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Abstract We consider n -person stochastic games in the sense of Shapley.
The main results of the paper are related to the existence of Nash equi-
libria and determining the optimal stationary strategies of the players in
the considered games. We show that a Nash equilibrium for the stochas-
tic game with average payoff functions of the players exists if an arbitrary
situation induces an ergodic Markov chain. For the stochastic game with
discounted payoff functions we show that a Nash equilibrium always exists.
Some approaches for determining Nash equilibria in the considered games
are proposed.
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1. Introduction

In this paper we consider the infinite n-person stochastic games.
An n-person stochastic game (Owen, 1982; Neyman and Sorin, 2003;
Mertens and Neyman, 1981) is a dynamic game with probabilistic transitions
played by players in a sequence of stages, where the beginning of each stage
corresponds to a state from a given finite set of states of the game. The game
starts at a given state. At each stage players select actions from their feasible sets
of actions and each player receives a stage payoff that depends on the current
state and the chosen actions. The game then moves to a new random state the
distribution of which depends on the previous state and the actions chosen by
the players. The procedure is repeated at a new state and the play continues for
an infinite number of stages. The total payoff of a player is either the average
of the stage payoffs or the discounted sum of the stage payoffs. The considered
stochastic games have been studied by Gillette, 1957; Mertens and Neyman, 1981;
Filar and Vrieze, 1997; Lal and Sinha, 1992; Neyman and Sorin, 2003. Existence
of Nash equilibria for n-person games are proven in the case of stochastic games
when the total payoff of each player is the discounted sum of stage payoffs and for
some special cases of the games with average payoffs. In the general case, for the
game with total payoffs that represents the average of the stage payoffs a Nash
equilibrium may not exist (Lozovanu and Pickl, 2014).

The main results we describe in this paper are concerned with the existence of
Nash equilibria in the considered games and elaboration of algorithms for deter-
mining the optimal stationary strategies of the players. We consider the stationary
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strategies in the sense of Shapley. The stationary strategy weWe show that a Nash
equilibrium for the stochastic game with average payoff functions of the players
exists if an arbitrary situation generated by the strategies of the players induces a
Markov unichain. For the stochastic game with discounted payoff functions we show
that a Nash equilibrim always exists. The obtained results can be easily extended
for antagonistic stochastic games and the corresponding conditions for the existence
of saddle points can be derived.

2. Formulation of the basic game models

A stochastic game with n players consists of the following elements:

1. A state space X (which we assume to be finite);

2. A finite set Ai(x) of actions with respect to each player i ∈ {1, 2, . . . , n}
for an arbitrary state x ∈ X ;

3. A stage payoff f i(x, a) with respect to each player i ∈ {1, 2, . . . , n} for
each state x ∈ X and for an arbitrary action vector a ∈

∏

iA
i(x);

4. A transition probability function p : X ×
∏

x∈X

∏

iA
i(x)×X → [0, 1]

that gives the probability transitions pax,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a fixed action vector a ∈
∏

iA
i(x), where

∑

y∈X pax,y = 1, ∀x ∈ X, a ∈
∏

iA
i(x);

5. A starting state x0 ∈ X .

The stochastic game starts in state x0. At stage t players observe state xt and
simultaneously choose actions ait ∈ Ai(xt), i = 1, 2, . . . , n. Then nature selects
state y = xt+1 according to probability transitions pat

xt,y
for a fixed action vector

at = (a1t , a
2
t , . . . , a

n
t ). A play of the stochastic game x0, a0, x1, a1, . . . , xt, at, . . .

defines a stream of payoffs f i
0, f

i
1, f

i
2, . . . , where f i

t = f i(xt, at), t = 0, 1, 2, . . . .
The t-stage average stochastic game is the game where the payoff of player i ∈
{1, 2, . . . , n} is

F i
t =

1

t

t−1
∑

τ=1

f i
τ .

The infinite average stochastic game is the game where the payoff of player i ∈
{1, 2, . . . , n} is

F i = lim
t→∞

F i
t .

In a similar the stochastic game with discounted sum payoffs of the players is
defined. In such a game along to elements described above also a discount factor
λ (0 < λ < 1) is given and the t-stage stochastic game with discounted sum payoffs
is the game where the payoff of player i ∈ {1, 2, . . . , n} is

σi
t =

t−1
∑

τ=1

λτf i
τ .

The infinite stochastic game with discounted payoffs is the game where the payoff
of player i ∈ {1, 2, . . . , n} is

σi = lim
t→∞

σi
t.
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The considered games can be formulated in terms of stationary strategies that
correspond to pure strategies of the players. In this case the stationary strategies
of the players we define as n maps:

si : x→ ai ∈ Ai(x) for x ∈ X, i = 1, 2, . . . , n.

Obviously, the corresponding sets of stationary strategies Si, S2, . . . , Sn of the play-
ers are finite sets.

Let s = (s1, s2, . . . , sn) be a situation determined by a set of stationary strategies
s1, s2, . . . , sn of the players 1, 2, . . . , n. This situation induces a Markov process

with the probability distributions p
s(x)
x,y in the states x ∈ X , i.e. we obtain the

matrix of probability transitions P s = (psx,y). For this process we can determine the
matrix of limiting probabilities Qs = (qsx,y) that correspond to P s. Therefore,
if the starting state x0 is given, then for the Markov process with the matrix
of probability transitions P s we can calculate the corresponding average costs
per transition F 1

x0
(s1, s2, . . . , sn), F 2

x0
(s1, s2, . . . , sn), . . . , Fn

x0
(s1, s2, . . . , sn) for the

players as follows:

F i
x0
(s1, s2, . . . , sn) =

∑

x∈X

qsx0,x
f i(x, s1(x), s2(x), . . . , sn(x)), i = 1, 2, . . . , n.

In such a way on the set of situations S = S1 × S2×, . . . ,×Sn we obtain the
functions F i

x0
(s1, s2, . . . , sn), i = 1, 2, . . . , n that define the stochastic game with

average payoffs in pure strategies. This game is determined by the set of states X ,
the sets of actions of the players {Ai}i=1,n, the probability function p, the set of

stage payoffs {f i(x, a}i=1,n, where a ∈ A, A =
∏n

i=1A
i, and the starting position

of the game x0. Therefore we denote this game (X, {Ai}i=1,n, {f
i(x, a}i=1,n, p, x0).

We define the stochastic game with a discounted sum of stage payoffs in pure
strategies in analogues way if for the Markov process with the matrix of probabil-
ity transitions P s = (psx,y) we consider the matrix W s(λ) = (ws

x,y(λ)) where
W s(λ) = (I−λP s)−1. Then for a situation s = (s1, s2, . . . , sn) the total discounted
sum of stage payoffs σi

x0
(s1, s2, . . . , sn) with given discount factor λ (0 < λ < 1) for

the players can be calculated as follows:

σi
x0
(s1, s2, . . . , sn) =

∑

y∈X

ws
x0,x

(λ)f i(x, s1(x), s2(x), . . . , sn(x)), i = 1, 2, . . . , n.

So, on the set of situations S = S1 × S2×, . . . ,×Sn we obtain the func-
tions σi

x0
(s1, s2, . . . , sn), i = 1, 2, . . . , n that define the stochastic game

with discounted payoffs in pure strategies. In a similar way as the previ-
ous game we can denote the discounted stochastic game in pure strategies
(X, {Ai}i=1,n, {f

i(x, a}i=1,n, p, γ, x0).

For these games Nash equilibria in pure strategies may not exist . Therefore
in this paper we study the stochastic game using stationary strategies in the sense

of Shapley (Shapley, 1953) that correspond to mixed strategies. For such games
we formulate conditions for the existence of Nash equilibria and describe some
approaches for determining the optimal strategies of the players.
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3. Determining Nash Equilibria for Stochastic Games with Average

Payoffs

We shall use a continuous model for studying the average stochastic games. We con-
struct such a model as follows: At first we identify an arbitrary stationary strategy
si : x → ai ∈ Ai(x) with the set of boolean variables si

x,ai ∈ {0, 1}, x ∈ X, ai ∈

Ai(x), where si
x,ai = 1 if and only if player i fixes the action ai ∈ Ai(x) in the state

x. So, the set of stationary strategies of player i we regard as the set of solutions of
the following system:

∑

ai∈A(x)

six,ai = 1, ∀x ∈ X ; six,ai ∈ {0, 1}, ∀x ∈ X, ∀ai ∈ Ai(x).

Then in this system we change the si
x,ai ∈ {0, 1} by the condition 0 ≤ si

x,ai ≤ 1

and we obtain the set of stationary strategies in the sense of Shapley (Shapley, 1953),
where si

x,ai is treated as probability of the choices of the action ai by player
i every time when the state x is reached by any route in the dynamic stochastic
game. Additionally, we shall use the following condition for the average stochastic
games. We assume that an arbitrary situation s = (s1, s2, . . . , sn) ∈ S generates
a Markov unichain with the corresponding matrix of probability transitions P s =
(psx,y). We call a game with such a property with respect to the situations s =
(s1, s2, . . . , sn) ∈ S perfect game (Lozovanu, 2011). We show that in this case the
problem of determining Nash equilibria for a stochastic game can be formulated as
a continuous model that represents the game variant of the following optimization
problem:
Minimize

ψ(s, q) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx (1)

subject to























































∑

x∈X

∑

a∈A(x)

pax,ysx,aqx = qy, ∀y ∈ X ;

∑

x∈X

qx = 1;

∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(2)

This problem represents a continuous model for an averageMarkov decision problem
with immediate costs f(x,a) in the states x ∈ X for given actions a ∈ A(x) and
probability transitions pax,y, where

∑

y∈X pax,y = 1, ∀x ∈ X, ∀a ∈ A. More precisely,
problem (1), (2) corresponds to a Markov decision problem where each strategy
induces a Markov unichain (see Lozovanu and Pickl, 2015). This is easy to show,
if we identify an arbitrary stationary strategy with the set of boolean variables
sx,a ∈ {0, 1}, x ∈ X, a ∈ A(x) that satisfy the conditions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X ; sx,a ≥ 0, ∀x ∈ X, a ∈ A.
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These conditions determine all feasible strategies in (2). The remaining restrictions
in (2) correspond to the system of linear equations with respect to qx for x ∈ X . This
system of linear equations reflects the ergodicity condition for the limiting probabil-
ity qx, x ∈ X in the Markov unichain, where qx, x ∈ X are determined uniquely for
given sx,a, ∀x ∈ X, a ∈ A(x). Thus, the value of the objective function (1) expresses
the average cost per transition in this Markov unichain and an arbitrary optimal
solution s∗x,a, q

∗

x (x ∈ X, a ∈ A) of problem (1), (2) with s∗x,a ∈ {0, 1} represents
an optimal stationary strategy for a Markov decision problem with an average cost
criterion. If such an optimal solution is known, then an optimal action for a Markov
decision problem can be found by fixing a∗ = s∗(x) for x ∈ X if s∗x,a = 1.

The problem (1), (2) can be transformed into a linear programming problem us-
ing the notations αx,a = sx,aqx, ∀x ∈ X, a ∈ A(x) (see Lozovanu and Pickl, 2015).
Based on such transformation of the problem we will describe some additionally
properties of the optimal stationary strategies in Markov decision processes.

Lemma 1. Let an average Markov decision problem be given, where an arbitrary

stationary strategy s generates a Markov unichain, and consider the function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx,

where qx for x ∈ X satisfy the condition























∑

x∈X

∑

a∈A(x)

pax,ysx,aqx = qy, ∀y ∈ X ;

∑

x∈X

qx = 1.
(3)

Then the function ψ(s) depends only on sx,a for x ∈ X, a ∈ A(x), and on the

set S of solutions of the system











∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(4)

the function ψ(s) is monotone.

Proof. If an arbitrary strategy s for a Markov decision problem induces a Markov
unichain then for such an arbitrary a strategy the rank of system (3) is equal to |X |
and (3) has a unique solution with respect to qx (x ∈ X) (see Puterman, 2005).
Moreover, the system of linear equations (3) uniquely determines qx, ∀x ∈ X for
an arbitrary solution of system (4). So, the function ψ(s) depends only on sx,a
for x ∈ X, a ∈ A(x),

Now let us prove the second part of the lemma. We show that on the set of
solutions of system (4) the function ψ(s) is monotone. For this reason it is sufficient
to show that for arbitrary s′, s′′ ∈ S with ψ(s′) 6= ψ(s′′) the following relation
holds

min{ψ(s′), ψ(s′′)} < ψ(s) < max{ψ(s′), ψ(s′′)}. (5)
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if

s = θs′ + (1− θ)s′′, 0 < θ < 1.

We proof the correctness of this property using the relationship of the problem
(1),(2) with the following linear programming problem:

Minimize

ψ(α) =
∑

x∈X

∑

a∈A(x)

f(x,a) αx,a (6)

subject to



















































∑

x∈X

∑

a∈A(x)

pax,y αx,a = qy, ∀y ∈ X ;

∑

x∈X

qx = 1;

∑

a∈A(x)

αx,a = qx, ∀x ∈ X ;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(7)

The problem (6),(7) is obtained from (1),(2) introducing the substitutions αx,a =
sx,aqx for x ∈ X, a ∈ A(x). These substitutions allow us to establish a bijective
mapping between the set of feasible solutions of the problem (1),(2) and the set
of feasible solutions of the linear programming problem (6),(7). So, if αx,a for
x ∈ X, a ∈ A(x) and ψ(α) are known then we can uniquely determine

sx,a =
αx,a

qx
, ∀x ∈ X, a ∈ A(x) (8)

for which ψ(s) = ψ(α). In particular, if an optimal basic solution α∗, q∗ of the
linear programming problem (6),(7) is found, then the optimal stationary strategy
for a Markov decision problem can be found fixing

s∗x,a =

{

1, if α∗

x,a > 0;

0, if α∗

x,a = 0.

Let s′, s′′ be arbitrary solutions of the system (4) where ψ(s′) < ψ(s′′). Then
there exist the corresponding feasible solutions α′, α′′ of the linear programming
problem (6),(7) for which

ψ(s′) = ψ(α′), ψ(s′′) = ψ(α′′),

α′

x,a = s′x,aq
′

x, α′′

x,y = s′′x,aq
′′

x ∀x ∈ X, a ∈ A(x),
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where q′x, q
′′

x are determined uniquely from the system of linear equations (3) for
s = s′ and s = s′′, respectively. The function ψ(α) is linear and therefore for an
arbitrary α = θα′ + (1− θ)α′′, 0 ≤ θ ≤ 1 the following equality holds

ψ(α) = θψ(α′) + (1− θ)ψ(α′′),

where α is a feasible solution of the problem (6),(7), that in initial problem (1),(2)
corresponds to a feasible solution s for which

ψ(s) = ψ(α); qx = θq′x + (1− θ)q′′x , ∀x ∈ X.

Using (8) we have

sx,a =
αx,a

qx
, ∀x ∈ X, a ∈ A(x),

i.e.

sx,a =
θα′

x,a + (1 − θ)α′′

x,a

θq′x + (1− θ)q′′x
=
θs′x,aq

′

x + (1− θ)s′′x,aq
′′

x

θq′x + (1− θ)q′′x
=

=
θq′x

θq′x + (1− θ)q′′x
s′x,a +

(1− θ)q′′x
θq′x + (1− θ)q′′x

s′′x,a.

So, we obtain

sx,a = θxs
′

x,a + (1− θx)s
′′

x,a,

where

θx =
θq′x

θq′x + (1− θ)q′′x
, 0 ≤ θ ≤ 1.

It is easy to observe that 0 ≤ θx ≤ 1, where θx = 0, ∀x ∈ X if and only if θ = 0
and θx = 1, ∀x ∈ X if and only if θ = 1. Moreover, it can be easily seen from
the following proof that ψ(s) = ψ(s′) in the case ψ(s′) = ψ(s′′). Thus the function
ψ(s) on the set of solutions of system (4) is monotone.

Now we extend the results described above for the continuous model of a stochas-
tic game with average payoffs. We consider the continuous model for perfect stochas-
tic games.

Let denote by S
i
, i ∈ {1, 2, . . . n} the set of solutions of the system











∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X ;

si
x,ai ≥ 0, ∀x ∈ X, ai ∈ Ai(x).

(9)

So, S
i

is a convex compact set and its arbitrary extreme point corresponds to a
basic solution si of the system (9), where si

x,ai ∈ {0, 1}, ∀x ∈ X, ai ∈ A(x). Thus,

if si is an arbitrary basic solution of system (9), then si ∈ S
i
, and si correspond

to a pure strategy.



194 Dmitrii Lozovanu, Stefan Pickl

On the set S = S
1
× S

2
× · · · × S

n
we define n payoff functions

ψi(s1, s2, . . . , sn) =
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

skx,akf
i
(x,a1,a2...an)qx, i = 1, 2, . . . , n,

(10)
where qx for x ∈ X are determined uniquely from the following system of linear
equations



























∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y qx = qy, ∀y ∈ X ;

∑

x∈X

qx = 1
(11)

when s1, s2, . . . , sm are given.

The main results we prove for our game model represent the following properties:

- The set of Nash equilibria situations of the continuous model is non empty
if and only if the set of Nash equilibria situations of the stochastic game in pure
strategies is not empty;

- If (s1, s2, . . . , sm) is an extreme point of S then F i
x(s

1, s2, . . . , sn) =
ψ(s1, s2, . . . , sn), ∀x ∈ X, i = 1, 2. . . . , n and all Nash equilibria situations for
the continuous game model that correspond to extreme points in S represent Nash
equilibria situations for the stochastic game in pure strategies.

From Lemma 1 as a corollary we obtain the following result.

Lemma 2. For a perfect stochastic game each payoff function ψi(s1, s2, . . . , sn),
i ∈ {1, 2, . . . , n} possesses the property that ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn)

is monotone with respect to si ∈ S
i
for arbitrary fixed sk ∈ S

k
, k = 1, 2, . . . , i−1,

i+ 1, . . . , n.

Using this lemma we can prove the following theorem.

Theorem 1. Let (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x) be a stochastic game

with a given starting position x ∈ X and average payoff functions

F 1
x (s

1, s2, . . . , sm), F 2
x (s

1, s2, . . . , sn), . . . , Fm
x (s1, s2, . . . , sm)

of players 1, 2, . . . , n, respectively. If for an arbitrary situation s = (s1, s2, . . . , sn) ∈
S of the game the transition probability matrix P s = (psx,y) corresponds to a Markov

unichain then for the continuous game on S there exists a Nash equilibrium s∗ =
(s1

∗
, s2

∗
, . . . , sn∗) which is a Nash equilibrium for an arbitrary starting position

x ∈ X of the game.

Proof. According to Lemma 2 each function ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n}
satisfies the condition that ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is monotone

with respect to si ∈ S
i

for an arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i − 1, i +

1, . . . , n. In the considered game each subset S
i
is convex and compact. Therefore,

these conditions (see Debreu, 1952, Dasgupta and Maskin, 1986, Simon, 1987 and
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Reny, 1999) provide the existence of a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗)

for the functions ψi(s1, s2, . . . , sn), i ∈ {i, 2, . . . , n} on S
1
× S

2
× · · · × S

n
. This

Nash equilibrium is a Nash equilibrium for an arbitrary starting position x of the
game.

Corollary 1. For the average stochastic game there exists a Nash equilibrium in

pure strategies if and only if the continuous game has a Nash equilibrium in pure

strategies.

Using the results described above we may conclude that in the case of per-
fect games a Nash equilibrium for stochastic games with average payoffs can be
determined by using classical iterative methods for the continuous game mod-
els with payoff functions ψi(s1, s2, . . . , sn), i ∈ {i, 2, . . . , n} on the set

S
1
×S

2
×· · ·×S

n
. If we refer these iterative methods to a discrete game model with

payoff functions F 1
x (s

1, s2, . . . , sn), F 2
x (s

1, s2, . . . , sn), . . . , Fm
x (s1, s2, . . . , sn) on

S1 × S2× · · · × Sn, then we obtain the iterative procedures where players fix suc-
cessively their strategies in order to minimize their payoff functions, respectively,
and finally to reach Nash equilibrium (if such an equilibrium exists).

Note that if a stochastic game is not perfect, then Nah equilibrium may not
exist (Lozovanu and Pickl, 2014, 2015)

4. Determining Nash Equilibria for Stochastic Games with Discounted

Payoffs

In this section we show that a Nash equilibrium in mixed strategies exists for an
arbitrary stochastic game with discounted payoff functions of the players and given
discount factor γ, 0 < γ < 1. To prove this we shall use the continuous model for
the stochastic game. We will formulate such a model using the following auxiliary
optimization problem:
Maximize

ϕx0
(σ, s) = σx0

(12)

subject to

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a p
a
x,y σy =

∑

a∈A(x)

sx,a f(x,a), ∀x ∈ X, (13)

where sx,a, x ∈ X, a ∈ A(x) correspond to a fixed strategy that satisfy (1).
This problem represents a continuous model for the discounted Markov decision

problem (see Lozovanu and Pickl, 2015). The system of linear equations (13) with
respect to σx has a unique solution for a fixed s and we can find all σx for x ∈ X

that represent the discounted sum of immediate costs in the decision problem with
the corresponding starting positions x ∈ X . It is easy to observe that if we consider
the optimization problem (12), (13) with respect to σ then the equations in (13)
can be changed by inequalities (≤) and the values of the optimal solutions of the
problem (12), (13) will correspond to the same σx for x ∈ X . Therefore if after that
we dualize (12), (13) with respect to σx for fixed s then we obtain the following
linear programming problem :
Minimize

ϕ(s, β) =
∑

x∈X

∑

a∈A(x)

f(x,a) sx,aβx
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subject to














βy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aβx ≥ 0, ∀y ∈ X \ {x0};

βy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aβx ≥ 1, y = x0;

If we add to this system the condition (1) and will minimize with respect to s then
we obtain the following optimization problem:
Minimize

ϕ(s, β) =
∑

x∈X

∑

a∈A(x)

f(x,a) sx,aβx (14)

subject to






















































βy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aβx ≥ 0, ∀y ∈ X \ {x0};

βy − γ
∑

x∈X

∑

a∈A(x)

pax,y sx,aβx ≥ 1, y = x0;

∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

βy ≥ 0 ∀y ∈ X ; sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(15)

Using elementary transformations in this problem and introducing the notations
αx,a = sx,sβx, ∀x ∈ X, a ∈ A(x) we obtain the following linear programming
problem:
Minimize

φ(s, β) =
∑

x∈X

∑

a∈A(x)

f(x,a) αx,a (16)

subject to






















































βy − γ
∑

x∈X

∑

a∈A(x)

pax,y αx,a ≥ 0, ∀y ∈ X \ {x0};

βy − γ
∑

x∈X

∑

a∈A(x)

pax,y αx,a ≥ 1 y = x0;

∑

a∈A(x)

αx,a = βx, ∀x ∈ X ;

βy ≥ 0, ∀y ∈ X ; αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(17)

If (α∗, β∗) is an optimal basic solution of problem (16), (17) then the optimal sta-
tionary strategy s∗ for the discounted Markov decision problem is determined as
follows:

s∗x,a =

{

1, if α∗

x,a 6= 0;

0, if α∗

x,a = 0.
(18)

and α∗

x,a = s∗x,aβ
∗

x, ∀x ∈ X, a ∈ A(x) (see Lozovanu and Pickl, 2015).
For the continuous model of the discounted Markov decision problem we prove

similar properties as for the average Markov decision model.
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Lemma 3. Let a discounted Markov decision problem with the discount factor

γ, 0 < γ < 1 be given. Consider the function

ϕx0
(s) = σx0

,

where σx for x ∈ X satisfy the condition

σx − γ
∑

y∈X

∑

a∈A(x)

sx,a p
a
x,y σy =

∑

a∈A(x)

sx,a f(x,a), ∀x ∈ X. (19)

Then the function ϕx0
(s) depends only on sx,a for x ∈ X, a ∈ A(x), and on the

set S of solutions of the system










∑

a∈A(x)

sx,a = 1, ∀x ∈ X ;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

the function ϕx0
(s) is monotone.

The proof of this lemma is similar to the proof of Lemma 1 if instead of the linear
programming formulation (6), (7) we shall use the linear programming formulation
(16), (17).

We formulate the continuous model for the stochastic game with discounted

payoffs as follows: On the set S = S
1
× S

2
× · · · × S

n
we consider n payoff

functions
ϕi
x0
(s1, s2, . . . sn) = σi

x0
, i = 1, 2, . . . , n, (20)

where σi
x for x ∈ X satisfy the condition

σi
x − γ

∑

y∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y σi

y =

=
∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akf

i
(x,a1,a2...an), ∀x ∈ X ; i = 1, 2, . . . , n.

(21)

This game model possesses the same property as the previous continuous model:

-The set of Nash equilibria situations of the continuous model is non empty
if and only if the set of Nash equilibria situations of the stochastic game in pure
strategies is not empty;

- If (s1, s2, . . . , sn) is an extreme point of S then σi
x(s

1, s2, . . . , sn) =
ϕi
x(s

1, s2, . . . , sn), ∀x ∈ X, i = 1, 2. . . . , n and all Nash equilibria situations for
the continuous game model that correspond to extreme points in S represent Nash
equilibria situations in pure strategies.

From Lemma 3 as a corollary we obtain the following result.

Lemma 4. For an arbitrary stochastic game with discounted payoffs each payoff

function ϕi
x0
(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

ϕi
x0
(s1, s2, . . . , si−1, si, si+1, . . . , sn) is monotone with respect to si ∈ S

i
for

arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1, i + 1, . . . , n.
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Using this lemma we can prove the following theorem.

Theorem 2. Let a stochastic game (X, {Ai}i=1,n, {f
i(x, a}i=1,n, p, γ, x0) with the

starting position x ∈ X and discounted payoff functions

σ1
x(s

1, s2, . . . , sn), σ2
x(s

1, s2, . . . , sm), . . . , σn
x (s

1, s2, . . . , sn)

of the players 1, 2, . . . , n, be given. Then in the considered game there exists a

Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) on S which is a Nash equilibrium for

an arbitrary starting position x ∈ X.

The proof of this theorem is similar to the proof of Theorem 1, i.e. the existence of
Nash equilibria for the continuous game with payoff functions ϕi

x0
(s1, s2, . . . , sn),

i ∈ {1, 2, . . . , n} on S can be gained in a analogues way as for the game with average
payoffs if we apply Lemma 4 and the corresponding results from (Debreu, 1952,
Dasgupta and Maskin, 1986, Simon, 1987 and Reny, 1999).

5. Conclusion

The considered n-person stochastic games can be studied using the continuous game
models. Based on the proposed approach new Nash equilibria conditions for the
games with average and discounted payoffs have been derived and some approaches
for determining the optimal stationary strategies of the players are proposed. The
obtained results can be extended for the antagonistic stochastic games.
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