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Abstract We consider a class of simple games that emphasizes one impor-
tant aspect of the game of bridge: what a player consisting of two persons
(in terms of (von Neumann and Morgenstern, 1953)) can do when the direct
communication is prohibited between them, and how they play against their
opponent acting under similar circumstances1. We find optimal strategies
for this class of games and show how the effect of quantum nonlocality can
improve the players’ performance.
Quantum nonlocality, or quantum entanglement, is widely known in quan-
tum game theory. In some games, the payoff of players properly equipped
with entangled quantum bits can be up to exponentially bigger in compar-
ison with ordinary players. However, all known nonlocal games are quite
artificial and, besides, they are fully “cooperative”: there are no opponents
as such, but all players should strive for the same goal. The introduced game
favorably differs from them. Firstly, it has been derived from quite natural
problem (the game of bridge); secondly, there is an apparent presence of
competition in the game (because it is a zero-sum one!); and, finally, its
analysis does not require deep understanding of the heavy mathematical
formalism of quantum information theory.

1. Introduction

In modern game theory many useful concepts and tools were developed for the anal-
ysis of traditional games. As a rule, such developments began with some simplest
possible models which represented, however, very fundamental questions. This ar-
ticle is largely inspired by the famous case, one of the earliest in the study of game
theory, namely, the analysis of highly simplified version of poker made by von Neu-
mann and Morgenstern in (von Neumann and Morgenstern, 1953). In the “Poker
and Bluffing” section, the authors on the basis of a fairly simple model manage to
reveal the mathematical sense of bluffing in some games and show its soundness
from the point of view of game theory. This brilliant result was a very great first
step in developing the mathematical model of poker, which subsequently gained
extensive development.

In this article we shall also consider one special aspect of one popular and well-
researched card game. It is the game of bridge, in which one of the main challenges
for players is coordinated actions of partners in the best possible way, assuming
that no one is able to see the cards of the partner. At the same time, the players
must resist the opposing pair of players, who are acting in the similar conditions.

⋆ Supported by the European Commission under the project QALGO (Grant No. 600700)
1 The present paper was first presented at GTM’2014 under the name “Quantum En-
tanglement Can Help in the Game of Bridge” in order to attract possibly more
card players’ attention to quantum information processing, but since then the paper
(Muhammad et al., 2014) appeared to do the same job in a more efficient manner.
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Bridge today is probably the most intellectual game in which element of gambling
is virtually minimized. The very serious attitude to this game can be illustrated
by the fact that the game of bridge is the only card game being an Olympic sport
(along with such samples of intellectual games like chess and go). So, of course, our
intention is not to build anything claiming to help to play bridge, but instead we
will perform some basic analysis of only one special aspect of this game.

Another source of inspiration for this analysis is the proximity of this problem
to the issues that currently, perhaps, are leading in the quantum game theory. We
mean the coordination of agents who are prohibited to transfer any signal between
them, which is also closely connected with communication complexity of functions
and similar topics.

To illustrate the difference in calculating “classical” and “quantum” strategies,
we sometimes provide rather bulky formulae that should be taken no more than as
illustrations or perhaps, as an auxiliary material for a separate research2.

2. Formulation of the Rules

Now, consider the following zero-sum card game Γ , which in simplified form il-
lustrates only one, albeit very important, aspect of the game of bridge — namely
coordination of a pair of players, assuming that any exchange of information is pro-
hibited between them. Hereafter we call it Coordination Game. Just like the game
of bridge, this game is played at the same table by two pairs of players (say by pairs
N-S and W-E ), each pair of players sitting opposite each other. The table is divided
into two circles — internal and external. Some set of cards is used for the game, and
each player gets two cards from this set at random (of course, each player knows
the values of his cards only). Then each player must place one card to the inner
circle and the other — to the outer circle. After that, the cards are turned over.
If at any circle — internal or external — a card is detected with the value strictly
greater than the values of both opponent’s cards of the same circle, then that pair
which owns this dominant card gets all four cards of the circle; otherwise, no one
gets these four cards. If a pair manages to get some cards, then the sum of their
values matches their income, which of course is collected from the opposing pair.

Example of play:
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2 Working Wolfram Mathematica® script is available upon request by email or at http:
//home.lu.lv/~sd80008/bridge/
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Here a < b < c are values of three types of cards used in the game. Hereafter
we restrict ourselves to the case of only three types of cards. In addition, for the
reason of simplicity we shall assume that neither player receives two cards of the
same type. But similar considerations will be correct also for the cases without these
restrictions.

In this play there are W-E ’s cards a, a and N-S ’s cards b, b at the inner circle;
since pair N-S has a dominant card b (more precisely, even two such cards), it
gets all four cards of the inner circle. At the outer circle there are W-E ’s cards c, b
and N-S ’s cards a, c; since neither pair has a card which would dominate all the
opponents’ cards, the outer circle is not captured by anyone. The total result of
the play: pair W-E pays amount a + a + b + b to pair N-S. (Note also that if
this amount is not negative, then pair W-E ought to regret about their strategy,
because if players W and E both had swapped their cards around, they would gain
3b− 3a > 0.)

3. Search for Optimal Strategies

A player’s strategy in this game is just some set of rules according to which the
player having received cards i and j, decides where to put the card i and where to
put the card j (for each i < j : i, j ∈ {a, b, c}). Let us assume the initial hand to
consist of the lower card i lying at the inner circle, and the higher card j lying at
the outer circle. Then pure strategies of all the four players

XN = (xba, xca, xcb) ,
XS = (xab, xac, xbc) ,
YW = (yba, yca, ycb) ,
YE = (yab, yac, ybc)

(where ∀i, j ∈ {a, b, c} (i 6= j) : xij , yij ∈ {0, 1})
must determine for each player whether to swap the cards around or leave them as
is. For the pairs of players we shall represent pure strategies respectively as

X = (xba, xca, xcb, xab, xac, xbc) ,
Y = (yba, yca, ycb, yab, yac, ybc) .

We say that, for example, xba = 0 means that player N, having card b at the outer
circle and card a at the inner circle, leaves the cards as is. And we say that xba = 1
means that in this case player N shifts the card a to the outer circle, and the card
b — to the inner circle.

As in the game of bridge, we shall assume that a pair of players may communicate
before the play is started, so that they can develop a common strategy. In particular,
this means that the players may have arbitrary shared randomness. Therefore3, we
must consider their mixed strategies of type

X̃ =
∑

w∈{0,1}6

ξwXw and

Ỹ =
∑

w∈{0,1}6

ηwYw,

3 If the pairs of players had no shared randomness, then their mixed strategies would look

like
∑

u∈{0,1}3

∑

w∈{0,1}3

ξNuξSwX(u,w) and
∑

u∈{0,1}3

∑

w∈{0,1}3

ηWuηEwY(u,w).
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where Xw1w2w3w4w5w6
= Yw1w2w3w4w5w6

= (w1, w2, w3, w4, w5, w6), and ξw, ηw ≥
0 are the probabilities of selecting each of the 64 pure strategies:

∑
ξw =

∑
ηw = 1

(it is easy to see that for a pair of players there are exactly 26 = 64 different
pure strategies). Now let us consider what the players can benefit from the shared
randomness.

Lemma 1. In a Coordination Game there always exists an optimal mixed strategy
(in the sense of von Neumann and Morgenstern solution or Nash equilibrium), that
ends with mutual swap-around of cards by each of the two players with probability
50%. That is, formally speaking, there always exist optimal strategies of type

X̃+ =
∑

w∈{0,1}6

ξw

(
1

2
Xw +

1

2
Xw

)
and

Ỹ+ =
∑

w∈{0,1}6

ηw

(
1

2
Yw +

1

2
Yw

)
,

where w = (1, 1, 1, 1, 1, 1)− w.

Proof. Briefly, in this symmetric game it is always useful (at least not harmful) to
confuse the opponent by changing the outer circle cards to the inner circle cards
and vice versa — with probability 50%.

Now let us give a formal proof of this fact. Suppose some pair, say N-S (but
due to the symmetry of the game similar arguments hold also for pair W-E ), has
an optimal strategy

X̃+ =
∑

w∈{0,1}6

ξwXw.

Let us consider this strategy together with its dual strategy

X̃− =
∑

w∈{0,1}6

ξwXw (where w = (1, 1, 1, 1, 1, 1)− w)

— so that if X̃− = X̃+ then the proof is complete. Next, we are going to show
that all the strategies of the form

pX̃+ + (1− p) X̃− (where 0 ≤ p ≤ 1)

are also optimal (this fact immediately implies the statement of the Lemma). For

this we recall first that the optimality criterion for a mixed strategy X̃opt is equality

min
Y

Γ
(
X̃opt, Y

)
= max

X̃

min
Y

Γ
(
X̃, Y

)
,

where Y belongs to the set of the opposing pair’s pure strategies, and Γ
(
X̃, Y

)
is

the payoff for the first pair applying the mixed strategy X̃ against the opponents’
pure strategy Y in the game Γ .

Suppose that a strategy X̃− is not optimal:

Γ
(
X̃−, Y−

)
< max

X̃

min
Y

Γ
(
X̃, Y

)
for some opponents’ pure strategy Y−.
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Then strategy X̃+ also is non-optimal:

Γ
(
X̃+, Y+

)
= Γ

(
X̃−, Y−

)
< max

X̃

min
Y

Γ
(
X̃, Y

)
,

where Y+ is strategy’s Y− dual strategy.

This contradicts our assumption about the optimality of X̃+, so we conclude

that the strategy X̃− necessarily is optimal. And since both

Γ
(
X̃+, Y

′
)
≥ max

X̃

min
Y

Γ
(
X̃, Y

)
and

Γ
(
X̃−, Y

′
)
≥ max

X̃

min
Y

Γ
(
X̃, Y

)

for each opponents’ pure strategy Y ′, it follows that also

Γ
(
pX̃+ + (1− p) X̃−, Y

′
)
=

= pΓ
(
X̃+, Y

′
)
+ (1− p)Γ

(
X̃−, Y

′
)
≥

≥ max
X̃

min
Y

Γ
(
X̃, Y

)

for each opponents’ pure strategy Y ′. ⊓⊔

We have just shown that for each pair it is worthwhile to swap the cards around
mutually — with probability 50%. In order to simplify our further arguments, let
us slightly amend the rules of the game. Namely, suppose that the card dealing
system itself performs the above-mentioned task instead of the players: sometimes
(with probability 50%) it swaps the cards around for a pair of players (i.e. for N-S
or W-E ).

Now let us temporarily forget about mixed strategies and consider only pure
strategies and the results that can be achieved by using them in this new amended
game. In order to calculate the payoff of the first pair Γ (X,Y ) (for some pure
strategies X and Y ), one should consider all 34 = 81 different cases4 of the following
type:

N

S

m

i

j

n

W Eo k l p

where
i, j, k, l,m, n, o, p ∈ {a, b, c} ,
m > i, j < n,
o > k, l < p.

4 Since each of the 4 players may receive one of 3 different hands: (a, b), (a, c) or (b, c).
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Then the payoff of the first player can be calculated by the formula

Γ (X,Y ) =

=
1

81

∑

m>i,
j<n,
o>k,
l<p





Q(i,j,k,l)+Q(m,n,o,p)
2 +Q(i,j,o,p)+Q(m,n,k,l)

2 , if xmi=xjn,yok=ylp;
Q(i,j,k,p)+Q(m,n,l,o)

2 +Q(i,j,l,o)+Q(m,n,k,p)
2 , if xmi=xjn,yok 6=ylp;

Q(i,n,k,l)+Q(j,m,o,p)
2 +Q(i,n,o,p)+Q(j,m,k,l)

2 , if xmi 6=xjn,yok=ylp;
Q(i,n,k,p)+Q(j,m,l,o)

2 +Q(i,n,l,o)+Q(j,m,k,p)
2 , if xmi 6=xjn,yok 6=ylp,

where Q (x1, x2, y1, y2) = (x1 + x2 + y1 + y2) · sgn (max (x1, x2)−max (y1, y2)).
This expression can be rewritten in an unconditional form:

Γ (X,Y ) =
1

162

∑

m>i,
j<n,
o>k,
l<p

(Q(i,j,k,l)+Q(m,n,o,p)+Q(i,j,o,p)+Q(m,n,k,l))(1−xmi⊕xjn)(1−yok⊕ylp)
+(Q(i,j,k,p)+Q(m,n,l,o)+Q(i,j,l,o)+Q(m,n,k,p))(1−xmi⊕xjn)(yok⊕ylp)
+(Q(i,n,k,l)+Q(j,m,o,p)+Q(i,n,o,p)+Q(j,m,k,l))(xmi⊕xjn)(1−yok⊕ylp)
+(Q(i,n,k,p)+Q(j,m,l,o)+Q(i,n,l,o)+Q(j,m,k,p))(xmi⊕xjn)(yok⊕ylp).

(1)

This sum is a fourth degree polynomial of twelve 0-1-valued arguments
(xba,xca,xcb, xab,xac,xbc, yba,yca,ycb, yab,yac,ybc), which consists of 180 terms5.

If we fix two values xba = yba = 0, this expression can be simplified to a poly-
nomial consisting of only 94 terms, which can be represented as follows:

81 Γ (X, Y ) =
(64a+20b+12c) (xac+xca+yacyca−yac−yca−xacxca)

+ (46a−6b) (xab+yabyca−yab−xabxca)
+ (18a+26b+12c) (xbc+xcb+yacycb+ybcyca−ybc−ycb−xacxcb−xbcxca)

+ (14a−14b) (yabycb−xabxcb)
+ (4a+40b+12c) (ybcycb−xbcxcb)

+ (6a+2b) ( xacyab+xbcyab+xbcyac+xbcyca+xcayab+xcbyab+xcbyac+xcbyca+xabxcayac

+xabxcaybc+xabxcayca+xabxcaycb+xacxcaybc+xacxcaycb+xabyacyca

+xabyacycb+xabybcyca+xacyacycb+xacybcyca+xcayacycb+xcaybcyca

+xacxcayabyca+xacxcbyabyca+xacxcbyacyca+xbcxcayabyca+xbcxcayacyca

−yacxab−ybcxab−ybcxac−ybcxca−ycaxab−ycbxab−ycbxac−ycbxca−yabycaxac

−yabycaxbc−yabycaxca−yabycaxcb−yacycaxbc−yacycaxcb−yabxacxca

−yabxacxcb−yabxbcxca−yacxacxcb−yacxbcxca−ycaxacxcb−ycaxbcxca

−yacycaxabxca−yacycbxabxca−yacycbxacxca−ybcycaxabxca−ybcycaxacxca)
+ (2a−2b) ( xabyabycb+xacyabycb+xcayabycb+xabxcbyabyca+xabxcbyacyca

−yabxabxcb−yacxabxcb−ycaxabxcb−yabycbxabxca−yabycbxacxca)
+ (4a+4b) ( xabybcycb+xacybcycb+xcaybcycb+xbcxcbyabyca+xbcxcbyacyca

−yabxbcxcb−yacxbcxcb−ycaxbcxcb−ybcycbxabxca−ybcycbxacxca) .
(2)

Simplification by fixing xba = yba = 0 is valid, as in the amended version of the
game any dual strategies Z+ and Z− are equivalent, and therefore for each strategy
with xba = 1 (yba = 1) there is an equivalent dual strategy with xba = 0 (yba = 0).

Thus, it remains to consider only 25 = 32 pure strategies. Their values can be
written in the form of a round-robin tournament (by substituting all xij and yij of
polynomial (2) with appropriate values), i.e. in the form of 32× 32 skew-symmetric
matrix with elements of type αa+ βb + γc.

It is interesting to note that only five such strategies may be optimal for some
values a < b < c:

5 In order to build this polynomial one should substitute all non-linear Boolean expressions
of type a ⊕ b by appropriate quadratic trinomials: a ⊕ b = |a− b| = (a− b)2 =
a2 + b2 − 2ab = a+ b− 2ab.
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xba xca xcb xab xac xbc

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 1 1

0 0 1 0 0 0

0 1 1 1 0 0

Moreover, we shall not consider strategyX001000, since it is equivalent to strategy
X000001 up to the permutation of players in the pair. For remaining four potentially
optimal strategies X000000, X000001, X000111 and X011100, let us write down their
results in their plays against all 32 pure strategies Y000000, . . . , Y011111. In Table 1
we present values of 81 Γ (X,Y ) for corresponding strategies X and Y .

For each of the four columns of Table 1 the following holds: if one requires each
of 32 expressions of the column to be non-negative, then the system of inequalities
describes some nondegenerate unbounded convex polytope. And for all other strate-
gies which are not equivalent to the potentially optimal ones, if one wrote down
their results in the similar way, then corresponding systems of inequalities would
be contradictory (that is, they would have no solution).

System of inequalities for potentially optimal strategies can be further simplified
by getting rid of redundant inequalities. In fact, the only meaningful inequalities
correspond to the six expressions shown in bold in Table 1. Indeed, if bold-shown
expressions in a column are non-negative, then all other expressions also are non-
negative (given that a < b < c, of course).

It is also easy to notice that all the bold-shown expressions form three symmetric
pairs that actually correspond to the three planes in three-dimensional space with
coordinates a, b, c. These planes split the unbounded wedge specified by the two
inequalities a < b < c into four parts, within each of which one of the four above-
mentioned strategies is optimal (and within each of these four planes two strategies
are optimal).

All these facts imply the following theorem.

Theorem 1. In any amended Coordination Game (with cards’ values a < b < c)
there exists an optimal pure strategy.

We leave this theorem without a formal proof, which would be rather bulky.
However, we have already managed to describe essentially all the basic steps of the
proof.

In this section we have shown that for any cards’ types a < b < c in the amended
game there is an optimal pure strategy, so that mixed strategies, about which we
temporarily forgot in the middle of the chapter, can be now forgotten forever (as
a mixed strategy is optimal only if all its nonzero components are optimal pure
strategies). These potentially optimal pure strategies belong to the four disjoint
families of mutually equivalent strategies, and in order to determine a family of
optimal strategies for given values a, b, c, one only needs to check a few linear in-
equations (i.e. to find which of Table 1 columns contain(s) non-negative bold-shown
expressions).
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Table 1:
Results of potentially optimal strategies in a round-robin tournament

X000000 X000001 X000111 X011100

Y000000 0 18a+26b+12c 128a+40b+24c 68a+60b+24c
Y000001 −18a−26b−12c 0 98a+10b+12c 44a+32b+12c

Y000010 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y000011 −82a−46b−24c −58a−18b−12c 34a−10b −16a+16b
Y000100 −46a+6b −22a+34b+12c 94a+50b+24c 32a+72b+24c
Y000101 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y000110 −110a−14b−12c −80a+16b 30a+30b+12c −28a+56b+12c
Y000111 −128a−40b−24c −98a−10b−12c 0 −52a+28b

Y001000 −18a−26b−12c 0 98a+10b+12c 44a+32b+12c
Y001001 −32a−12b−12c −14a+14b 80a+28b+12c 28a+48b+12c
Y001010 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y001011 −78a−6b−12c −54a+22b 46a+38b+12c −8a+60b+12c
Y001100 −50a−34b−12c −26a−6b 82a+2b+12c 24a+28b+12c
Y001101 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y001110 −96a−28b−12c −66a+2b 48a+12b+12c −12a+40b+12c
Y001111 −110a−14b−12c −80a+16b 30a+30b+12c −28a+56b+12c
Y010000 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010001 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010010 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010011 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010100 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010101 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010110 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y010111 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y011000 −82a−46b−24c −58a−18b−12c 34a−10b −16a+16b
Y011001 −78a−6b−12c −54a+22b 46a+38b+12c −8a+60b+12c
Y011010 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y011011 −60a+20b −36a+48b+12c 76a+68b+24c 16a+88b+24c
Y011100 −68a−60b−24c −44a−32b−12c 52a−28b 0
Y011101 −64a−20b−12c −40a+8b 64a+20b+12c 8a+44b+12c
Y011110 −50a−34b−12c −26a−6b 82a+2b+12c 24a+28b+12c
Y011111 −46a+6b −22a+34b+12c 94a+50b+24c 32a+72b+24c
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4. Quantum Strategies

Now let us turn to the notion of quantum strategy. In the theory of nonlocal quan-
tum games one traditionally considers the case when the players before the start
of the play can share not only arbitrary classical information (thus defining their
strategies and creating some shared randomness), but they are allowed also to share
some amount of quantum information.

The easiest comprehensible case of quantum nonlocality is traditionally de-
scribed by the famous CHSH game (Clauser et al., 1969), where the players (say
N and S ) before the start of the play create an EPR pair — a pair of entangled
qubits in the Bell state6

|Φ+〉 = 1√
2
|0〉N ⊗ |0〉S +

1√
2
|1〉N ⊗ |1〉S .

Then, during the play, not being able to communicate with each other, they perform
measurements — each player measures his qubit in some special way, according to
the current position in the game. As a result of the measurement each player receives
one bit of information (equiprobably 0 or 1). This information can be called quantum
shared randomness.

If prior to the measurement one of the players turns his qubit by some angle α

and the other — by some angle β, then with probability cos2 α−β
2 the results of

their measurements will coincide, and with probability sin2 α−β
2 the results will

be different. More precisely, these probabilities can be represented in the following
table:

Table 2: Results of measuring an EPR pair

N ’s result S ’s result Probability

0 0 1
2
cos2

α− β

2

0 1 1
2
sin2 α− β

2

1 0 1
2
sin2 α− β

2

1 1 1
2
cos2

α− β

2

By manipulating with angles’ values α and β in CHSH game, players can increase

the probability of winning from 75% to as much as
cos2 π

4 + 1

2
= 85.3553 . . .%.

Quantum players can have up to exponentially bigger advantage comparing
to classical players in some games of this kind (Mermin, 1990, Ardehali, 1992,
Ambainis et al., 2012a, Briët and Vidick, 2012, Ambainis et al., 2012b). Similar
technique can be applied also in the amended Coordination Game. Since this game,
exactly as CHSH game, requires each player to make only a one-bit move (to swap
one’s cards around or not to swap), it is sufficient to have only one qubit per player
(i.e. one EPR pair per pair of players).

6 For example, it may be a pair of photons in the zero-spin state (so called singlet), as it
was performed in a number of physical experiments.
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We assume that the result of the measurement fully determines the further
actions of a player: a player swaps his cards around when measured 1, and leaves
them as is when measured 0.7 Thus, in the amended game quantum strategy won’t
be from the binary vector space {0, 1}6 but from (−π;π]

6
.

The formula for calculating the expected value in a play between quantum strate-
gies X̂ = (Xba, Xca, Xcb, Xab, Xac, Xbc) and Ŷ = (Yba, Yca, Ycb, Yab, Yac, Ybc) looks,
obviously, as follows:

Γ
(
X̂,Ŷ

)
=

1
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∑

m>i,
j<n,
o>k,
l<p

(Q(i,j,k,l)+Q(m,n,o,p)+Q(i,j,o,p)+Q(m,n,k,l))cos2
xmi−xjn

2
cos2

yok−ylp

2

+(Q(i,j,k,p)+Q(m,n,l,o)+Q(i,j,l,o)+Q(m,n,k,p))cos2
xmi−xjn

2
sin2 yok−ylp

2

+(Q(i,n,k,l)+Q(j,m,o,p)+Q(i,n,o,p)+Q(j,m,k,l))sin2 xmi−xjn

2
cos2

yok−ylp

2

+(Q(i,n,k,p)+Q(j,m,l,o)+Q(i,n,l,o)+Q(j,m,k,p))sin2 xmi−xjn

2
sin2 yok−ylp

2
,

(3)

where Q (x1, x2, y1, y2) = (x1 + x2 + y1 + y2) · sgn (max (x1, x2)−max (y1, y2)).

A classical strategy Z = (zba, zca, zcb, zab, zac, zbc) in the amended version of

the game will be equivalent to quantum strategy Ẑ = πZ, so the set of quan-
tum strategies can be seen as superset of the set of classical strategies. Indeed, for
α, β ∈ {0, π} the following equalities hold:

sin2
α− β

2
=

(
α

π

)
⊕
(
β

π

)
and

cos2
α− β

2
= 1−

(
α

π

)
⊕
(
β

π

)
,

so that formula (3) is equivalent to the formula (1).

Just like we did it for a classical strategy, we can fix xba = yba = 0 also for a
quantum one. This simplification is valid, because adding some value (say, −xba or
−yba) to all angles of the strategy doesn’t change the difference of any pair of the
angles. Formally speaking, a quantum strategy

Ẑ = (zba, zca, zcb, zab, zac, zbc)

is equivalent to strategy

Ẑ0 = (0, zca − zba, zcb − zba, zab − zba, zac − zba, zbc − zba) . (4)

Taking this fact into account, one can regroup and simplifty the sum (3) to the
following function:

7 In fact, this kind of behavior is the only one that exploits the quantum nonlocality
effect in the most efficient way; any probabilistic deviation from this scheme drives
the efficiency of a quantum strategy back to the efficiency of ordinary classical mixed
strategies.



Quantum Entanglement in a Zero-Sum Game 159

162 Γ
(
X̂,Ŷ

)
=

(64a+20b+12c) (cos2
yca−yac

2
−cos2 xca−xac

2
)

+(12a+48b+12c) (cos2
ycb−ybc

2
−cos2 xcb−xbc

2
)

+(16a+8b) (cos2
yab
2

−cos2 xab
2

)

+(34a−10b) (cos2
yac
2

+cos2
yca−yab

2
−cos2 xac

2
−cos2 xca−xab

2
)

+(30a+30b+12c) (cos2
yca−ybc

2
+cos2

ycb−yac
2

−cos2 xca−xbc
2

−cos2 xcb−xac
2

)

+(18a−18b) (cos2
ybc
2

+cos2
ycb−yab

2
−cos2 xbc

2
−cos2 xcb−xab

2
)

+4a (cos2 xca−xac
2

cos2
yab
2

−cos2
yca−yac

2
cos2 xab

2
)

+(2a+2b) ( cos2 xcb−xbc
2

(cos2
yab
2

+cos2
yac
2

+cos2
yca−yab

2
+cos2

yca−yac
2

)

−cos2
ycb−ybc

2
(cos2 xab

2
+cos2 xac

2
+cos2 xca−xab

2
+cos2 xca−xac

2
))

+(3a+b) ( (cos2 xca−xbc
2

+cos2 xcb−xac
2

)(cos2
yab
2

+cos2
yac
2

+cos2
yca−yab

2
+cos2

yca−yac
2

)

−(cos2
yca−ybc

2
+cos2

ycb−yac
2

)(cos2 xab
2

+cos2 xac
2

+cos2 xca−xab
2

+cos2 xca−xac
2

)

+cos2 xca−xac
2

(cos2
yac
2

+cos2
yca−yab

2
)−cos2

yca−yac
2

(cos2 xac
2

+cos2 xca−xab
2

))

+(a−b) ( (cos2 xbc
2

+cos2 xcb−xab
2

)(cos2
yab
2

+cos2
yac
2

+cos2
yca−yab

2
+cos2

yca−yac
2

)

−(cos2
ybc
2

+cos2
ycb−yab

2
)(cos2 xab

2
+cos2 xac

2
+cos2 xca−xab

2
+cos2 xca−xac

2
)

+cos2
yab
2

(cos2 xac
2

+cos2 xca−xab
2

)−cos2 xab
2

(cos2
yac
2

+cos2
yca−yab

2
))

(5)

Unfortunately, it is hardly possible to do anything with such expression without
numerical methods.

5. Quantum Players Outperform Classical Players

In Section 3. we described the method of finding an optimal classical strategy for
the entire three-dimensional space of values a, b, c. In this section we shall only
be interested in its small subspace, namely in games with parameters (a, b, c) =
(−n, n, n+ 1).

We can now apply our newly acquired method and easily conclude that for all
these games exactly two dual pure strategies are optimal:

X+ = (0, 1, 1, 1, 0, 0) and X− = (1, 0, 0, 0, 1, 1) ,

because both bold expressions in the last column of the Table 1 is strictly greater
than zero, so that strategies X+ and X− strictly dominate all other 62 strategies8.
Of course, they also strictly dominate any mixed strategy with at least one positive
non-optimal component.

The exact results of this strategy against all other strategies can also be derived
from the expressions of the last column of Table1.

In Section 5. we justified the matching of any classical strategy of some quan-
tum strategy (where quantum entanglement is used as a source of ordinary classical
shared randomness). As we noted at the end of that section, one should use numer-
ical methods in order to find an optimal quantum strategy. Of course, an optimal
quantum strategy cannot be worse than the optimal classical strategy (as classical
strategies are only a finite subset of the continuous six-dimensional space of quan-
tum strategies). Could it be better? Is it pure or mixed? And if it is mixed, then
how many nonzero components does it have?

Numerical optimization answers that for (a, b, c) = (−n, n, n+ 1) there is
essentially one pure optimal strategy.

8 We also note that the line (a, b, c) = (−n, n, n+ 1) passes fairly close to the border
with that part of the entire space of games, in which the optimal strategies are X =
(0, 0, 0, 0, 0, 1) and the three equivalent ones.
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But let us first consider a nearly optimal strategy

X̂ =

(
0,

π

3
,
2π

3
,
π

3
, 0,

−π

3

)
.

By means of the formula (2) we can find its results against any classical strategy.
As we have already deduced, it is sufficient to consider only 32 out of 64 pure classical
strategies. We represent these results in Table 3.

Table 3:

Results of strategy X̂=

(
0,
π

3
,
2π

3
,
π

3
,0,

−π

3

)
against pure classical strategies

Y 162 Γ
(
X̂,Y

)
Y 162 Γ

(
X̂,Y

)
Y 162 Γ

(
X̂,Y

)
Y 162 Γ

(
X̂,Y

)

Y000000 50n+33 Y001000 12n+9 Y010000 108n+9 Y011000 70n−15

Y000001 12n+9 Y001001 70n+9 Y010001 108n+9 Y011001 166n+9

Y000010 108n+9 Y001010 108n+9 Y010010 108n+9 Y011010 108n+9

Y000011 70n−15 Y001011 166n+9 Y010011 108n+9 Y011011 204n+33

Y000100 146n+33 Y001100 50n+9 Y010100 108n+9 Y011100 12n−15

Y000101 108n+9 Y001101 108n+9 Y010101 108n+9 Y011101 108n+9

Y000110 204n+9 Y001110 146n+9 Y010110 108n+9 Y011110 50n+9

Y000111 166n−15 Y001111 204n+9 Y010111 108n+9 Y011111 146n+33

As one can see, the best classical strategy Y011100 loses only 12n − 15 to
quantum strategy X̂. Additionally, there are asymptotically best classical strategy
Y000001 and equivalent ones9, which lose 12n+ 9. So that we can conclude that
good strategies work better than others, but still not as good as quantum strategies
do.

The precize results of numerical optimization are as follows. For n → ∞ there
is exactly one optimal pure quantum strategy of type (4):

X̂opt = ( 0,
0.324347 . . .π,
0.661239 . . .π,
0.361300 . . .π,
0.036953 . . .π,

−0.299938 . . .π )

Its results against the two best classical strategies are as follows:

Γ
(
X̂opt, Y000001

)
= 0.076 . . . n+ 0.042 . . .

Γ
(
X̂opt, Y011100

)
= 0.084 . . . n− 0.106 . . .

To conclude, we note a few facts concerning the considered class of games:

– optimal quantum strategy dominates all the classical strategies (for n ≥ 2);
– although classical strategy Y011100 dominates Y000001, the latter looses less when

played against X̂opt;

9 Recall that line (a, b, c) = (−n, n, n+ 1) passes near that region where they are
optimal.
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– quantum-over-classical advantage may reach at least about 7.5% of the average
absolute value of a card;

– that is, quantum entanglement in Coordination Game in some cases helps better
than any classical shared randomness.

6. Some Open Questions

In the quantum games theory, there are several main directions. Let us shortly
describe some most important of them.

— 1. The coin-flipping games were considered beginning with the works
(Meyer, 1999, Ambainis, 2002, Kitaev, 2002). In these games players are able
to send quantum information to each other. Or, as it is considered in
(Jain and Watrous, 2009), players deal with quantum information by sending qubits
to a referee. Such games are usually criticized for the fact that they generally aren’t
comparable to any classical game.

— 2. In a number of works based on the initial idea of (Clauser et al., 1969)
(among which we must highlight (Cleve et al., 2004)), nonlocal games are consid-
ered. This is probably the most famous type of quantum games, because they force
to reconsider some of concepts of cryptography, communication complexity, etc.
However, from the game-theoretical point of view, they seem to be not that in-
teresting. Firstly, because their rules are very artificial. And secondly, they are in
some sense strategically degenerate games: although they have variations for arbi-
trary number of players, the players must all have the same goal. They usually are
called cooperative, but in terms of traditional game theory they should be viewed
as only one-player games with incomplete information.

— 3. Another direction of quantum games originates from (Eisert et al., 1999).
Among quite few results in this area let us mention some applied aspects of quantum
game theory are discussed in (Dahl and Landsburg, 2011), where the authors con-
sider an example of economic game with quantum strategies. Work (Zhang, 2011)
provides with the systematic study of some important classes of quantum games.
These articles, among other things, discuss the role of quantum entanglement in cor-
related equilibria of some bimatrix games. Unfortunately, the initial idea described
in (Eisert et al., 1999) was immediately criticized in (Benjamin and Hayden, 2001a,
Benjamin and Hayden, 2001b, van Enk and Pike, 2002) and remained without
proper attention for a long time. Only in recent years, this model has been to some
extent rehabilitated in the works (Zhang, 2011) and (Kravchenko, 2013), where it
was slightly modified (in two different ways) so as to satisfy the basic arguments of
the criticism.

In this article we were one of the first to consider a two-player zero-sum game,
which has a straightforward classical analogue. Oddly enough, the basic case of
game theory — a two-player zero-sum game — has not been quantized for so long
time.

This Coordination Game clearly doesn’t belong to the first class of quantum
games (“penny-flipping”), as it doesn’t assume any transfer of quantum informa-
tion during the play. Instead it can be properly attributed to the second class of
quantum games (“nonlocal”), since it presents exploiting quantum nonlocality ef-
fect. But actually it combines the advantages of both the second and the third
classes of quantum games. On the one hand, the correspondence between classical
and quantum versions of the game is undisputable, and on the other hand it mod-
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els a real conflict situation, which essentially involves two players with opposing
interests.

In this regard, the following general questions arise.
What are games, for which it is possible to find an interesting quantum

analogue? Obviously, the Coordination Game can be somehow generalized and
then successfully quantized as well — so as to demonstrate a significant difference
between the classical and the quantum version of the game. But for now this game
models only one specific aspect of the game of bridge. Are there some other

aspects of games for which exploiting of quantum effects can lead to

different results?

There is yet another very important aspect in the game of bridge — the so-called
signaling within a pair of players. It is considered both impossible and unwise to
transfer all the information about one’s cards to a partner (unwise, because the
opposing pair will be able to use this information in their favor). What could be

optimal classical strategies given that some exchange of information is

allowed among partners? What could be the effect of exploiting quan-

tum correlation for transferring incomplete and possibly not perfectly

accurate classical information?

Some questions arise also regarding the considered Coordination Game. In this
game the set of all classical strategies are totally ordered under dominance (i.e.
weak dominance relations are antisymmetric, transitive and total). One implication
of this fact is the existence of optimal pure strategies, which appeared in this paper
as Theorem 1. Does similar statement hold also for the quantum version

of the game? Are there quantum games, where all optimal quantum

strategies are mixed or even totally mixed? In nonlocal games quantum
entanglement seems to be sufficient for all purposes of classical shared randomness,
so that for this class of games the answer likely is negative. But does the same
hold also for other classes of games? Note that this issue has already arisen in
connection with criticism of EWL scheme in (Benjamin and Hayden, 2001a), and
for that specific case it was proved that no optimal pure quantum strategy exists.
It would be interesting to understand whether that case is exceptional or a typical
one.
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