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Abstract We consider a game equilibrium in a network in each node of
which an economy is described by the simple two-period model of endoge-
nous growth with production and knowledge externalities. Each node of the
network obtains an externality produced by the sum of knowledge in neigh-
bor nodes. Uniqueness of the inner equilibrium is proved. Three ways of be-
havior of each agent are distinguished: active, passive, hyperactive. Behavior
of agents in dependence on received externalities is studied. It is shown that
the equilibrium depends on the network structure. We study the role of pas-
sive agents; in particular, possibilities of connection of components of active
agents through components of passive agents. A notion of type of node is
introduced and classification of networks based on this notion is provided.
It is shown that the inner equilibrium depends not on the size of network
but on its structure in terms of the types of nodes, and in similar networks
of different size agents of the same type behave in similar way.

Keywords: network, structure of network, network game, Nash equilibrium,
externality, network formation.

1. Introduction

Behavior of agents/actors 1 in a network structure is defined in much by actions
of other agents neighboring in a networks, or by information received from them.
Multi-agent networks is a natural object for studying interrelations in social and
economic systems. Network economics and network games theory consider questions
of network formation, spreading (diffusion) of information in networks, positive
and negative externalities, complementarity and substitutability of activities (see
reviews (Jackson, 2008, Galeotti et al., 2010, Jackson and Zenou, 2014).

In the modern world mutual dependence includes, first of all, exchange of infor-
mation as well as other multiple externalities. Externalities, i.e. influence of other
agents, which does not go through the price mechanism, possess properties of public
goods and are not fully paid. In particular, so called ”jacobian” positive externalities
(Jacobs, 1969) are directly related to complementarity of agents’ activities. Positive
externalities, and among them externalities of knowledge and human capital, spring
up both in processes of production (Romer, 1986, Lucas, 1988) and consumption
(Azariadis et al., 2013).

⋆ The research was partially supported by Russian Foundation for Basic Research
(projects 14-01-448 and 14-06-00253).

1 The term ”agent” is used in economics, while the term ”actor” is used in management,
sociology and politology. We speak further about ”agents” despite results of our work
may have applications in analysis of economic as well as social and political relations.
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In case of complementarity (and, correspondingly, supermodularity) a
marginal effect of the agent’s effort depends positively on efforts of
other agents (see for instance Bulow et al., 1985, Milgrom and Roberts, 1990,
Milgrom and Roberts, 1994, Topkis, 1998, Martemyanov and Matveenko, 2014).
The agent is interested in increase of her efforts if her neighbors in the
network create enough externalities. The agent will make the more efforts
the more efforts are made by other agents. Vice versa, in case of substi-
tutability (submodularity), if other agents increase their efforts then the ef-
forts of the agent can become unessential, and she may rely on other agents
(Grossman and Maggi, 2000, Jackson and Zenou, 2014); thus so called free-ryder
problem arises (Bramoullé and Kranton, 2007).

In game theory a branch related to analysis of the role of positive externali-
ties in networks has appeared, but attention there is devoted not to production
externalities but mostly to consumption externalities connected with distribution
of efforts.

In the present paper we continue the line of research of Nash equilibria in net-
works in presence of positive externalities, but our work contains several principally
new elements in comparison to previous research.

Firstly, we study production but not consumption externalities; efforts in our
model have meaning of investments, in particular, investments into creation of
knowledge. The presence of production block allows us to interpret concepts of
complementarity (supermodularity) and substitutability (submodularity) as, corre-
spondingly, absence and presence of productivity. We carry out comparative analysis
of these concepts within the same model.

Secondly, our model, for the first time in the network games literature uses
the notion of the ”jacobian” production externality in definition of the concept of
equilibrium. The essence of this notion is that any agent makes her decision staying
in a particular environment which depends on actions by the agent herself and by
her neighbors. When making her decision, the agent considers the the state of the
environment as exogenous; this means that the agent does not take into account
possibility that her actions can directly influence the state of the environment.

As a simplest example, imagine a game equilibrium in a collective of smokers
and non-smokers. A smoker, when making in equilibrium a decision to continue or
to give up smoking, makes it staying in an environment relating to her smoking.

The third novation of our work is the use of dynamic approach. Essentially, our
model is a generalization of the simple two-period model of endogenous growth and
knowledge externalities due to Romer, 1986.

We show that equilibria depend on the network structure, and explain presence
of three ways of behavior of agents: passive, active and hyperactive.

We introduce a notion of type of node and propose an algorithm of subdividing
the set of nodes into types. We provide a classification of networks on base of the
types of nodes and show the role of this classification in characterizing equilibria
in classes of networks which possess different sizes but similar structure of types of
nodes.

The paper is organized in the following way. In Section 2 the model is described.
The uniqueness of the inner equilibrium is proved, if it exists. A theorem is proved,
which serves further as a basic tool for comparison of utilities. In Section 3 behavior
of the agent in dependence on received pure externality is analized. Section 4 is
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devoted to pure corner equilibria. In Section 5 equilibria in equidegree networks are
studied. In Section 6 possibilities of adjunction of a node with passive agent to an
equidegree network with active agents are considered. In Section 7 possibilities of
connection of equidegree components of active agents through nodes with passive
agents are studied. In Section 8 a notion of type of node is introduced and an
algorithm of subdivision is described. In Sections 9 and 10, correspondingly, inner
and corner equilibria for networks with two types of nodes are studied. Section 11
concludes.

2. The model

We consider a network with n nodes i = 1, 2, . . . , n. Let M be the incidence matrix:
elements Mij and Mji of this matrix are equal 1 if nodes i and j are connected by
a link and equal 0 in the opposite case. We set Mii = 0 for all i.

In each of the nodes there is an agents, whose preferences at two periods of
time, 1 and 2, are described by a twice continuously differentiable, increasing in
each argument utility function U(ci1, c

i
2), where ci1, c

i
2 is consumption of the final

good in node i in periods 1 and 2.

In period 1 each agent is endowed by volume e of final good. This quantity may
be used for consumption in period 1, and for investment into knowledge: e = ci1+ki.
There is a research technology which produces knowledge one to one from the
invested good.

For an agent (index i is omitted now for notational simplicity), let k be her
investment into knowledge, K̃ is externality which is the sum of investments of her
close neighbors, and K = k + K̃ is her environment. Thus, the environment is the
sum of investments in the neighboring nodes and in the node itself. The vector
K = (K1,K2, . . . ,Kn)

T of environments of the agents can be calculated by use of
the incidence matrix in the following way:

K = (M + I)k,

where I is the unit matrix of order n, k = (k1, k2, . . . , kn)
T , T is the sign of trans-

position.

The knowledge is used in production of final good for consumption in period
2. Production of good in the node is described by a production function F (k,K)
depending on the state of knowledge (investment), k, and the environment, K. The
production function F (k,K) is assumed to increase in each of its arguments and to
be concave (may be not strictly) in k for each environment K.

The concept of externality (Romer, 1986, Lucas, 1988), means that at the mo-
ment of decision making the agent takes the environment K as exogenously given,
i.e. does not account for a possibility of its change in result of her choice of invest-
ment k.

Correspondingly, given K the agent solves the following optimization problem
P (K):

U(c1, c2) −−−−−→
c1, c2, k

max






c1 ≤ e− k,
c2 ≤ F (k,K),
c1 ≥ 0, c2 ≥ 0, k ≥ 0.
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The first two constraints of problem P (K) at the optimum point are, evidently,
satisfied as equalities. Substituting these constraints into the objective function,
one can define new function (indirect utility function):

V (k,K) = U(e− k, F (k,K)).

Solution of problem P (K) is one-to-one defined by k which maximizes the func-
tion V (k,K) under constraint k ∈ [0, e] given environment K. Function V is, evi-
dently, strictly concave in k and, consequently, has a unique stationary point ks, to
the left of which it increases in k, and to the right – decreases. The stationary point
ks satisfies the equation

D1V (k,K) = 0, (1)

where D1 denotes derivative with respect to the first argument. If ks ∈ (0, e) then
the optimal solution of problem P (K) is k = ks ; this solution will be referred as
inner solution. If ks < 0 then the optimal solution is k = 0; and if ks > e, then the
solution is k = e. In these cases the solution will be referred as corner solution.

Let us consider a game in which the players are the agents i = 1, 2, . . . , n.
Feasible strategies of each player i are her investments ki ∈ [0, e]. The payoff of
the player is her utility V (ki,Ki). If profile (k1, k2, . . . , kn) defines a consistent
set of environments and optimal solutions of the players, this profile is referred as
Nash equilibrium with externalities. If all ki are inner solutions then the equilibrium
(k1, k2, . . . , kn) will be referred as inner equilibrium. In the opposite case it will
be referred as corner equilibrium. It is clear that the inner Nash equilibrium with
externalities (if it exists under given values of parameters) is defined by the system
of equations

D1V (ki,Ki) = 0, i = 1, 2, . . . , n. (2)

We will choose a particular form of the utility function and production function
which allows to study the structure of equilibria in dependence on parameters. Let
the utility function have the quadratic form:

U(c1, c2) = c1(e− ac1) + bc2, (3)

where 0 < a < 1/2, b > 0. Here a is a saturation coefficient. Let the production
function have the form

F (k,K) = BkK,

where B > 0. Notice that, by the meaning of parameters b and B, their increase
promotes investments of agents. We will use notation A = bB. It will be assumed
that

a < A. (4)

Remark 2.1. Under our assumptions, the utility function defined by (3), evidently,
strictly increases in both arguments and is concave. We could use instead a strictly
concave function by applying the following concave transformation:

U(c1, c2) =
[c1(e− ac1) + bc2]

1−σ

1− σ
,

where 0 < σ < 1, σ is a coefficient of relative risk aversion. The points of maximum
for both functions do coincide; thus the problem P (K) in our case also has a unique
solution which is guaranteed by the following lemma.
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Lemma 2.1. The indirect utility function V (ki,Ki) for the i-th node, considered,
given environment Ki, as a function of ki on the whole real axis, has a unique strict
global maximum. The system of equations (2) takes the form:

(A− 2a)k+AMk = e, (5)

where

e =









e(1− 2a)
e(1− 2a)

· · ·
e(1− 2a)









.

Proof.
V (ki,Ki) = (e− ki)(e − a(e− ki)) +AkiKi

= e2(1− a)− kie(1− 2a)− ak2i +AkiKi,

D1V (ki,Ki) = e(2a− 1)− 2aki +AKi, (6)

thus, the system of equations (2) takes the form (5). The second derivative of the
function V (ki,Ki) with respect to the first argument in any point is −2a < 0. ⊓⊔

Theorem 2.1. If A 6= 2a 2, then the system of equations (5) has a unique solution.

Proof. The matrix of system (5) is

T =









A− 2a a12 . . . a1n
a21 A− 2a . . . a2n
. . . . . . . . . . . .
an1 an2 . . . A− 2a









,

where aij = AMij under i 6= j. By dividing the elements of the matrix T by A, we
receive the matrix

T̃ =









α M12 . . . M1n

M21 α . . . M2n

. . . . . . . . . . . .
Mn1 Mn2 . . . α









,

where, because of (4), the diagonal elements satisfy condition 0 < |α| < 1. To prove
the theorem it is sufficient to check the non-singularity of the matrix T̃ .

The determinant of the matrix is

αn + a2α
n−2 + a3α

n−3 + · · ·+ an−1α+ an = 0, (7)

where all coefficients a2, a3, . . . , an are integer. Let m be the highest degree of the
variable α under which the coefficient of the polynomial (7), an−m, differs from zero.
If an 6= 0 then m = 0. In the opposite case we reduce the polynomial to obtain

αn−m + a2α
n−m−2 + a3α

n−m−3 + · · ·+ an−m−1α+ an−m. (8)

2 If A = 2a then, as is seen from (5), there is no equilibrium value of investment of the
agent under any strategies of her neighbors. In this case, the equilibrium investment of
the agent exists only if K̃ = e(1 − 2a). We do not consider such artifact as far as the
incidence matrix is not obliged to be non-singular.
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Let α1, α2, . . . , αn−m be roots of the polynomial (8). Then

α1 + α2 + · · ·+ αn−m = 0, (9)

α1α2 + α1α3 + · · ·+ αn−m−1αn−m = a2, (10)

α1α2α3 + α1α2α4 + · · ·+ αn−m−2αn−m−1αn−m = −a3, (11)

α1α2α3α4 + α1α2α3α5 + · · ·+ αn−m−3αn−m−2αn−m−1αn−m = a4, (12)

· · ·

α1α2 . . . αn−m = (−1)n−man. (13)

Let us show that no one of the roots can satisfy condition

0 < |αi| < 1.

Assume the opposite: let, e.g., 0 < |α1| < 1. Then (9) implies that there is another
root, e.g. α2, which is not integer. Then the product α1α2 is also noninteger, and
it follows from (10) that there is another noninteger product, e.g. α2α3. In any
case, we have a noninteger product of three or even four roots. Then it follows from
(11) or (12) that there is one more noninteger product of three or even four roots.
Continuing this process further, we see that the product of all roots α1α2 . . . αn−k

can not be integer; this contradicts to (13). This absurd proves that no one of the
roots of the polynomial (7) can satisfy condition 0 < |α| < 1. Hence, for any feasible
values of parameters of the model, the matrix T̃ is nonsingular. ⊓⊔

Corollary 2.1. If, for given values of parameters, inner equilibrium exists, then it
is unique.

It follows from (5), that the stationary solution ksi for agent i is defined by

ksi =
e(2a− 1) +AK̃i

2a−A
, (14)

where K̃i is the pure externality received by the agent. In the inner equilibrium:
k∗i = ksi ; i = 1, ..., n.

Remark 2.2. If increase of neighbors’ investments leads to increase of investments
by the agent herself, then one says that the strategic complementarity takes place. If
increase of neighbors’ investments leads to decrease of the agent’s investments, then
one says that the strategic substitutability takes place. From formula (14) it becomes
clear, that if A < 2a, then the strategic complementarity takes place, and if A > 2a,
then the strategic substitutability takes place. In our model with production these
inequalities show, is productivity relatively low or high.

Definition 2.1. If A > 2a, we say that the productivity is present. In contrary
case, if A < 2a, we say, that the productivity is absent.

Remark 2.3. Since it is assumed that a < 1/2, the inequality A > 1 implies
presence of productivity; and, correspondingly absence of productivity implies A ≤
1.
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Remark 2.4. It is immediately seen from Remark 2.2 that under absence of pro-
ductivity (A < 2a) strategic complementarity takes place, and under presence of
productivity (A > 2a) strategic substitutability takes place.

We will prove a general theorem, that will serve an instrument for utilities compar-
ison.

Theorem 2.2. Let W ∗ and W ∗∗ be two networks in inner equilibria; i is a node of
W ∗, and j is a node of W ∗∗; k∗i , K

∗

i , U
∗

i are, correspondingly, optimal investment,
environment, and utility of agent i; k∗∗j , K∗∗

j , U∗∗

j are corresponding values for
agent j. Then:

1) if K∗

i < K∗∗

j , then U∗

i < U∗∗

j ;
2) if K∗

i ≤ K∗∗

j , then U∗

i ≤ U∗∗

j ;
3) if K∗

i = K∗∗

j , then U∗

i = U∗∗

j .
If k∗i is not an inner, but a corner solution, k∗i = 0, and k∗∗j > 0, then

U∗

i = U(e, 0) < U∗∗

j .

Proof. Let be K∗

i < K∗∗

j (K∗

i ≤ K∗∗

j ). Since function V (kj ,K
∗∗

j ) reaches its maxi-
mum at point k∗∗j , we have V (k∗i ,K

∗∗

j ) ≤ V (k∗∗j ,K∗∗

j ). Because of ∂V (k,K)/∂K > 0
for any k 6= 0 and K, we obtain that V (k∗i ,K

∗

i ) < V (k∗i ,K
∗∗

j ) (respectively,
V (k∗i ,K

∗

i ) ≤ V (k∗i ,K
∗∗

j )). Thus, V (k∗i ,K
∗

i ) < V (k∗i ,K
∗∗

j ) ≤ V (k∗∗j ,K∗∗

j ) (respec-
tively, V (k∗i ,K

∗

i ) ≤ V (k∗i ,K
∗∗

j ) ≤ V (k∗∗j ,K∗∗

j )). Hence, U∗

i < U∗∗

j (respectively,
U∗

i ≤ U∗∗

j ).
Combining previous results, we see, that if K∗

i = K∗∗

j , then U∗

i = U∗∗

j .
The last statement of the theorem is quite obvious:

U∗∗

j = V (k∗∗j ,K∗∗

j ) > V (0,K∗∗

j ) = V (0,K∗

i ) = U∗

i ,

since, as far as k = 0, function V does not depend on K. ⊓⊔

3. The agent’s behavior

Let us introduce the following terminology.

Definition 3.1. If the agent makes zero investments into knowledge, k = 0, we
say that the agent is passive. If she makes investments 0 < k < e, she is active. If
the agent makes maximal possible investments, e (and, correspondingly, does not
consume at period 1), we say that she is hyperactive.

The following lemma describes necessary and sufficient conditions of different
ways of behavior by the agent in dependence on the size of externality K̃ which she
receives. Index i is omitted.

Lemma 3.1. The necessary and sufficient conditions for various types of behavior
by the agent are the following.

1) Under absence of productivity:
the agent is passive if

K̃ ≤ e(1− 2a)

A
;

the agent is active if

e(1− 2a)

A
< K̃ <

e(1−A)

A
;
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the agent is hyperactive if

K̃ ≥ e(1−A)

A
.

2) Under presence of productivity:
the agent is passive if

K̃ ≥ e(1− 2a)

A
;

the agent is active if

e(1−A)

A
< K̃ <

e(1− 2a)

A
;

the agent is hyperactive if

K̃ ≤ e(1−A)

A
.

Proof. It follows from (6) that

ks =
e(2a− 1) +AK̃

2a−A
. (15)

If ks ≤ 0 then the agent makes no investments, k = 0. If 0 < ks < e, the solution is
in the inner point k = ks. If ks ≥ e, the agent makes maximal possible investment,
k = e. Writing these conditions in details, we receive the inequalities listed in the
formulation of the lemma. ⊓⊔
Proposition 3.1. Under presence of productivity and A > 1/2, each agent, who
has a hyperactive neighbor, is not hyperactive; moreover, if A + 2a ≥ 1 (which
implies A > 1/2), she is even passive.

Proof. If agent i has a hyperactive neighbor, then i obtains externality K̃ ≥ e.
Hence, if A > 1/2 then K̃ ≥ e > e(1 − A)/A, and, by Lemma 3.1, agent i is not
hyperactive in equilibrium. Moreover, let A + 2a ≥ 1, i.e. (1 − 2a)/A ≤ 1. Then
K̃ ≥ e ≥ e(1− 2a)/A and, by Lemma 3.1, the agent is passive. ⊓⊔
Proposition 3.2. Under absence of productivity, if A ≥ 1/2, then each agent, who
has a hyperactive neighbor, is hyperactive.

Proof. If the agent has a hyperactive neighbor then, similarly to the proof of Propo-
sition 3.1, K̃ ≥ e. Hence, if A ≥ 1/2, then K̃ ≥ e ≥ e(1−A)/A. By Lemma 3.1, the
agent is hyperactive. ⊓⊔

Proposition 3.3. Under presence of productivity, an agent, who stays in an iso-
lated node, or for whom all neighbors are passive, is active if A > 1, and hyperactive
if A ≤ 1.

Proof. Since K̃ = 0, Lemma 3.1 implies that the agent is active under 1 − A < 0;
and hyperactive under 1−A ≥ 0. ⊓⊔

Proposition 3.4. Under absence of productivity, the agent, who stays in an iso-
lated node, or for whom all neighbors are passive, is passive.

Proof. Since K̃ = 0, by Lemma 3.1, the agent is passive. ⊓⊔
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4. Pure corner equilibria

Definition 4.1. Pure corner equilibrium is such equilibrium, in which knowledge in
each node is equal either to 0 or to e, i.e. each agent is either passive or hyperactive.

Proposition 4.1. Under absence of productivity, the situation when all agents are
passive is equilibrium.

Proof. For each node i, if K̃i = 0, then, by Lemma 3.1, the agent is passive. ⊓⊔

Proposition 4.2. For a connected network with more than one node, let µ be
the smallest degree (number of neighbors) and M the biggest degree. Under ab-
sence of productivity, the situation when all agents are hyperactive is equilibrium iff
A ≥ 1/(µ + 1). Under presence of productivity, the situation when all agents are
hyperactive is equilibrium iff A ≤ 1/(M + 1).

Proof. By Lemma 3.1, the agent who stays in a node with the smallest degree, is
hyperactive iff µe = K̃ ≥ e(1−A)/A; this is equivalent to condition A ≥ 1/(µ+1).
If the latter condition is fulfilled then the agents in all other nodes are all the more
hyperactive.

Similarly, the agent who stays in a node with the biggest degree, is hyperactive
under presence of productivity iff Me = K̃ ≤ e(1−A)/A; the latter is equivalent to
condition A ≤ 1/(M + 1). Under this condition, the agents in all other nodes are
all the more hyperactive. ⊓⊔

Definition 4.2. A network is referred as equidegree network if each node has the
same degree m, where m ≥ 1.

Corollary 4.1. In equidegree network, if A ≥ 1/(1 +m) under absence of produc-
tivity, or if A ≤ 1/(m+ 1) under presence of productivity, then the situation when
all agents are hyperactive is equilibrium.

Proof. In equidegree network: µ = M = m. ⊓⊔

Corollary 4.2. In full network with n nodes, equilibrium in which all agents are
hyperactive is possible under absence of productivity iff A ≥ 1/n, and under presence
of productivity iff A ≤ 1/n.

Proof. In full network: µ = M = n− 1. ⊓⊔

Propositions 3.1 and 3.2 imply the following fact.

Corollary 4.3. In connected network under absence of productivity, if A ≥ 1/2
then a situation when all agents are hyperactive is equilibrium; moreover, it is a
unique possible equilibrium in which at least one agent is hyperactive. If in a network
there is at least one link then, under presence of productivity, if A > 1/2 then the
situation in which all agents are hyperactive is not equilibrium.

Proposition 4.3. Under absence of productivity, in each network there is equilib-
rium in which all agents are passive. Under presence of productivity, such equilib-
rium is impossible.

Proof. This follows directly from Propositions 3.3 and 3.4. ⊓⊔
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Theorem 4.1. Under presence of productivity, let r be a natural number such that
r ≤ n, Ar ≤ 1, Ar+2a ≥ 1. In full network, Cr

n pure corner equilibria are possible,
in each of which r nodes are hyperactive and other n− r nodes are passive.

Proof. A node, for which not more than r − 1 neighbors are hyperactive and other
neighbors are passive, receives externality K̃ = (r − 1)e. By Lemma 3.1, such node
is hyperactive iff Ar ≤ 1. Similarly, a node, for which more than r − 1 neighbors
are hyperactive and other neighbors are passive, is itself passive iff r ≥ (1− 2a)/A,
which is equivalent to Ar + 2a ≥ 1. ⊓⊔

Remark 4.1. Besides pure corner equilibria which are listed in Corollary 4.2,
Proposition 4.3 and Theorem 4.1, there may exist corner equilibria and a unique
inner equilibrium.

Example 4.1. In full network with four nodes, under presence of productivity and
under 2A ≤ 1, 2A + 2a ≥ 1, there is equilibrium with two hyperactive and two
passive agents. Because of symmetry, any two nodes can be hyperactive, and others
passive; in all C2

4 = 6 purely corner equilibria exist.
Under A ≤ 1, A+ 2a ≥ 1 in the same network there is an equilibrium with one

hyperactive and three passive nodes; in all C1
4 = 4 such equilibria exist.

Under 3A ≤ 1, 3A+2a ≥ 1 in the same network there is equilibrium with three
hyperactive and one passive nodes. In all there are C3

4 = 4 such equilibria.
In case when 3A ≤ 1, A+2a ≥ 1 all these pure corner equilibria exist; 6+4+4 =

14 in all.
Besides these 14 pure corner equilibria, in this network there are also nonpure

corner equilibria and unique inner equilibrium.

5. Equilibria in equidegree networks

For equidegree network, an equilibrium in which all agents have the same level of
knowledge (i.e. make the same investments), will be referred as symmetric. For a
symmetric equilibrium, Equ. (15) (under K̃ = mk) implies

ks =
e(1− 2a)

A(m+ 1)− 2a
. (16)

If A > 1/(m+ 1) then k = ks, i.e. the equilibrium is inner: the agents are active. If
2a/(m+ 1) < A ≤ 1/(m+ 1) then k = e, i.e. the equilibrium is corner: the agents
are hyperactive.

Remark 5.1. Thus, the condition of existence of inner equilibrium in equidegree
network is A > 1/(m+ 1) (remind also permanent constraints a < 1/2, a < A).

Examples of equidegree networks

1. Cycle. In this case m = 2. According to (16), investment by an agent does not
depend on the size of cycle.

2. Full network. In this case m = n − 1, where n is the number of nodes in
the network. This case is similar to Romer, 1986. According to (16), knowledge in
nodes declines with increase in the size of network. The sum of knowledge nks =
e(1− 2a)/(A− 2a/n) also declines and converges to e(1− 2a)/A.

3. Chain with two nodes. It is the case of m = 1 (and also a case of full network).
4. Networks in which each node has degree m = 3 (see Fig. 1).
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Fig. 1: Examples of equidegree networks with degree m = 3.

Remark 5.2. Equation (16) is also true for isolated node, under m = 0. It is seen
from (16) that in an isolated node:

1) under A < 2a the agent is passive;
2) under 2a < A ≤ 1 the agent is hyperactive;
3) under A > 1 the agent is active and

k =
e(1− 2a)

A− 2a
.

Generally, (16) allows to study dependence of knowledge, consumption and util-
ity on degree of nodes, m, of equidegree network. Knowledge k decreases with re-
spect to degree. Consumptions at the first and the second periods of time are,
correspondingly,

c1 = e− k = e
(m+ 1)A− 1

(m+ 1)A− 2a
,

c2 = F (k, (1 +m)k) = B(1 +m)k2 =
B(m+ 1)e2(1 − 2a)2

[(m+ 1)A− 2a]2
.

One can check that c1 increases and c2 decreases with respect to degree.

Proposition 5.1. For inner equilibria in equidegree networks, utility decreases with
respect to degree and converges to U(e, 0).

Proof. The utility function turns into

U = e2
[(m+ 1)A− 1][(m+ 1)A(1 − a)− a] +A(m+ 1)(1− 2a)2

[(m+ 1)A− 2a]2
.

Differentiating U with respect to x = 1 +m (as if x is continuous) we obtain

dU

dx
= −2aA(Ax− 2a)(2a− 1)2

(x2A2 − 4aAx+ 4a2)2
.



210 Vladimir D. Matveenko, Alexei V. Korolev

Under x ≥ 2, i.e. under m ≥ 1, the inequality Ax − 2a > 0 is fulfilled, hence
dU/dx < 0; thus, utility in each node decreases with respect to degree. Under
m → +∞ we have c1 → e, c2 → 0 and, because of continuity, the limit of the utility
is equal to U(e, 0). ⊓⊔

This result corresponds to intuition: in big social and economic systems utility
can be high because of diversity, but in a system consisting of similar agents, the
world, probably, loses its utility under very high degrees of nodes if there is no
diversity.

6. Adding a node with passive agent to an equidegree network

We have seen that, in definite areas of parameters, equilibrium in equidegree network
can be rather simple: all agents are hyperactive, or all are active. At the same time,
passive agents do not create externalities, i.e. do not influence the environments
of other agents. This means that under some conditions, an equilibrium is possible
which consists of components with either active or hyperactive agents and of groups
of passive agents which connect these components.

Below in Section 7 we consider connection of equidegree networks through nodes
with passive agents. As a preliminary, in this section we study a possibility of
addition a node with passive agent to equidegree network.

Proposition 6.1. Let a node with passive agent be connected by use of l links to
an equidegree network with degree m > 0, which is initially in inner equilibrium.
Necessary a sufficient condition of existence of such equilibrium, in which the ad-
joined agent remains passive and the active agents remain in the previous inner
equilibrium, is the following:

under absence of productivity,

l ≤ m+ 1− 2a

A
; (17)

under presence of productivity,

l ≥ m+ 1. (18)

Proof. For the newly adjoined node the externality is equal to

K̃ =
le(1− 2a)

A(m+ 1)− 2a
.

By Lemma 3.1, the adjoined agent can stay passive in equilibrium iff

A < 2a;
l(1− 2a)e

A(m+ 1)− 2a
≤ (1− 2a)e

A
(19)

or

A > 2a;
l(1− 2a)e

A(m+ 1)− 2a
≥ (1− 2a)e

A
(20)

Conditions (19) and (20) are equivalent, correspondingly, to (17) and (20). ⊓⊔



Network Game with Production and Knowledge Externalities 211

The meaning of (17) is that, under absence of productivity, the adjoined agent
can stay passive only as long as she is not sufficiently connected with active agents.
Staying passive, she does not influence the initial equilibrium of active agents. But
if the number of her links with active agents becomes sufficiently big, the adjoined
agent receives so big externality that she is not able to hold the indifferent behav-
ior in equilibrium. When she starts making investments, absolutely different inner
equilibrium appears in the network.

Vice versa, under presence of productivity, the agent can preserve her indifferent
behavior only until she has sufficiently big number of active neighbors.

Corollary 6.1. In case of a cycle (equidegree network with degree m = l) of active
agents, adjunction of a passive agent, in such way that each of the agents preserves
her behavior in equilibrium, is impossible.

Corollary 6.2. Under absence of productivity, if an equidegree network with degree
m ≥ 2 is in inner equilibrium, then a node with passive agent can be adjoined by
one link in such way that each of the agents preserves her behavior in equilibrium.

Proposition 6.2. A node with passive agent can be adjoined to an isolated node,
in such way that each of the agents preserves her behavior in equilibrium, in the
following three cases:

1) A < 2a (in this case the agent in the isolated node is passive);
2) 2a < A ≤ 1, A + 2a ≥ 1 (in this case the agent in the isolated node is

hyperactive);
3) A > 1 (in this case the agent in the isolated node is active and k = e(1 −

2a)/(A− 2a)).

Proof. If A < 2a then there are no externalities and nothing changes after adjunc-
tion. Thus, we have equilibrium of two passive agents.

If 2a < A ≤ 1 then the adjoined agent receives externality K̃ = e and, by
Lemma 3.1, remains passive under A ≥ 1− 2a.

If A > 1 (this is a condition for the isolated agent to be active), then the adjoined
agent receives externality K̃ = e(1 − 2a)/(A − 2a). By Lemma 3.1, the agent will
remain passive if A− 2a ≤ A, but this inequality is certainly true. ⊓⊔

Examples of adjunction of a passive agent to an equidegree network

Example 6.1. In the chain of 3 nodes 1–2–3, under A > 1/2, equilibrium with
k1 = 0, k2 = k3 = (1− 2a)e/[2(A− a)] is impossible, by virtue of Corollary 6.1.

Example 6.2. If initially there is a chain of two active agents, 2–3, and passive agent
1 establishes links to both of them, i.e. l = 2, m = 1, then, by Proposition 6.1, there
is equilibrium, in which all three agents maintain their initial behavior.

Example 6.3. Let a passive agent establish l = 4 links with agents in equidegree
network with degree m = 3, which is in inner equlilibrium. The initial equilibrium
exists only if A > 1/4 (see Remark 5.1). If, moreover, productivity takes place,
then, by Proposition 6.1, there exists equilibrium in which all agents maintain their
initial behavior.

Remark 6.1. Under absence of productivity, similarly to adjunction of one node
with passive agent, any connected network with passive agents can be added.
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7. Connection of equidegree networks through nodes with passive

agents

In this section we consider connection of two equidegree networks being initially in
inner equilibrium. We wonder is it possible to construct a new network from such
blocks, connecting them by components of passive agents in such way that in the
new network there exists an equilibrium, in which all the agents behave in the same
way as before unification.

Proposition 7.1. Under 2a/(m− 1) ≤ A < 2a (what implies m ≥ 3), two equide-
gree networks with the same degree m, being initially in inner equilibrium, can be
connected through a node with passive agent in such way that all agents maintain
their initial behavior in equilibrium. Under m = 2 (case of cycles) such equilibrium
is impossible. Under m = 1 (case of active dyads, when A > 1/2) such equilibrium
is possible under presence of productivity (A > 2a). Under m = 0 (case of active
isolated nodes,when A > 1) such connection is always possible.

Proof. The connecting passive node receives externality from two active nodes: l =
2. Under absence of productivity, condition (6.1) takes the form 2a(m − 1) ≤ A.
Condition (6.2) takes the form 2 ≥ m+ 1 and is fulfilled under m = 1. Let m = 0,
A > 1 and, hence, A > 2a. Initially the inner equilibrium in two isolated nodes was
k = e(1− 2a)/(A− 2a), hence the connecting node receives externality

K̃ =
2e(1− 2a)

A− 2a
.

By Lemma 3.1, this node remains passive under

2

A− 2a
>

1

A
,

and the latter inequality is certainly fulfilled. ⊓⊔

Proposition 7.2. Under m ≥ 2 and absence of productivity, two equidegree net-
works with the same degree m, being initially in inner equilibrium, can be connected
by a chain of two or more passive nodes in such way that behavior of the agents
does not change in equilibrium. Such connection is impossible if m = 1. In case of
m = 0 (isolated nodes) such connection is possible under A > 1 through a chain of
two passive nodes, but is not possible through chains of three or more passive nodes.

Proof. Statements for m ≥ 2 and m = 1 follow from Proposition 6.1 and Corol-
lary 6.1. Statement for m = 0 follows from Proposition 6.2. If two active agents
are connected by a chain of three or more passive nodes, then, by Proposition 3.3,
the agent, who has no active neighbors, could not stay passive in equilibrium under
presence of productivity. ⊓⊔

Remark 7.1. Under the same conditions, there exists a ”cycle”, consisting of
equidegree networks connected by chains of nodes with passive agents. Components
of active agents in such cycle alternate with components of passive agents.
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Fig. 2: Start of the algorithm: s = 1.

8. Types of nodes

Definition 8.1. Let the set of nodes 1, 2, . . . , n be decomposed into disjoint classes
in such way that any nodes belonging the same class have the same numbers of
neighbors from each class. The classes will be referred as types of nodes. Type j is
characterized by vector l(j) = (l1(j), l2(j), . . . , lk(j)), where li(j) is the number of
neighbors in class i for each node of class j.

Let us describe an algorithm of subdivision of the set of nodes of network into
types.

Let s be a current number of subsets of subdivision. Initially s = 1.

Iteration of the algorithm. Consider nodes of the first subset. If all of them
have the same numbers of neighbors in each subset 1, 2, ..., s, then the first subset
is not changed. In the opposite case, we divide the first subset into new subsets
in such way that all nodes of each new subset have the same vector of numbers of
neighbors in subsets.

We proceed in precisely same way with the second, the third, ..., the s-th subset.
If on the present iteration the number of subsets s have not changed, then the
algorithm finishes its work. If s has increased, then the new iteration is executed.

The number of subsets s does not decrease in process of the algorithm. Since
s is bounded from above by the number of nodes in the network, the algorithm
converges.

It is clear that the algorithm divides the set of nodes into the minimal possible
number of classes.

Example

Let us apply the algorithm to the network depicted in Fig. 2. Initially s = 1, all
nodes are from the same one set (Fig. 2).

After the first iteration we obtain the division depicted in Fig. 3.
Then, on the first step of the second iteration, we receive the division depicted

in Fig. 4.

On the second step of the second iteration we receive the division shown in
Fig. 5.

On the third iteration nothing changes, and the algorithm stops. We have re-
ceived a subdivision of the set of nodes of the network into four types which are char-
acterized by the vectors of numbers of neighbors: l(1) = (1, 2, 1, 0), l(2) = (1, 0, 1, 1),
l(3) = (1, 2, 0, 1), l(4) = (0, 2, 1, 0).
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Fig. 3: Result of the first iteration: s = 2.

Fig. 4: The first step of the second iteration.

Definition 8.2. Let us call symmetric such equilibrium in which agents of the same
type make the same investments.

Remark 8.1. Inner equilibrium is always symmetric. It follows from the uniqueness
of solution of the system of equations (2.1) and symmetry of this system with respect
to types.

Later on ki will denote investment in any node of type i.

Remark 8.2. If two networks have the same number of types of nodes, S, and
these types are characterized by the same set of vectors l(1), l(2), . . . , l(S), then
the inner equilibria in these networks do coincide, in the sense that agents in the
nodes of the same type behave in the same way.

Fig. 6 provides an example of 3 networks which possess the same types of nodes
characterized by vectors l(1) = (1, 2) and l(2) = (0, 2). Correspondingly, these
networks have the same inner equilibria, despite these networks have different sizes.

9. Inner equilibria in networks with two types of nodes

Let a network have two types of nodes which are characterized by vectors
l(1) = (s1, s2) and l(2) = (t1, t2). Here si is the number of links connecting a
node of type 1 with nodes of type i; ti is the number of links connecting a node
of type 2 with nodes of type i; i = 1, 2. Then (5) implies the following system of
equations:

{

(A− 2a+ s1A)k1 + s2Ak2 = e(1− 2a),
t1Ak1 + (A− 2a+ t2A)k2 = e(1− 2a).

(21)
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Fig. 5: The second step of the second iteration: s = 4.

Fig. 6: Networks with ”coinciding” inner equilibria.

Its solution is the pair

ks1 =
e(1− 2a)[A− 2a+ (t2 − s2)A]

(A− 2a)2 + (s1 + t2)(A − 2a)A+ (s1t2 − t1s2)A2
. (22)

ks2 =
e(1− 2a)[A− 2a+ (s1 − t1)A]

(A− 2a)2 + (s1 + t2)(A − 2a)A+ (s1t2 − t1s2)A2
. (23)

If 0 < ks1 < e, 0 < ks2 < e, then the stationary values ks1, k
s
2 define the inner

equilibrium in the network.

Special cases of the network with two types of nodes

1. Chain of four nodes: 2–1–1–2. Types 1 and 2 are characterized by vectors l(1) =
(1, 1) and l(2) = (1, 0). Formulas (22) – (23) take the form:

k1 =
2ae(1− 2a)

6aA− 4a2 −A2
, (24)
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k2 =
e(1− 2a)(2a−A)

6aA− 4a2 −A2
. (25)

Inequalities 0 < ki < e, i = 1, 2 are fulfilled under absence of productivity (A < 2a).
2. A generalization of the previous case is a fan, i.e. a chain of two nodes, to

each of which a bundle of ν hanging nodes is adjoined. The types are characterized
by vectors l(1) = (1, ν) and l(2) = (1, 0).

3. Star of order ν, i.e. a network, in which a central node of type 1 has ν
peripheral neighbors of type 2. The types are characterized by vectors l(1) = (0, ν)
and l(2) = (1, 0). Equations (22) – (23) turn into

k1 =
e(1− 2a)[(ν − 1)A+ 2a]

νA2 − (A− 2a)2
, (26)

k2 =
2ea(1− 2a)

νA2 − (A− 2a)2
, (27)

The pair k1, k2 defines inner equilibrium if 0 < ki < e, i = 1, 2, i.e. if






νA2 − (A− 2a)2 > 0,
νA2 − (A− 2a)2 > (1 − 2a)[(ν − 1)A+ 2a],
νA2 − (A− 2a)2 > 2a(1− 2a).

Evidently, this system of inequalities is equivalent to the second of them,

(ν − 1)A2 + [2a(ν + 1)− (ν − 1)]A− 2a > 0. (28)

This inequality is fulfilled iff

A >
−2a(ν + 1) + ν − 1 +

√

[2a(ν + 1)− (ν − 1)]2 + 8a(ν − 1)

2(ν − 1)
.

We see that under big ν inequality (28) is true if A2 + 2aA − A > 0, which
is equivalent to A + 2a > 1. It is also easily seen that the left-hand side of (28)
increases in ν. Hence, if (28) is fulfilled for ν = 2, it is fulfilled for all ν. This implies
that if A+ 2a > 1 and

A >
−6a+ 1 +

√
36a2 − 4a+ 1

2
,

then formulas (26)–(27) define inner equilibrium for all ν ≥ 2.

Proposition 9.1. In a star, if the number of peripheral nodes, ν, increases, then
knowledge and utility in the central node decrease under absence of productivity, but
increase under presence of productivity. Knowledge and utility in each peripheral
node always decrease.

Proof. Derivative of k1 in ν, if ν is considered as a continuous parameter, is

2Aae(1− 2a)(A− 2a)

[(A− 2a)2 − νA2]2
.

Hence, knowledge in the central node decreases in ν if A < 2a, and increases if
A > 2a. It is directly seen from (27) that k2 decreases in ν.
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Fig. 7: A network with 2 types of nodes: the numbers mean types.

Environment for the central node is

K1 =
e(1− 2a)[ν(A+ 2a)− (A− 2a)]

νA2 − (A− 2a)2
.

Derivative of K1 is
4a2e(1− 2a)(A− 2a)

[νA2 − (A− 2a)2]2
.

Theorem 2.2 implies that utility in the central node decreases in ν if A < 2a, and
increases if A > 2a. Environment for any peripheral node is

K2 =
e(1− 2a)[(ν − 1)A+ 4a]

νA2 − (A− 2a)2
.

Derivative of K2 is
−4a2Ae(1− 2a)

[νA2 − (A− 2a)2]2
< 0.

Hence, by Theorem 2.2, utility in a peripheral node decreases in ν. ⊓⊔

Remark 9.1. When the order of the star, ν, increases, the sum of knowledge in
the peripheral nodes decreases and under ν → ∞ converges to 2ae(1 − 2a)/A2,
while knowledge in each separate peripheral node converges to 0. Knowledge in the
central node converges to e(1− 2a)/A.

Remark 9.2. If ν = 2 then the star turns into a chain of three nodes.

4. Cycle of k nodes (k ≥ 3), to each of which a bundle of ν ”hanging” nodes is
added. Equilibria in this network will be studied in Section 10 below.

5. Network shown in Fig. 7. The network of this type has order not less than
6 and divisible by 2. The types of nodes are characterized by vectors l(1) = (2, 2)
l(2) = (2, 0). The equations (22) – (23) turn into

k1 =
e(1− 2a)(A+ 2a)

A2 + 8Aa− 4a2
, (29)
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k2 =
e(1− 2a)(2a−A)

A2 + 8Aa− 4a2
. (30)

Positivity ki > 0, i = 1, 2 is equivalent to the absence of productivity (A < 2a) and
fulfillment of the inequality

A2 + 8Aa− 4a2 > 0.

Conditions ki < e, i = 1, 2 are then equivalent to

A2 + 8Aa− 4a2 > (1 − 2a)(A+ 2a),

A2 + 8Aa− 4a2 > (1 − 2a)(2a−A).

The system of the latter three inequalities is equivalent to the second of them, which
can be written in the form

A2 + 10aA−A− 2a > 0.

Ultimately, we obtain necessary and sufficient condition of inner equilibrium:

−10a+ 1 +
√

(10a− 1)2 + 8a

2
< A < 2a.

Let us compare levels of knowledge and utility for the network in Fig. 7 and for the
full network.

Proposition 9.2. If the network of the type depicted in Fig. 7 is completed to
become the full network, then, under absence of productivity, knowledge and utility
in nodes of type 1 decrease, while knowledge and utility in nodes of types 2 increase.

Proof. Comparing k1 and k2 with knowledge in a node of the full network, k =
e(1− 2a)/((n− 1)A− 2a), we see that k1 > k, k2 < k. Comparing environments

K1 =
e(1− 2a)(A+ 10a)

A2 + 8aA− 4a2
, K2 =

e(1− 2a)(A+ 6a)

A2 + 8aA− 4a2

of the nodes of the initial network with environment of a node of the full network,

K =
(n− 1)e(1− 2a)

(n− 1)A− 2a
,

we see that K1 > K, K2 < K. Theorem 2.2 provides the needed result. ⊓⊔

10. Corner equilibria in networks with two types of nodes

In this section we will study symmetric corner equilibria. The network of type
depicted in Fig. 8 can be considered in two ways: as result of addition of ν previously
isolated nodes to each node of the cycle of order n, or as result of unification of n
stars, each of them with ν peripheral nodes, into one cycle.

Proposition 10.1. In the network depicted in Fig. 8, inner equilibrium is impos-
sible.
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Fig. 8: Cycle of stars.

Under presence of productivity, the corner equilibrium

k1 =
e(1− 2a)

3A− 2a
, k2 = 0,

is possible if A > 1/3, and the pure corner equilibrium

k1 = e, k2 = 0,

is possible if A ≤ 1/3, 2a+ νA > 1.
The corner equilibrium

k1 = 0, k2 =
e(1− 2a)

A− 2a
,

is possible if A > 1. The pure corner equilibrium

k1 = 0, k2 = e,

is possible if A ≤ 1, 2a+ νA > 1.
Besides, under absence of productivity the pure corner equilibrium k1 = k2 = 0

is possible.
In each case, increase in ν does not influence knowledge and utilities.

Proof. The types are characterized by vectors l(1) = (2, ν), l(2) = (1, 0), hence,
(22) – (23) turn into

ks1 =
e(1− 2a)(A− 2a− νA)

(A− 2a)(3A− 2a)− νA2
,

ks2 =
2e(1− 2a)(A− a)

(A− 2a)(3A− 2a)− νA2
.
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We see that the numerator of the expression for ks1 is negative, and the numer-
ator of the expression for ks2 is positive, hence, independently on the sign of the
denominator, ks1 and ks2 have different signs. Hence, inner equilibrium is impossible.

Let A < 2a, A > 1/3. If k2 = 0 then the nodes of the cycle receive no externalities
from the hanging nodes; as in the usual cycle, k1 = e(1 − 2a)/(3A − 2). But if
k1 = e(1 − 2a)/(3A− 2a) then ks2 = e(1 − 2a)(2A− 2a)/(A− 2a) < 0 and, hence,
k2 = 0.

Let A < 2a, A ≤ 1/3, 2a + νA > 1. If k2 = 0, then k1 = e. If k1 = e, then
ks2 = e(1− 2a− νA)/(3A− 2a) < 0 and, correspondingly, k2 = 0.

Let A > 2a, A > 1. If k1 = 0, then k2 = e(1 − 2a)/(A − 2a). If k2 = e(1 −
2a)/(A− 2a), then ks1 = e(1− 2a)[(1− ν)A− 2a]/(3A− 2a)(A− 2a) < 0 and, hence,
k1 = 0.

Let A > 2a, A ≤ 1, 2a + νA > 1. If k1 = 0, then k2 = e. If k2 = e, then
ks1 = e(1− 2a− νA)/(3A− 2a) < 0 and, hence, k1 = 0. ⊓⊔

Proposition 10.2. Let centers of several stars, each with ν peripheral nodes, being
initially in inner equilibrium, be unified into one cycle. Under absence of productivity
and A > 1/3, knowledge in each node in equilibrium declines, and, moreover, each
peripheral nodes becomes passive. Utility in each node declines.

Under A > 1 (which implies presence of productivity), each central nodes becomes
passive, while knowledge in each periphery node decreases if ν = 1, and increases if
ν ≥ 2. Utility in each central node decreases and in each periphery node increases.

Proof. According to (26)–(27), before unification, the equilibrium level of knowledge
in each central node was

k∗1 =
e(1− 2a)[(ν − 1)A+ 2a]

νA2 − (A− 2a)2
,

and in each peripheral node,

k∗2 =
2ea(1− 2a)

νA2 − (A− 2a)2
.

The environments were

K∗

1 =
e(1− 2a)[(ν − 1)A+ 2a+ 2νa]

(ν − 1)A2 + 4aA− 4a2
,

K∗

2 =
e(1− 2a)[(ν − 1)A+ 4a]

(ν − 1)A2 + 4aA− 4a2
.

Under absence of productivity and A > 1/3, after unification, the level of knowl-
edge in each central node becomes

k∗∗1 =
e(1− 2a)

3A− 2a
,

and in each peripheral node
k∗∗2 = 0.

The environment in each central node becomes

K∗∗

1 =
3e(1− 2a)

3A− 2a
.
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We see that k∗1 > k∗∗1 , K∗

1 > K∗∗

1 . According to Theorem 2.2, utility in each central
node decreases. Evidently, utility in each peripheral node also decreases, since the
node becomes passive.

If A > 1 (which implies presence of productivity), after unification, the level of
knowledge in each central node becomes

k∗∗1 = 0,

by Proposition 10.1; and in each peripheral node:

k∗∗2 =
e(1− 2a)

A− 2a
.

The environment in each peripheral node becomes

K∗∗

2 =
e(1− 2a)

A− 2a
.

We see that k∗2 > k∗∗2 if ν = 1, k∗2 < k∗∗2 if ν ≥ 2, K∗

2 < K∗∗

2 . By Theorem 2.2,
utility in each peripheral node increases. In each central node, utility decreases. ⊓⊔

Remark 10.1. Strategic complementarity is observed when the stars are unified
under absence of productivity. After unification, investments in central nodes de-
crease, and in peripheral nodes it is not profitable to make investments in equilib-
rium. As result, the knowledge in the central nodes is the same as if there are no
peripheral nodes at all. Strategic substitutability takes place under presence of pro-
ductivity. After unification, investments of peripheral nodes increase if ν ≥ 2 and it
is not profitable for central nodes to make investment. As result, in periphery nodes
the knowledge is the same as if there are no central nodes.

11. Conclusions

Our model describes situations in which agents in a network make investments of
some resource (such as money or time) on the first stage (period 1 in the model),
and obtain a gain on the second stage (period 2). Such situations are typical in life
of families, communities, firms, countries, international organizations, etc. Thus, the
model can have numerous applications in analysis of equilibria in various economic,
social and political systems.

In framework of the model, we consider questions which concern relations be-
tween network structure, incentives, behavior of the agents, and the equilibrium
state of economic or social system in terms of welfare of the agents.

We introduce new concepts and develop techniques which can be used in such
kind of analysis. In particular, we provide some results of studying the model, among
them results describing consequences of appearance of new links in networks and
of adjunctions of components. We introduce the concept of types of nodes, propose
classification of networks based on this concept, describe an algorithm of subdivision
of networks into types, and demonstrate the role of types in characterizing inner
equilibria.

Interesting questions for further research could be relations between different
possible concepts of equilibrium, and dynamics of formation of new equilibrium
after adjunction of components or after rise of new links.
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