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Abstract The problem of forming herd immunity to an infectious disease,
i.e. influenza, which is optimal to the population, is often considered as a
modification of the classical Susceptible-Infected-Recovery model. However
the annual vaccination of the total population is quite expensive and is
not obligatory for every individual. Any agent in population has a choice:
whether or not to participate in the vaccination program. So each epidemic
season society confronts a dilemma: how to maintain the necessary immu-
nization level which is subject to individual choice. Apparently each available
alternative incurs different costs and benefits for an individual agent and the
population in total. We compare social and individual benefits and expenses
in two cases: optimal vaccination policy is used to preserve the optimal herd
immunity; agents participate in the vaccination campaign, considering only
individual benefits. It’s supposed that agent choices do not depend only on
the cost generated by agents’ choices during the epidemic period. Agents
also take into account all available information, received from neighbors,
media and former experience. Every agent compares it’s own preferences
and the alternatives, chosen by neighbors and can update its choice every
season. We study the influence of information about previous epidemics on
the decision making process. We investigate an optimal control problem to
study the optimal vaccination behavior during an epidemic period based on
classical Susceptible-Infected-Recovery model and present a procedure for
making vaccination decisions.

Keywords: SIR model, vaccination problem, evolutionary games, optimal
control, epidemic process.

1. Introduction

The human population faces an influenza epidemic almost every year hence it is
necessary to estimate the social and medical costs which can occur during epidemic
period.

Originally Susceptible-Infected-Recovered (SIR) model and its modification de-
scribe a fast spreading process, such as flu-like epidemic or other forms of respiratory
viral diseases which are circulated in an urban population. The total population is
divided into three subgroups: Susceptible, Infected and Recovered. Susceptible is
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a group, where people are not infected, Infected is a group of people having the
disease, and Recovered is a group, where all members have immunity to the disease
(Mehlhorn, H. et al., 2008, Conn, 2006, Kolesin et al., 2014).

Recent literature has seen a large amount of interest in using optimal control
and game-theoretic methods to study disease control of influenza for public health.
First, this research problem was referenceed in (Kermack and Mc Kendrick, 1927),
where an Susceptible-Infected-Recovered model has been proposed to study the
epidemic

In (Behncke, 2000) many variants of optimal control models of SIR-epidemics
are investigated for the application of medical vaccination and health promotion
campaigns. In (Fu et al., 2010) the vaccination problem is studied from the point
of view of individual agents.

Moreover epidemic models can be applied to different fields of human activity,
for instance in (Altman et al., 2010, Khouzani et al., 2011), optimal control meth-
ods have been used to study the class of epidemic models in mobile wireless net-
works, and Pontryagin’s maximum principle is used to quantify the damage that
the malware can inflict on a network by deploying optimum decision rules.

Over the years many medical methods such as preventive measures, intensive
treatment, etc. have been developed to protect the entire population during annual
epidemics. All these methods share the fundamental strategy to resist the viral
propagation. For this reason preventive measures or medical treatment can be con-
sidered as an external influence on the epidemic process and can be used as control
parameters for the dynamic system.

In a general case an epidemic period continues until there are no more newly
infected individuals and vaccination program occurs before the seasonal epidemic
begins. It is necessary to take into account the reaction of the agent’s immune system
to the vaccination, because in the post-vaccination period the human organism
becomes weak and it is not able to properly resist against other viruses.

As it has been shown, total vaccination is very expensive and can be applied
only in exceptional cases, when i.e. pathogen is extreme virulent. Usually only par-
tial vaccination is used each ordinary season. Since the vaccination campaign is
not obligatory, we assume that before epidemic period each agent of population
chooses whether use the vaccination or not. Every agent choice incurs appropriate
costs and influences the future agent’s benefit. If an agent participates in a vac-
cination program then she pays the vaccination costs and estimates the probable
contraindications if vaccine is not effective. Evidently, if an agent prefers to avoid
the vaccination then she has to evaluate possible treatment expenses. Besides each
agent in a population in each epidemic season is influenced by the information about
the previous vaccination campaign, whether or not it was successful.

However, it is very important to maintain the optimal level of herd immunity,
which protects the entire population from those who forgo vaccination and at the
same time grants the possibility to make an individual choice to every agent. If a
sufficient number of agents decide to evade vaccination then such scenario leads to
the critical situation as far as numbers of susceptible increase and the virus spreads
faster in the total population.

As we mentioned above we present a procedure of making decisions which influ-
ence the epidemic process in a urban population.



86 Elena Gubar, Ekaterina Zhitkova, Ekaterina Kupchinenko, Natalia Petriakova

At the present time each agent has many possibilities to estimate its benefit from
the participation in a vaccination program. The agent can evaluate the vaccination
cost, feasible complications in post-vaccination period, and she can indirectly esti-
mate the herd immunity of the population. We suppose an agent can not necessarily
identify the exact information, but she estimates the average number of its contacts,
the current epidemic situation, which is reported in mass media, etc. Meanwhile the
collective result of vaccination decisions determines the level of population immunity
and the strain of the epidemic in the current period. When the number of vaccinated
agents in total population is increased then even agents who are unvaccinated might
have less infection risk. Then we assume that every agent having this information,
might decide to decline the vaccination this year and thereby reduce her vaccina-
tion costs. However, agents can have incomplete information which includes some
rumors from neighbors or friends, or they also may estimate the epidemic situation
incorrectly. Thus this scenario leads into a problem of increasing the numbers of
unvaccinated individuals, inducing the diminution of herd immunity in the future
and as a result the frequency of meeting with infected agents is increased. Thereby
the aggregated costs will arise during the epidemic period, because each unvacci-
nated agent may become infected and then she must pay treatment costs, which
include healthcare expenses, lost productivity and the possibility of pain. Usually
treatment costs exceed the vaccination expenses.

Thus in the current work we suppose that each agent chooses between two
possible alternatives: to vaccination or not to vaccinate during an epidemic period.
However all these alternatives can lead to deferent negative effects.

In contrast to previous studies, Based on Susceptible-Infected-Recovered (SIR)
model we formulate an optimal control problem and receive a structure of optimal
control, where the intensity of vaccination is used as a control parameter. In this
case we receive the aggregated system costs which are optimal in the sense of the
optimal control problem. We also propose a rule which dictates to an agent how she
should behave before the epidemic period to achieve maximum protection from the
disease. We integrated an uncontrolled Susceptible-Infected-Recovered model into
the decision procedure and evaluate the aggregated system costs generated by this
complex process. We compare the aggregated costs for the total population for both
scenarios of vaccination.

The paper is organized as follows: Section 2. presents the mathematical model of
epidemics and formulates the optimal control problem. Section 3. shows the struc-
ture of optimal control and main results, using Pontryagin’s maximum principle.
Section 3.1., introduces the procedure of making decision about vaccination behav-
ior.

2. Controlled Susceptible-Infected-Recovered Model

In this paragraph we formulate the Susceptible-Infected-Recovered (SIR) model
to describe epidemiological process in an urban population. The current model
shows that vaccination program affects the population and hence we can consider
it as control parameter. Then, at time t, ns, nI , nR correspond to fractions of
the population who are susceptible, infected and recovered. For all t, condition
N = ns + nI + nR is justified. Define

S(t) =
nS

N
, I(t) =

nI

N
, R(t) =

nR

N
, (R(t) = 1− S(t)− I(t))
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as portions of susceptible, infected and recovered in the population.
Below the system of nonlinear differential equations, describing the epidemic

process is presented (Kermack and Mc Kendrick, 1927, Khatri et al., 2003):

dS

dt
= −δS(t)I(t)− εu(t)S(t);

dI

dt
= δS(t)I(t)− σI(t).

(1)

Here parameter δ is the transmission rate from state S to I

δ = δ0m(
nI

N
) = δ0mI, (2)

where δ0 is a transmissibility of the disease and m is a number of contacts per
time unit, the transmission rate from state I to R is defined as σ = 1

T
, vari-

able u(t) ∈ (0, 1) is a control parameter which is interpreted as the intensity of
vaccination(agents\ per day), ε ≥ 0 is a fraction of agents, who were involved in
vaccination campaign.

Objective Function: We will minimize aggregated cost in time interval [0, T ],
hence at any given t following costs exist in the system: f(I(t)) these are indi-
vidual’s treatment costs, which are non-decreasing and twice-differentiable, convex
function, such as f(0) = 0, f(I(t)) > 0, i = 1, N for I(t) > 0; function l(R(t)) are
agent’s benefit rate, which arise when an infected agent becomes recovered, l(R(t))
is non-decreasing and differentiable function and l(0) = 0; function h(u(t)) describe
vaccination costs, h(u(t)) is twice-differentiable and increasing function in u(t) such
as h(0) = 0, h(x) > 0, i = 1, N when u(t) > 0.

Therefore aggregated system costs is:

J =

T
∫

0

(f(I(t)) − l(R(t)) + h(u(t)))dt. (3)

3. Structure of optimal control

We use Pontryagin’s maximum principle (Pontryagin et al., 1962), to find the opti-
mal control u(t) to the problem described above in Section 2. Define the associated
Hamiltonian H and adjoint functions λi as follows:

H = −λ0(f(I(t)) − l(R(t)) + h(u(t)))+
λS(−δS(t)I(t)− εu(t)S(t)) + λI(δS(t)I(t)− σI(t)) =

−λ0(f(I(t))− l(R(t)) + h(u(t))− δS(t)I(t)(λS(t)−
λI(t)) − λS(t)εu(t)S − λI(t)I(t)σ,

(4)

where λ0 = 1.
Adjoint system is:

λ̇I(t) = f ′(I(t)) + δS(λS(t)− λI(t)) + λI(t)σ;

λ̇S(t) = δI(t)(λS(t)− λI(t))− λS(t)u(t)ε;
(5)

and transversality conditions are

λI(T ) = 0, λS(T ) = 0, λR(T ) = 0. (6)
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According to Pontryagin’s maximum principle, there exist continuous and piece-
wise continuously differentiable co-state functions λi that at every point t ∈ [0, T ]
where u is continuous, satisfy (5) and (6). In addition, we have λ(t) = (λ0(t), λS(t),
λI(t), λR(t))

u ∈ arg max
u∈[0,1]

H(λ, (S, I, R), u), (7)

here u ∈ [0, 1] is admissible control.
Rewrite a Hamiltonian

H = −(f(I(t))− l(R(t))− δS(t)I(t)(λS(t)− λI(t))−
(λS(t)εu(t)S + h(u(t)))− λI(t)I(t)σ.

(8)

According to the general method of principle maximum we consider a derivative
∂H

∂u
:

∂H

∂u
= −h′(u)− λS = −(h′(u) + ελSS) (9)

and Hamiltonian reaches maximum if and only if the next condition is satisfied:

(h′(u) + ελSS) < 0. (10)

Since h(u) is non-increasing function, then h′(u) ≥ 0, S ≥ 0 as a fraction of
susceptible agents and ε ≥ 0 as a fraction of agents, who were involved in vaccination
campaign, then condition (10) is satisfied only if ψ < 0, where

ψ = λSS (11)

is defined as switching function.

Lemma 1. Function ψ is increasing over the time interval [0, T ).

Proof. Functions λS and state function S are continuous and differentiable at each
t ∈ [0, T ) then we can consider a time derivative of ψ:

ψ̇ = λ̇S(t)S + Ṡ(t)λS(t) =
(δI(λS − λI)− λSuε)S + λS(−δSI − εu(t)S(t)) =
δI(λS − λI)− λSS(2uε+ δI).

Since u(t) is piecewise continuous and all variables S, I, u, ε, δ are nonnegative
then ψ̇ ≥ 0 and the statement of lemma is satisfied if λI − λS < 0 and λS < 0.

Below we formulate an auxiliary lemma which shows the signs of expressions
(λI − λS) and λS .

Lemma 2. For all t, 0 < t < T following conditions hold (λI(t) − λS(t)) < 0 and

λS(t) < 0.

The proof of lemma is presented in section 6.
Then to establish the optimal vaccination policy we formulate the next propo-

sition.
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Proposition 1. The optimal vaccination policy has following structure:

If h(·) are concave then exists time moment t ∈ [0, T ] such as:

u(t) =

{

0, if − ψ < h(umax);
1, if − ψ > h(umax).

(12)

If h(·) is strictly convex, then exists t0, t1, 0 < t0 < t1 < T :

u(t) =







0, −ψ ≤ h′(0);
h′−1(−ψ), h′(0) < −ψ ≤ h′(umax);
umax, h′(umax) < −ψ.

(13)

Proof. Proof of proposition 1 is divided into two parts and we consider two cases,
which depend on the properties of function h:

1) h is concave.
Since function h is concave (h′′ < 0), then (ψu − h(u)), are convex functions of u.
Hamiltonian H is a strictly convex function according to (8) and for any t ∈ [0, T ]
and it reaches its maximum either at u = 1 or u = 0.

u(t) =

{

0, if − ψ < h(umax);
1, if − ψ > h(umax).

(14)

2) h is strictly convex.
If functions h are strictly convex (h′′ > 0) then (uψ − h(u)) and Hamiltonian is
concave function, then (dH

du
= ψ − ḣu = 0, u ∈ [0, 1]). Then

u(t) =











0 , if − ψ ≤ dh(0)
du

;
dh−1(−ψ)

du
, if dh(0)

du
< −ψ ≤ dh(umax)

du
;

1 , if − ψ >
dh(umax)

du
,

(15)

functions ψ, h′, u are continuous at all t ∈ [0, T ]. In this case h is strictly convex
and h′ is strictly increasing function then h′(0) < h′(umax). Thus there exists such
moments t0, t1 (0 < t0 < t1 < T ) such as conditions (13) are satisfied.

3.1. Decision making process

If an agent participates in vaccination program then she pays vaccination costs,
which contain the immediate monetary cost, indirect cost of time spent in medical
institution during a vaccination program and any health effects. We also suppose
that a vaccination is not absolutely effective and a vaccination program should be
finished before the epidemic starts. We will call as preepidemic period the time
interval before the epidemic starts. It is supposed that agents can only switch from
one action to another during this period.

In the current section we describe the decision procedure which depicts the
behavior of agents of population at each epidemic season. Every season an agent
adopts one of alternatives, which determines whether or not he is vaccinated. Chosen
decision incurs appropriate costs and benefits and at the end of the season each agent
can reevaluate its choice and switch on from one behavior to another.

Consider a human population of size N , where each member receives infor-
mation from H information sources such as: public opinion, advertisement, social
information, own experience.
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Define as Mi, i ∈ N an information set of agent i, Mi = {m1, . . . ,mh}, h ∈
H, i ∈ N, where variablemi is binary. This variable shows whether or not individual
agent accepts information.

mi =

{

1, if agent receives corresponding message;
0, if agent does not receive corresponding message;

If an agent takes into account ”own experience” then

mi =

{

1, if agent receives positive experience;
0, if agent receives negative experience;

Then an agent can calculate a number of positive elements in his\her information
set, which is denoted asM+

i . Based on this information he\ she uses a rule of making
decision about vaccination.

Agents decisions. Let be Ki = {k1, k2, k3} the set of possible actions of each
agent i see (Weibull 1995). We consider the next possible actions of agent j:

– k1 – agent uses preventive measures (vitamins, pharmacological products, ets);
– k2 – agent participates in vaccination program;
– k3 – agent does not use any preventive measures, including vaccination.

We define a reaction function φ as a rule which dictates to every agent his
reaction to information signals.

kij = φ(M+
i ), i ∈ N, j ∈ Ki. (16)

The rule describes a choice of the available action to each agent, depending on
received information and may be described as:

φ(M+
i ) =

{

k2, M
+
i ≥ 2;

k1 or k3, M
+
i < 2;

(17)

E Every season an agent chooses an action, which determines whether or not
she vaccinates and at the end of the season. As we mentioned above, each decision
incurs its costs and benefits. In compliance with its costs, each individual may
change its behaviour, if he is not satisfied by his benefit. Thereby if agents decides
to vaccinate or to use any other preventive measures then she pays for a vaccination
or for preventive measures. In both cases we can interpret agent’s benefit as the
enhancement of the immune system. If agent does not use any preventive measures
then she does not have any costs as well as benefits. We define as cp(kl) any costs
of agent, l = 1, 2, 3. Agent’s benefits contain salary per full time period without
medical certificate induced by the illness and a reduction of costs for preventive
measures. Here we define the agent’s benefits as b(kl). Thus we can rewrite the
expression (17), supplementing more details about costs and benefits:

φ(M+
i ) =







k2, if M+
i ≥ 2;

k1, if M+
i < 2 and cp(k1) < cp(k3);

k3, if M+
i < 2 and cp(k3) < cp(k1);

(18)

We may define as p(kl) = b(kl)−c(kl) the difference between the agents benefits
and costs, than the greater is the difference the better is the selected action.
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An epidemics of influenza occurs almost every year, hence agents of population
should make a decision regularly. Each epidemic season, an agent adopts an ac-
tion, which determines whether or not she vaccinates. Agent using action l imitates
behavior j according to the imitation rule ρ(kl → kj):

ρlj(p, x) = xj(p(kj)− p(kl)), (19)

here ρlj(p, x) is the probability of switching from action kl to action kj , p is the
cost function corresponding to chosen action. This revision probability generates
the dynamics of imitation (see (Sandholm 2011, Weibull 1995)) that describes the
changes of number of agents which choose one or another action:

ẋkl = xkl

∑

kj∈K

xkj [(p(kl)− p(kj))− (p(kj)− p(kl))] , (20)

here xkl is a fraction of agents that use action kl.
Agent are able to use this scheme of making decision only before the epi-

demic starts. The condition which define the beginning epidemic have introduced
in (Kermack and Mc Kendrick, 1927):

δS − σI ≥ 0, S(0) ≥
σ

δ
. (21)

At the end of preepidemic period, for example at time moment t̄, according
to the rule of imitation dynamics, several groups of agents are formed xkl(t̄), i =
1, 2, 3. Hence, we will recalculate the subgroups of susceptible, infected and recovered
agents, using the final information about agents choices: S0

v = S−xkl , R
0
v(uv)+xkl ,

I0v = I0.

Recalculated values S0
v , R

0
v, I

0
v correspond to initial states for uncontrolled SIR

model (1)

dS

dt
= −δS(t)I(t);

dI

dt
= δS(t)I(t) − σI(t);

(22)

parameters δ and σ are the same as in section 2. As initial states we use R(t) =
R0
v, I(t) = I0v , S(t) = 1− Iv(t)−Rv(t), where t ∈ (0, T ) it a time moment at which

the preepidemic period has finished.
In the current section we define the aggregated system costs which include two

parts, vaccination costs and potential treatment costs:

J = xk2 (t̄)cp(k2) +

T
∫

t̄

f(I(t))− l(R(t))dt, (23)

here t is also an instant time moment, when vaccination program should be stopped
to avoid complications of vaccination, xk2(t̄) is number of agents who adopt vac-
cination by the time moment t̄. In other words at time moment t when condition
(21) is satisfied. The first part of (23) corresponds to aggregated vaccination costs
and the second part is equal to aggregated treatment costs. Now we consider two
functionals (23) and (3) and compare social or personal utility from the vaccination
decision. In addition we compare sickness rate L = δSI for both cases together with
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cost functionals. Here we also define as L∗ the threshold level of sickness rate and
as Lu the sickness rate in controlled case.

Thus we introduce following algorithm, which describes the behavior of agents
in human population during an epidemic period:

– an agent, based on the information set, chooses one of possible decisions;

– agents’ choices form an initial states for Susceptible-Infected-Recovered model
at the current epidemic period;

– Susceptible-Infected-Recovered model defines the epidemic dynamics for current
epidemic period;

– the society estimates the difference between the threshold level of the sickness
rate and it’s current value for each social group;

– the society corrects the information which are available for all agents, for exam-
ple the advertisement of vaccination programm can be increased (decreased),
then the information set of each agent can be changed. Then the process con-
tinues at the next period.

4. Numerical simulations

In this section we present numerical simulations to confirm our theoretical results.
We depict optimal control for different cases which correspond to different values
of parameters. The common parameters of SIR model are: δ = 0.7, σ = 0.06667,
ε = 0.1. Initial states are: S(0) = 0.9, I(0) = 0.1, R(0) = 0. Maximum of intensity
rate of vaccination is umax = 0.5, function h(u) is convex.

Fig. 1: Controlled and uncontrolled case of epidemic process in urban population. Costs
functions are: f(I) = 10I , l(R) = 3R(t), h(u) = 0.1u2.

In fig.1 we can see the decreasing of the fraction of infected in a population under
the influence of optimal control. For example, in uncontrolled case we have fraction
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of Imax(t) = 0.732, but in controlled case the fraction of infected is Imax(t) = 0.581,
likewise we observe the decreasing of the sickness rate and aggregated system costs.

In fig.2 we show how parameters of the system are changed for different values of
virus strength δ subject to the costs function h(u) is concave. Common parameters of
the SIR model are the same that in the previous case: σ = 0.06667, ε = 0.1, initial
states are: S(0) = 0.9, I(0) = 0.1, R(0) = 0. Maximum of the intensity rate of
vaccination is umax = 0.5. Here we consider following costs functions: f(I) = 10I(t),
l(R) = 3R(t), h(u) = 0.1u. Below we present the detailed description of graphs,
presented in fig.2 and values for parameters of the system.

Fig. 2: a)Optimal vaccination policy. b) Aggregated costs. c) Dynamics of infected I(t).
d)Sickness rate L(t).

a) The optimal policy of vaccination u in case, when function h(u) is concave for
different values of the infection rate δ. (line 1. δ = 0.7, line 2. δ = 0.5, line 3.

δ = 0.3, line 4. δ = 0.1).

b) Aggregated system costs (line 1. J = −130.43, δ = 0.7, line 2. J = −139.42,
δ = 0.5, line 3. J = −160, 82, δ = 0.3, 4. J = −201, 64, δ = 0.1, line 5.

uncontrolled case).

c) Dynamics of changes in the subgroup of infected I(t) (line 1. δ = 0.7, line 2.

δ = 0.5, line 3. δ = 0.3, line 4. δ = 0.1, 5. uncontrolled case ).

d) The sickness rate L for different values of parameter δ (line 1. δ = 0.7, line 2.

δ = 0.5, line 3. δ = 0.3, line 4. δ = 0.1).
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We receive that the time moment t∗, when the control is off is shifted to the
right, whereas an epidemic peak is shifted to the left, while value of δ is increased.
For example if δ = 0.7 then t∗ = 74, and if δ = 0.1 then t∗ = 42. Aggregated system
costs decrease as well as the sickness rate L.

In fig.3 we manipulate the infection rate δ in case of strictly convex costs function
h(u). Parameters of the dynamic system are are: σ = 0.06667, ε = 0.5. Initial states
are: S(0) = 0.9, I(0) = 0.1, R(0) = 0. Maximum of the intensity rate of vaccination
is umax = 0.5. Costs functions are: f(I) = 10I, l(R) = 3R, h(u) = 0.1u2.

Fig. 3: a)Optimal vaccination policy. b) Aggregated costs. c) Dynamics of infected I(t).
d)Sickness rate L(t).

Below we point the detailed definition of graphs a), b), c), d) and variations of
parameters of the system.

a) The optimal policy of vaccination u in case, when function h(u) – strictly convex
for different values of the infection rate δ. (line 1. δ = 0.7, line 2. δ = 0.5, line
3. δ = 0.3, line 4. δ = 0.1).

b) Aggregated system costs (line 1. J = −217.38, δ = 0.7, line 2. J = −232.29,
δ = 0.5, line 3. J = −249.03, δ = 0.3, line 4. J = −264.58, δ = 0.1, line 5.

uncontrolled case).

c) Dynamics of changes in the subgroup of infected I(t) (line 1. δ = 0.7, line 2.

δ = 0.5, line 3. δ = 0.3, line 4. δ = 0.1, line 5. uncontrolled case).

d) The sickness rate L for different values of parameter δ (line 1. δ = 0.7, line 2.

δ = 0.5, line 3. δ = 0.3, line 4. δ = 0.1).
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In this case it have been shown that optimal vaccination policy influence on a
number of infected and the aggregated system costs decrease. The control is switched
off early if the rate of parameter δ decreases.

We also illustrate a behavior of agents in a population if each agent can choose
an action, using information from its surroundings, according to the algorithm pre-
sented in section 3.1. The common parameters for the SIR model are: δ = 0.7,
σ = 0.06667. Initial states are: S(0) = 0.9, I(0) = 0.1, R(0) = 0. Maximum of
intensity rate of vaccination is umax = 0.5, function h(u) = 0.1u2 is convex, here
the value of the threshold level is L∗ = 0.02.

Fig. 4: a)Optimal vaccination policy. b) Aggregated costs. c) Dynamics of infected I(t).
d)Sickness rate L(t).

The behavior of the curves I(t), J(t) and L(t) demonstrate different scenarios of
using vaccination in the system is shown in fig. 4 (b, c, d) and corresponding level
of sickness rates.

a) The dynamics, which shows the changes in subgroups of agents, using different
actions ki c(k1) = 1, c(k2) = 0.7, c(k3) = 0.715, c(k3) = 0.715, benefits are
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b(ki) = 3, p(k1) = 2, p(k2) = 2.3, p(k3) = 2.285. Initial states are: x(k1) = 0.1,
x(k2) = 0.2, x(k3) = 0.7. (line 1. x(k1), line 2. x(k2), line line 3. x(k3).

b) Aggregated system costs (line 1. Agents choose their behavior, J = −197.57,
line 2. Controlled case, vaccination policy is chosen by the medical organization,
J = −131.73, line 3. uncontrolled case, J = −95.45).

c) Dynamics of changes in the subgroup of infected I(t) (line 1. Agents choose their
behavior, line 2. Controlled case, vaccination policy is chosen by the medical
organization, line 3. uncontrolled case).

d) The sickness rate L for different values of parameter δ (line 1. Agents choose their
behavior, line 2. Controlled case, vaccination policy is chosen by the medical
organization, line 3. threshold level L∗. line 4.uncontrolled case).

The experiments show that the different methods of applying vaccination pro-
gram as a control in the system lead to significant cost savings, as well as to reduce
the sickness rate. For example, in the case of umax = 0, 5 functional is J = −131.73,
and if uv = 0.51 (at time moment t∗ = 43), then the value of aggregated system
costs is J = −197.57. In the uncontrolled case the value of functional is J =-95.45.

5. Conclusion

In this paper, we have studied an epidemic model that takes into account the agent
motivation of participation in the vaccination program. We incorporate procedure
of making decision to the simple Susceptible-Infected-Recovered model and have
formulated this model in special case. Using Pontryagin’s maximum principle, we
have shown the structure of optimal control for ideal situation. We supported our
results with numerical simulations, observing different cases of epidemic process
in entire urban population. In future work we would extend this model including
different structure of population, it means that human decision may depend on his
social group, not only his costs and to modify the model, using number of contacts
as a function of the time.

6. Appendix

We will proof this statement base on the following properties (Khouzani et al., 2011,
Gubar et al., 2013 ):

Property 1. Let w(t) be a continuous and piecewise differential function of t. Let

w(t0) = L and w(t) < L for all t ∈ (t0, . . . , t1]. Then
˙w(t+0 ) ≤ 0, where w(t+1 ) =

lim
x→x0

w(x).

Property 2. For any convex and differentiable function y(x), which is 0 at x = 0,
y′(x)x − y(x) ≥ 0 for all x ≥ 0.

Proof. (of lemma2)
Step I. Consider instant time moment t = T , from transversality conditions

(6) we have λS(T )− λI(T ) = 0, and λ̇S(T )− λ̇I(T ) = −
n
∑

i

f ′(I(T )) < 0, λ̇I(T ) =

n
∑

i

f ′(I(T )) > 0, therefore function λI is increasing on the interval [0, T ].

Step II.(Proof by contradiction).
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Let 0 ≤ t∗ < T be the last time moment at which one of the inequality con-
straints are active:

λI(t) < 0, λS(t) < 0, λI(t)− λS(t) < 0 for t∗ < t < T,

or
λI(t

∗) = 0, λS(t
∗) = 0, λS(t

∗)− λI(t
∗) = 0.

Case A.

λS(t
∗) = 0, λI(t

∗+)− λS(t
∗+) < 0 for t∗ < t < T . Then

λ̇S(t
∗+) = δI(λS − λI); (24)

Since λI(t) − λS(t) < 0 for t∗ < t < T , values δ and I are nonnegative then
λ̇S(t

∗+) > 0 which contradicts with property 1. Then case A. is impossible.

Case B.

λS(t
∗) = 0, λS(t

∗) < 0 for t∗ < t < T and λS(t
∗) − λI(t

∗) = 0, λS(t
∗+) −

λI(t
∗+) < 0.

Now let consider λ̇S(t
∗+)− λ̇I(t

+∗).

The system ODE is autonomous, i.e., Hamiltonian and the constraints on the
control u do not have an explicit dependency on the independent variable t. Then
at time t = T Hamiltonian is:

H = H(T ) = −(f(I(T ))− l(R(T )) + h(u(T )). (25)

costs functions follow the next conditions f(I(T )) ≥ 0, l(R(T )) ≥ 0,
h((u(T )) ≥ 0 and transversality conditions (6) at time moment T are justified
then H ≤ 0.

Hence as far as functions f , l, h are non-decreasing we have:

H + l(R(t)) ≤ −(f(I(T )) + h(u(T ))) ≤ 0 (26)

Then

λ̇S(t
∗+)− λ̇I(t

+∗) = δI(t)(λS − λI)− ψε− (f ′(I) + δS(λS − λI) + λIσ) =

δI(λS − λI)− f ′(I)− (H−(l(R)+h(u)+f(I))
I

− ψε

I
) =

δI(λS − λI)− [f(I)− If ′(I)]− (H+l
I

) + (h(u)+εψ
I

)

(27)

For any admissible control u and according to (7) for all t ∈ [0, T ]

h(u∗(t) + εψ) ≥ h(u(t) + εψ) ≥ 0.

By property 2 (f(I(t)−f ′(I(t))I)) ≤ 0 is negative, from the case assumptions we
have (λS − λI) > 0 and together with (26) we received that
λ̇S(t

∗+)− λ̇I(t
+∗) > 0, then d

dt
(λS(t

∗+)− λI(t
∗+)) > 0, which contradicts property

1 then case B. is impossible.

Thus, non of the cases A and B can occur, which contradicts the lemmas’
statement then a time moment t∗+ does not exist. Hence the lemma follows.
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