley value, which equals

φ1(v) =
1

3
v(1) +

1

6
(v(12)− v(2)) +

1

6
(v(13)− v(3)) +

1

3
(v(123)− v(23)) = 0, 558,
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φ2(v) =
1

3
v(2) +

1

6
(v(12)− v(1)) +

1

6
(v(23)− v(3)) +

1

3
(v(123)− v(13)) = 0, 501,

φ3(v) =
1

3
v(3) +

1

6
(v(13)− v(1)) +

1

6
(v(23)− v(2)) +

1

3
(v(123)− v(12)) = 0, 501,

and the price for the service is the same for all transport companies and is equal
to c12312 = 0, 102, c12313 = 0, 154. Thus, transport companies have benefit form a
cooperation.

Let increase the number of stops. Consider now that three transport companies
and public transport are competing on the linear route with the four stops. The
equilibrium prices and the streams of passengers are in Table 3.

Table 3: Equilibrium in transportation game with λ12 = 2, λ13 = 3, λ14 = 10

µi c
(i)
12 c

(i)
13 c

(i)
14 λ

(i)
12 λ

(i)
13 λ

(i)
14

µ1 = 17 0,035 0,063 0,082 0,59 0,85 2,76
µ2 = 16 0,032 0,057 0,073 0,57 0,83 2,28
µ3 = 16 0,032 0,057 0,073 0,57 0,83 2,28
µ0 = 15 0,027 0,045 0,053 0,27 0,79 2,68

µ12 = 33 0,053 0,097 0,132 1 1,4 8,62
µ3 = 16 0,022 0,037 0,044 0,7 1,01 1,26
µ0 = 15 0,027 0,045 0,053 0,3 0,59 0,12

µ12 = 33 0,053 0,097 0,132 1 1,4 8,62
µ3 = 16 0,022 0,037 0,044 0,7 1,01 1,26
µ0 = 15 0,027 0,045 0,053 0,3 0,59 0,12

µ23 = 32 0,051 0,094 0,127 0,995 1,38 8,26
µ1 = 17 0,024 0,041 0,051 0,713 1,04 1,7
µ0 = 15 0,027 0,045 0,053 0,292 0,58 0,04

µ123 = 49 0,16 0,24 0,29 0 0,34 9,58
µ0 = 15 0,027 0,045 0,053 0,292 0,58 0,04

Using the results from Table 3 we can construct the characteristic function,
which is the payoff of a player or coalition in the Nash equilibrium situation. The
values of characteristic function are in Table 4.

Table 4: Characteristic function

v({1}) 0, 302
v({2}) 0, 234
v({3}) 0, 234

v({12}) 1, 324
v({23}) 1, 227
v({13}) 1, 324

v({123}) 2, 832
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In cooperation players can get a total payoff equal to 2, 832. As a rule the division
we use the Shapley value, which equals

φ1(v) =
1

3
v(1) +

1

6
(v(12)− v(2)) +

1

6
(v(13)− v(3)) +

1

3
(v(123)− v(23)) = 0, 999,

φ2(v) =
1

3
v(2) +

1

6
(v(12)− v(1)) +

1

6
(v(23)− v(3)) +

1

3
(v(123)− v(13)) = 0, 9165,

φ3(v) =
1

3
v(3) +

1

6
(v(13)− v(1)) +

1

6
(v(23)− v(2)) +

1

3
(v(123)− v(12)) = 0, 9165.

5. Conclusion

So we solved the pricing problem in cooperative transport game. It follows from
simulation results, that the higher the intensity of service of transport company
is, the higher ticket price this transport company declares. It also follows from
results (Tables 1, 3) that cooperation of transport companies (or the increasing of
the intensity of service) attracts passengers to use the coalition service in almost
all cases, except the case, when all players unite, where passengers prefer to use
the service of the transport company, which has the lower service price at short
distances, while at long distances passengers prefer to use the service of the transport
company, which has greater intensity of service.
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