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Abstract The article deals with the development of the theory of stochas-
tic cooperative games and also possible future directions of practical appli-
cations of this class of games are considered. The principal feature of the
proposed approach to stochastic cooperative games is that it is based on
the definition of the imputation as a vector, which provides the conditions
of individual and group rationality with a certain (given) α the probability.
Unlike previous approaches, that consider imputation in stochastic cooper-
ative game as ”fixed” proportions, our view is to consider total utility of
the coalition as a random variable, distributed among its participants. This
approach introduces the concept of α− core games and consideres a number
of problems that can be formulated with respect to the properties of this
object.

1. Introduction

Among the most actual and significant problems which the modern economic science
faces, the problem of modeling and research of the cooperative effects arising in case
of interaction of the economic actors possessing diverse and uncoordinated systems
of interests can be called.

It is simple to notice those common features and regularities by which the
coalition behavior of economic actors in situations which in the substantial plan
are rather far from each other is characterized. In particular, the reasons proving
achievement of arrangements between certain people have many common features
with arguments owing to which there are agreements between huge corporations,
regional associations or parliamentary parties.

These circumstances determine efficiency and fruitfulness of application in mod-
ern economic researches of methods of the theory of cooperative games. Actively
developing, since the beginning of the 50-th years of the XX century, they found
broad application in the most various spheres.

Quite often at the level of daily reasonings it is possible to meet doubts con-
cerning feasibility of use of so difficult mathematical apparatus what the theory of
cooperative games, to the analysis of specific economic situations is. However facing
processes and the phenomena to which disproportionate and spasmodic changes in
the utility of their subjects are objectively peculiar, we with inevitability come to
conclusion about lack of alternative of methods of the theory of cooperative games.

As examples potential spheres of application of game-theoretic cooperative mod-
els it is possible in addition to such obvious examples as cooperation of large financial
players in case of implementation of joint investment projects, to call interaction of
subjects of leasing transactions or implementation of socially significant projects in
the media sphere.

At the same time it should be noted those basic difficulties which noticeably
complicate processes of practical implementation of the mathematical models con-
structed on the device of cooperative games. Among them the key place is taken
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by a problem of creation of characteristic function. In practice it is the extremely
difficult to characterize effect (consequences) from consolidation of players in the
coalition. Especially when it is about hypothetical estimates of the coalitions which
are never realized in practice. The assumption about possibility of the description
of potential prizes of the potential coalitions from expected project participants
by means of the determined sizes looks very disputable. And attractiveness of the
hypothesis of their accidental nature is represented much more realistic. However
thus we lose possibility of direct use of tools of classical cooperative games. Tran-
sition to tools of stochastic cooperative games becomes one of possible methods of
overcoming of this difficulty.

2. Literature review

The term stochastic cooperative games has a long history in professional game-
theoretic literature. However, it should be emphasized that various authors define
it differently.

Two of the first papers devoted to stochastic cooperative games were Charnes
and Granot (1973, 1977). They introduced the hypothesis that the values of the
characteristic function of a cooperative game are random variables, and proposed a
two-step procedure for constructing the imputation of the income distribution of a
full coalition. To begin with, the so-called fair payoffs are formed. Typically, these
distributions are interpreted as market expectations of players. In the second stage
occurs a posteriori adjustment of promised values of imputation in accordance with
the factual imputation of the realized value of payoff. The focuses of these papers
are devoted to the tasks of correcting the imputations in the second stage.

Another essential step in the development of the theory of stochastic cooperative
games is based on a series of publications in the late 1990s, by the author Jeroen
Suijs (Suijs and Borm, 1999; Suijs, 1999a; Suijs et al., 1995; Suijs et al., 1999; Suijs
et al., 1998). The main difference between Suijs and Charnes and Granot was the
introduction of assumptions about how to set preferences in relation to stochastic
payoffs for all players; as well as an extended version of the game model which
provides a choice of different options for coalitions.

A problem arising from both Suijs and Charnes and Granot was the construction
of analogues for the superadditivity and convexity concepts for stochastic games.
Problems also arose in regards to its core and the definition of the conditions of its
existence. The authors introduced the concept of certainty equivalents for stochas-
tic games and formulated statements regarding the relationship of superadditiv-
ity, convexity, and non-emptiness in the core of the original game and the game-
deterministic analog. The dissemination of the concept of nucleolus to stochastic
cooperative games has been developed in the later works of Suijs (1999a, 1999b).

In some papers (Suijs et al., 1998) practical aspects of stochastic cooperative
games were considered and stochastic cooperative games were applied to problems
of insurance and reinsurance. As an example in the later works of Jeroen Suijs and
his coauthors (Gao et al., 2008) is devoted to the spread of the classical concept of
the Shapley value to stochastic cooperative games.

Another relatively independent and intensively developing feature of game-theo-
retic studies is the concept of differential games with stochastic parameters. This
aspect of stochastic cooperative games has been explored by Yeung, Petrosyan and
Zenkevich (Yeung and Petrosyan, 2006; Yeung and Petrosyan 2004; Zenkevich and
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Kolabutin 2007). This theory is best described as the development of the theory of
differential games with their integration into their stochastic parameters. Mathe-
matical models of these specific types of practical applications, such as the formal-
ization of the dynamic process management of joint ventures, where the results of
this joint venture are subject to further distribution between independent economic
entities. The technology change in this joint venture operation is described by the
Ito differential equation.

A common feature of the Yeung, Petrosyan, and Zenkevich studies (Yeung and
Petrosyan, 2006; Yeung and Petrosyan, 2004; Zenkevich and Kolabutin, 2007) are
that they determine the imputation and concepts of stochastic games, and show
how they are guided by the values of the expectations of utilities or the values of
characteristic function. With this approach, the parameters which were originally
declared random at a very early stage of the analysis are replaced by their nonran-
dom substitutes. This undoubtedly distorts the objective stochastic nature of the
simulated situation. In this paper, we will develop an alternative concept, suggest-
ing directly binding definitions and sharing solutions to probabilistic characteristics
of the random parameters of the game, not to their expectations.

3. Stochastic cooperative games, imputations in stochastic cooperative

games

The baseline definition and parameters of a stochastic cooperative game (SCG) is a
pair of sets Γ=(I, ṽ) where

– I= {1,. . . ,m} - set of participants
– ṽ(S) - random variables with known density functions pṽ(S), which are inter-

preted as income (utility, payoffs), and are received by the corresponding coali-
tions S ⊂ I.

Consider in more detail issues relating to the approach to defining of imputation
in stochastic cooperative games (I,v). In usual non-stochastic games the imputation
refers to vector x ∈ Rm , where m = |I| satisfies the following conditions:

– individual rationality
(∀i ∈ I) xi ≥ vi (1)

– group rationality

m
∑

i=1

xi = v(I) (2)

One possible approach to the definition of the imputation concepts in stochastic
cooperative games is built on the principle that fulfillment of the analogues of
conditions (1) and (2) with the probability (Zuofeng et al., 2008). Later in the
stochastic cooperative game, imputation is a vector x(α) ∈ Rn satisfying:

(∀i ∈ I) P{xi(α) ≥ ṽ(i)} ≥ α (3)

– stochastic analog of individual rationality (1),

P{
m
∑

i=1

xi(α)} ≥ α (4)



140 Pavel V. Konyukhovskiy, Alexandra S. Malova

– stochastic analog of group rationality (2).

Note that condition (3) essentially means that the imputation x(α) ascribed to
the i -player, with a probability not less than α, should be greater than the value
of the random variable of the player’s individual win. In (3), the i-th value and the
imputation vector x(α) is compared with the α-quintile of Fṽ(i)(x) – the distribution
function of the random variable ṽ(i). For further compactness, we introduce the
following notation

v(α)(i) = F−1
ṽ(i)(α) (5)

– for player i and
v(α)(S) = F−1

ṽ(S)(α) (6)

– for coalition S ⊂ I.

Then condition (3) can be rewritten as

(∀i ∈ I) xi(α) ≥ vα(i). (7)

The transformation of condition (3) to (7) can be justified on the basis of the
properties of non-decreasing distribution functions. Indeed, the condition xi(α) ≥
ṽ(i) holds that the probability for level will be carried out for all α′ > α.

In classical cooperative games, group rationality condition (2) fills the need
for full utility distribution for a large or full coalition within the imputation. A
modification of the stochastic game (4) means that the large coalition is able to win
with a probability of not less than α to ensure the implementation of the imputation.
Note that condition (4) is equivalent to

P{
m
∑

i=1

xi(α) ≥ ṽ(I)} ≥ 1− α. (8)

From (8) we get the result
∑m

i=1 xi(α) ≤ ṽ1−α(I), if we mark as vα(I) = F−1
ṽ(I)(α)

the α -quintile of the Fṽ(I)(x) distribution function.
These alterations can lead to significant differences within stochastic games. If in

the conventional cooperative games group rationality condition is defined as strict
equality, and thus defines a hyperplane in m−dimensional space; the approach pro-
posed here takes the form of inequality and defines a half-space in anm−dimensional
space. Thus, the nature of x vectors satisfying the definition of (3) and (4) differs
significantly from the nature of imputations in their classical interpretation. Some-
times in order to classify such objects, the term allocation is used.

Separately, we note that the group rationality formulating strict equality pro-
vides TU-cooperative games with a set of positive properties that greatly simplifies
the process of their analysis as a set in Rn. However, it is impossible not to recog-
nize that the adoption of this assumption significantly changes the properties of the
simulated real objects for which the condition less or equal is definitely more ap-
propriate. These theses are a weighty argument in favor of developing our approach
to the definition of group rationality.

As a result, the system conditions which determine the imputation in a stochastic
game, take the following forms:

(∀i ∈ I) xi(α) ≥ vα(i), (9)
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∑m

i=1 xi(α) ≤ v1−α(I).

The naming of variables in modern risk management has steadily entrenched
the term value at risk (VaR); best explained in the articles Jorion (2006a, 2006b).
Thus, among the advantages of approaches (9) and (10) to the definition of the
concepts of stochastic imputations in cooperative games can be attributed the fact
that it connects the values of imputation with the values of the VaR in the random
parameters of the game. This potentially opens up opportunities for meaningful
interpretation of the subsequent results of studies and the properties of this class
of games and the concepts which determine their outcomes.

For example, in the studies that develop the theory of cooperative games ac-
cording to Sujis interpretation originally introduced the concept of allocation.

Under the distribution of payoff ṽ(S) of the random coalition Sproduces the
vector, (d, r) ∈ R|S| ×R|S| for example

∑

i∈S di ≤ 0; (∀i ∈ S)
∑

i∈S

ri = 1, ri ≥ 0.

When the first player wins in accordance with the regulations of the imputation
(d, r) correlates to di + ṽ(S) · ri. Accordingly, the terms of individual rationality
(for a coalition S) are formulated as

(∀i ∈ S) di + ṽ(S) · ri ≥ ṽi. (10)

With this definition, the utility that the imputation promises to i−th player is
a random variable. It consists of two terms: di ≤ 0 – a priori determined absolute
values and ri ·ṽ(S) – regulation component, which is determined as a share of factual
coalition utility. The condition provides the distribution of this amount without a
rest.

Value di defines the preliminary rules of distribution of expected utility between
the players. The coefficient ri determines the mechanism of a posteriori redistribu-
tion (taking into account actually achieved values). In other words, imputation in
this approach promises a player a fixed share from an unknown or random result. Or
vice versa, definitions (3) and (4) assume the initial announcement of a nonrandom
absolute value of utility or payoff, which is received by the player with the specified
level of probability.

Important specific feature of stochastic cooperative games has substantial mod-
ification superadditivity concepts in them. For conventional or non-stochastic TU-
cooperative games, a situation in which the union of the two coalitions S and T
leads only to a simple summation of their utilities.

v(S ∪ T ) = v(S) + v(T ).

This appears trivial, and the association looks meaningless. At the same time
the stochastic game provides a similar amount

ṽ+(S ∪ T ) = ṽ(S) + ṽ(T ),

which is also a random variable. So, the general equation balances out as

ṽ+α (S ∪ T ) 6= vα(S) + vα(T ).
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Note the studies of the relationship between patterns of a quintile sum of random
variables and sums of quintiles diverge in relation to probability theory, not game
theory (Watson et al., 1986, Liu et al., 1989).

Thus, in stochastic cooperative games even simple inter-coalitional agreements
on the summation of income (utility) can bring additional effects. In connection
with the circumstances in this class of games it makes sense to distinguish between
two types of utility coalition of associations:

– the usefulness of combining coalitions S and T into the coalition S ∪ T as a
new random variable ṽ(S ∪ T ) with the distribution function Fṽ(S∪T )(x) gener-
ates a meaningful specificity of simulated situation. Though, we have a similar
situation in the case of classical cooperative games, and when the values v(S)
and v(T ), on the one hand, and v(S ∪ T ) , on the other hand, are considered
exogenous;

– the usefulness of the joint coalition S∪T in the sum of ṽ+(S∪T ) = ṽ(S)+ ṽ(T ).
A situation with a content point of view of interest solely in the context of
stochastic cooperative games.

These properties can be used in the construction of solution concepts for stochas-
tic cooperative games. In particular the analysis of rationality or acceptance for im-
putation in some of the coalitions, we may have to consider not only the occasional
payoff ṽ(S) received bycoalition as characterized by VaR vα(S) = F−1

ṽ(S)(α), but the

amount of random players in S ⊂ I utilities

ṽ+α (S) =
∑

i∈S

ṽ(i)), (11)

that are characterized by VaR v+α (S) = F−1
ṽ+(S)(α), In this case the conditions of

coalition rationality become

x(α, S) ≥ α̃(S) ≥ v+α (S), (12)

where x(α, S) =
∑

i∈Sxi(α). Note that these issues have been considered in more
detail by Konyukhovskiy (2012).

4. Concepts of decisions for stochastic cooperative game

Traditionally, the core in the classical cooperative is defined as the set of non-
dominated imputations, which is equivalent to the condition

(∀S ⊂ I, S 6= 6⊂, S 6= I) x(S) ≥ v(S), x(I) = v(I). (13)

We note that despite the external similarity designation x(S) should be dis-
tinguished from x(α) by content. In the former (x(S)) the amount prescribed by
the imputation to the coalition S, i.e. scalar quantity, while in the later (x(α)) the
stochastic vector corresponds to a certain level of probability α.

In developing the proposed approach, we can similarly introduce the concept of
α-core1, and define it as the set of imputations. For Example, vectors (I, ṽ) satisfy
(9) and (10), which supports the following statements

(∀S ⊂ I, S 6= 6⊂, S 6= I) x(α, S) ≥ vα(S) (14)

1 the core of the game (I, ṽ) for probability level α.
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or

Cα(ṽ) = {x ∈ Rm| ∀S ⊂ I, S 6= 6⊂, S 6= I : x(α, S) ≥ vα(S);

x(α, I) ≤ v1−α(I)}. (15)

In other words, the division that belongs to αcore prescribes to any coalition
a share not less than the VaR utility of this coalition for a given level . In this
division, imputation reach is provided by the conditions in accordance with the
share prescribed by imputation for a great coalition, as long as it does not exceed
VaR and its utility.

Due to the fact that the distribution functions of random variables Fṽ(S)(x) are
incremental, an increase in implies an increase in value vα(S), or a decrease in value
v1−α(I) , by which we obtain

α′ < α′′ ⇒ Cα′ ⊂ Cα′′(v) (16)

indicating, payment for implementation, when αcore is more likely to decrease its
size.

Moreover, there may be situations in which a sufficiently large αcore is empty.
Based on property (16) we can identify the problem of selecting the highest proba-
bility level in which there is a non-empty α−core.

Another natural problem posed by property (16) is determining the dependence
of the size αcore based on the choice of α. This in turn gives rise to the problem of
choosing a measure of volume. Objective complexity of its solutions are defined in
such a way that a change in can cause a change the dimension of the αcore.

More detail is required when analyzing a number of specific aspects of the tran-
sition from the classical procedure of cooperative games with transferable utility to
their stochastic counterparts. In essence, we must resolve the issue of technology
transition from deterministic v(S) to stochastic ṽ(S) utilities. Consider a relatively
simple but realistic situation, in which ṽ(S) can be considered as random variables
distributed according to the normal law

ṽ(S) ∈ N(v̄(S), σ2
S). (17)

Hypothesis (17) is the basic logical development of traditional approaches. As a
rule, the process of constructing the characteristic functions for specific applications
of cooperative game-theoretic models provides a way to replace indicators which
objectively have a random nature to their deterministic counterparts. It’s a different
method for averaging operations, in which the v(S) latently is identified with v̄(S).
In this case, we abandon this simplification and do not lose additional characteristics
of random variables with the variation σ2

S . Also note that the structures of models
that are based on hypothesis (17) have serious structural advantages. It allows
visual comparison of the results of their analysis with the results obtained in the
framework of deterministic model counterparts.

Of course, the hypothesis relating to the distribution of the value ṽ(S) for normal
law is inherently arguable. Moreover, its defense is only possible in cases where the
provision is a concrete specification of the simulated object. However, at that level
of generality, in which we present the problems of stochastic cooperative games, we
can resort to general considerations concerning the merits of the normal distribution
as a typical representative of a universal and continuous distributions.
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By assuming ṽ(S) ∈ N(v̄(S), σ2
S), the following VaR equation is possible

vα(S) = v̄(S) + σS · Φ−1(α) (18)

where Φ(x) = 1
2π ·

∫ x

−∞
e−

t
2

2 dt also known as the Laplace integral.

If we take into account σS > 0 and Φ−1(α) > 0 with, we calculate

vα(S) > v̄(S)

for all probability levels where α > 0.5. Further, comparing condition (13), which
must be completed by imputations belonging to core in non-stochastic games, with
condition (14), we determine that they belong to α−core in stochastic game. There-
fore, we conclude that

x(S, α) > x(S),

where x(S, α) =
∑

i∈S xi(α) is the amount, distributed between members of coali-
tion S by the imputation x(α), x(S) =

∑

i∈S v̄i.

The problem of determining the maximum level of probability , on which there
exists a non-empty α−core for stochastic games based on the premise that (17)
takes the form of

Φ−1(α) → max, (19)

where

Cα(ṽ) = {x ∈ Rm| ∀S ⊂ I, S 6= 6⊂, S 6= I :
∑

i∈S

xi ≥ v̄(S) + σS · Φ−1(α);

∑

i∈I

≤ v̄(I) − σI · Φ
−1(α)} 6= ∅. (20)

As possible constructive versions of the solution of this problem we will note two
following approaches.

First, a certain interest is represented by the estimates which are based on
differences between maximum and minimum values of the shares provided by the
imputations belonging α−core to each of players.

In other words, for each of players i ∈ I values can be determined

x−
i = min

x∈Cα

{xi}, x
+
i = max

x∈Cα

{xi}, ∆xi = x+
i − x−

i

∆xi in essence characterize the range of opportunities (hopes) of each of partic-
ipants of game within the kernel which is implemented at the level of probability α.
Points in dimension Rn in which the values x−

i , x
+
i (i ∈ I), are occur, define so called

parallelepiped of hopes. Of course this parallelepiped is greater than α−core (it is
its subset). However its amount which is calculated rather simply, can be considered
as the approximate (hardened) characteristic of a kernel in case of the set level α.

Secondly, for games with rather small number of participants as the character-
istic α−core the quantity, the points which got to it lying on some discrete grid can
be used.
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5. Extension of the excess concept on coalition stochastic cooperative

games

Briefly discuss the issues associated with a possible extension to stochastic cooper-
ative game solution concepts that are based on the notion of excess coalition.

Consider a distribution vector (x ∈ Rm) of utilities among the participants of
the game. One of its characteristics is the figure.

α(x, (I)) = Pr(ṽ({I}) ≥ x(I)) = 1− Fṽ({I})(x(I)), (21)

where x(I) =
∑

i∈I xi, i.e. the probability that a random realization of the payoff
of full (large) coalition ṽ({I}) will be able to provide the distribution that vector x
promises to game participants. Substantially α(x(I)) − it is the probability, with
which x is stochastic pre-imputation (satisfies the condition of group rationality
with α probability).

Each of coalitions S ⊂ I(S 6= ⊘, I) following its understanding of rationality,
will compare α(x(I)) probability of receiving x(S) =

∑

i∈S xi, that is promised by
x if this small coalition enter the full (large) coalition, with probability of receiving
equal utility (without association with other players)

α((x(S))) = Pr(ṽ({S}) ≥ x(S)) = 1− Fṽ({S})(x(S)). (22)

In this case, the characteristics of the pre-imputation x following figures can be
used

eα(S,x) = α(x(S)) − α(x(I)), (∀S 6= ⊘, I). (23)

We will denote e(S,x) − probabilistic excesses of coalitions. From content point
of view eα(S,x) reflects satisfaction level (eα(S,x) < 0) or, vice versa, dissatisfaction
(eα(S,x) > 0) with probabilistic characteristics of the distribution x. Here there is
a direct parallel with the concept of excess of coalition for deterministic cooperative
games, in which the excess is defined as a measure of satisfaction (dissatisfaction)
the volume of the utility, which receives coalition

e(S,x) = v(S)− x(S). (24)

Based on the concept of probabilistic excess, such concepts as nucleolus and
kernel can be extended for stochastic cooperative games.

As is known the concept of nucleolus for classical cooperative games with trans-
ferable utility based on the idea of finding the imputation, which is achieved by the
lexicographic minimum excesses coalitions. It can naturally be extended to stochas-
tic games.

Let us a little more detail on the issues of matching two imputations. From the
properties of the distribution functions of random variables, it follows that if we
compare some vectors x and y, about which it is known that

x(I) > y(I)(
∑

i∈I

xi =
∑

i∈I

yi), (25)

then, by virtue of the fact that for continuous random variables

α′ < α” → vα′(I) < vα”(I), (26)
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receive

Pr(x(I) ≥ ṽ({I})) < Pr(y(I) ≥ ṽ({I})). (27)

From the content point of view (27) reflects obvious fact: pre-imputation y

provides a full coalition with less utility than x but more likely.
In case of comparison of two imputations x and y so that x(I) = y(I), as a

criterion can be used values of probability of excesses (23).
In particular, it seems reasonable that the task of finding the pre-imputation

(or, in general, a plurality of pre-imputations) for which exists the minimum for
most likely excess of coalition. It is easy to see that this problem is a problem of
finding the smallest analogue of core (least core) in classical deterministic games.

From (23) taking in account (21) we get

eα(S,x) = Pr(ṽ(S) ≥ x(S))− Pr(ṽ(I) ≥ x(I)) =

= 1− Fṽ(S)(x(S))− (1 − Fṽ(I)(x(I))) = Fṽ(I)(x(I)) − Fṽ(S)(x(S)) (28)

for S 6= ⊘, I. Under the assumption that utility players and coalitions in the game
(I, ṽ) are random variables, that are normally distributed with parameters ṽ(S) and
σS (v(S) ∈ N(ṽ(S), σS))) equation (28) will be following

eα(S,x) = Φ

(

x(I) − ṽ(I)

σS

)

− Φ

(

x(S)− ṽ(S)

σS

)

, S 6= ⊘, I, (29)

where Φ(x) − Laplace function.
Denote that X(α) set of pre-imputation, realized with probability α, i.e.

X(α) = {x ∈ Rn|Pr(ṽ(I) ≥ x(I)) = α}. (30)

We emphasize that on the one hand for a particular vector pre-imputation x

we can determine the probability of its implementation α(x(I)) and, vice versa,
having probability level α and knowing the distribution function for utility of a full
coalition Fṽ(I)(x), we can find X(α) see (30).

For this set the task of finding the pre-imputation that minimizes the maximum
excess coalition is formulated as

min
x∈X(α)

{ max
S 6=⊘,I

{eα(S,x)}}. (31)

In the case of normally distributed utilities (31) looks like following

min
x∈X(α)

{

max
S 6=⊘,I

{

Φ

(

x(I) − ṽ(I)

σI

)

− Φ

(

x(S)− ṽ(S)

σS

)}}

. (32)

Taking into account, that terms Φ((x(I) − ṽ(I))/σI) for all coalitions S 6= ⊘, I
are constant, we receive that problem (32) can be reduced to the problem

max
x∈X(α)

{

min
S 6=⊘,I

{

Φ

(

x(S) − ṽ(S)

σS

)}}

. (33)
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Given the monotonicity Φ(x) we see that the task (33) is equivalent to a simple
optimization problem

max
x∈X(α)

{

min
S 6=⊘,I

{

x(S)− ṽ(S)

σS

}}

. (34)

If we introduce the auxiliary variable xm+1, is an exact lower bound of the set
of values (x(S)− ṽ(S))/σS , i.e.

xm+1 ≤ x(S)−ṽ(S)
σS

or x(S) − σS · xm+1 ≥ ṽ(S) (∀S 6= ⊘, I),

than the problem (34) will be reduced to a linear programming problem

xm+1 → max (35)

under the constraints

x(S)− σS · xm+1 ≥ ṽ(S) (∀S 6= ⊘, I), (36)

x(I) = ṽ(I)− σI · Φ
−1(α). (37)

Note that the condition (37) reflects the requirements of the desired accessory to
the set of vectors X(α) − a plurality of pre-imputation, realized with probability α
− on the assumption that the total utility of (large) coalition is normally distributed
with parameters ṽ(I) and σI .

6. Conclusion

Stochastic cooperative games and the concepts of their solution on the basis of the
stochastic α−core allow to consider more flexibly risk factors and uncertainty in
processes of modeling and research of cooperative interaction of economic actors. It
will quite be approved with tendencies to increase of requirements to adequacy of
the tools reflecting accidental impacts of environment.

In particular, relying on the concept α−core, we have opportunities for an objec-
tive exception of consideration for reasons of a ”stochastic” inefficiency of a number
of options of income distributions between participants of coalition associations of
economic actors.

The given examples rather visually reflect properties which are possessed by
stochastic cooperative games. Accounting of these properties can significantly in-
fluence adjustment of ”traditional” mechanisms of decision making as on strategic
management, and the organization of the current activities of the coalitions, the
unions and partner associations of economic diverse actors.

In particular, stochastic cooperative models allow to take into account asym-
metry of a provision of potential participants of partnership relatively risk factors
and uncertainty. It promotes further increase of level of accuracy and adequacy of
the created stimulating impacts. First of all, the measures aimed at consolidation
of common efforts of both the state, and non-state companies, entities and corpo-
rations within the large-scale investment projects requiring accumulation of serious
material resources.
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