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Abstract In this work we propose a model for the extraction of a non
renewable resource in an economy where, initially, only one agent is enabled
to perform extraction tasks. However, at certain non predictable (random)
times, more companies receive the government’s approval for extracting the
country’s resources. We provide a set up suitable for the use of standard
dynamic programming results; we develop the corresponding HJB equations,
prove a verification theorem, and give an example. Our framework is inspired
by the trends that oil industries are experiencing in countries like Mexico
and Russia.
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1. Introduction

To motivate the problem statemen analysed in this paper we consider the situation
on the Mexican oil market. Currently, there is the only company named Petróleos
Mexicanos (trademarked as Pemex), the Mexican state-owned petroleum company.
Recently, there has been a serious concern regarding the annual production drop
that has been taking place since year since 2004. It has become clear that the
obsolete infrastructure and inefficient management of this nationalized company
seriously hinder the development of the oil and gas industry. Since the last decade,
there has beed a serious discussion whether this sector should be open up to private
investment. Finally, a decision has been taken according which the oil market will be
open up by 2018. In our view, this situation can be well reflected by the differential
game model proposed in this paper.

We note that a – to some extent – similar approach has been presented in
(Kostyunin et al., 2012), where two firms compete over time and their two terminal
times of extraction are two different random variables. The winning firm will be the
only one remaining in the game after the first one retires.

2. The game model and main assumptions

We begin this work by considering a degenerate game (i.e., with only one player).
At certain random instants, more players can join the system, thus conforming a
multi player game. For the sake of simplicity, we start by assuming the existence of
only two players.
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tersburg State University.
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Let x(t) represent the stock of the resource at time t ≥ 0, and Π1, Π2 denote
the sets of actions for players 1 and 2, respectively. We characterize the dynamics
of the stock by the following autonomous ordinary differential equation.

{

ẋ(t) = G(u1(t), u2(t)),

x(t0) = x.
(1)

Assumption 1 The state dynamics (1) satisfies the following conditions:

(a) The coefficient G is a differentiable function and, moreover, ∂G
∂uk

< 0 for k =
1, 2.

(b) The state dynamics can be written as an additive (separable) function, for in-
stance, G(u1, u2) := −u1 − u2.

The first player is supposed to be “stable”. This player starts the resource extraction
at a fixed time T0, which, without loss of generality is assumed to be T0 = 0; and
continues to extract the resource ad infinitum. The performance index of the first
firm is given by

K1(x, T0, u1, u2) =

∫

∞

T0

h1(x(t), u1(t), u2(t))e
−ρ(t−T0)dt, (2)

here, ρ stands for the force of interest, and h1 is the utility function of such player.

The second firm is “unstable”, in the sense that it starts the extraction at a ran-
dom time T1 ∈ [T0,∞[. The cumulative distribution function F (t) of this random
instant is known, and t ∈ [T0,∞[.

The utility function for player 2 is as follows:

h̃2(x(t), u1(t), u2(t)) =

{

0, t ∈ [T0, T1[

h2(x(t), u1(t), u2(t)), t ∈ [T1,∞[.
(3)

Hence, the objective functional of the second firm is:

K2(x, T0, u1, u2) = E

[
∫

∞

T0

h̃2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

]

= E

[

∫ T1

T0

0dt+

∫

∞

T1

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

]

= E

[
∫

∞

T1

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

]

.

The following hypothesis enables us to simplify K2.

Assumption 2 The cumulative distribution function of T1 satisfies the following:

(a) it is absolutely continuous with respect to Lebesgue’s measure, and F ′(t) = f(t);

(b) limt→∞(1− F (t))
∫ t

t0
h(x(t), u1(t), u2(t))dt = 0 for all h : X × U1 × U2 → R.



60 Ekaterina V. Gromova, José Daniel López-Barrientos

Assumption 2(a) yields

K2(x, T0, u1, u2) =

∫

∞

T0

[
∫

∞

T1

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

]

dF (T1)

=

∫

∞

T0

[
∫

∞

T1

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

]

f(T1)dT1

=

∫

∞

T0

∫

∞

T0

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dtf(T1)dT1

−

∫

∞

T0

∫ T1

T0

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dtf(T1)dT1

=

∫

∞

T0

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

∫

∞

T0

f(T1)dT1

−

∫

∞

T0

∫ T1

T0

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dtf(T1)dT1

=

∫

∞

T0

h2(t, x(t), u1(t), u2(t))e
−ρ(t−T0)dt

−eρT0

∫

∞

T0

[

∫ T1

T0

h2(x(t), u1(t), u2(t))e
−ρtdt

]

f(T1)dT1. (4)

To simplify the last integral in (4) we use Fubini-Tonelli’s Theorem and Assumption
2(b) to invoke Proposition 2 in (Kostyunin and Shevkoplyas, 2011), and thus assert:

∫

∞

T0

[

∫ T1

T0

h2(x(t), u1(t), u2(t))e
−ρtdt

]

f(T1)dT1

=

∫

∞

T0

(1− F (t))h2(x(t), u1(t), u2(t))e
−ρtdt. (5)

The details can be read in Section 2.1 in (Gromov and Gromova, 2014).

Plugging (5) into (4) yields:

K2(x, T0, u1, u2) =

∫

∞

T0

h2(x(t), u1(t), u2(t))e
−ρ(t−T0)dt

−eρT0

∫

∞

T0

(1− F (t))h2(x(t), u1(t), u2(t))e
−ρtdt

=

∫

∞

T0

F (t)h2(x(t), u1(t), u2(t))e
−ρtdt.

Admissible strategies

Now we introduce the type of equilibria we are interested in.

Definition 1. We say that a pair of stationary strategies (u∗

1, u
∗

2) ∈ Π1 ×Π2 is a
Nash (or noncooperative) equilibrium if

K1(x, T0, u
∗

1, u
∗

2) ≥ K1(x, T0, u1, u
∗

2) for every u1 ∈ Π1,

and
K2(x, T0, u

∗

1, u
∗

2) ≥ K2(x, T0, u
∗

1, u2) for every u2 ∈ Π2.
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Remark 3 In general, the set of deterministic control actions for a differential
game is such that, except for a quite restricted class of games (such as scalar linear
–separable- games, see (Bardi, 2012) and the references therein), one cannot assure
the existence of a Nash equilibrium in the set of ordinary strategies for the players.
Since the game under consideration is typically of this class (because the system (1)
is linear and scalar; and the utility functions referred to in (2) and (3) are scalar
and separable), we will use the framework of deterministic (pure) strategies for our
developments.

3. Dynamic programming equations

We begin by considering the non-cooperative case. To find a Nash equilibrium that
depends on both, the system and the time, a valid option is to use the dynamic pro-
gramming technique. With this in mind, we will need to solve a couple of Hamilton-
Jacobi-Bellman (HJB) equations.

Suppose that W1(x, t) is the optimal value function for the first player, and
that W2(x, t) is the corresponding optimal performance index for the second player.
Thus,

W1(x, t) =

∫

∞

t

h1(x(τ), u
∗

1(τ), u
∗

2(τ))e
−ρ(τ−T0)dτ.

The Bellman equation for this player is given by

ρW1 =
∂W1

∂t
+max

u1

{

∂W1

∂x
G+ h1

}

. (1)

On the other hand, the optimal value function for the second player should be given
by

W2(x, t) =
1

F (t)

∫

∞

t

F (τ)h2(x(τ), u
∗

1(τ), u
∗

2(τ))e
−ρ(τ−T0)dτ,

here, we divide by F (t) to reflect the fact that the game started before time t.

Let us define the function

W̃2(x, t) :=

∫

∞

t

F (τ)h2(x(τ), u
∗

1(τ), u
∗

2(τ))e
−ρ(τ−T0)dτ.

Obviously, W̃2(x, t) = F (t)W2(x, t). Then,

∂W̃2

∂t
=

∂W2

∂t
F (t) +W2f(t); (2)

∂W̃2

∂x
=

∂W2

∂x
F (t). (3)

The HJB equation for W̃2 then is:

ρW̃2 =
∂W̃2

∂t
+max

u2

{

∂W̃2

∂x
G+ h2F (t)

}

. (4)
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Finally, the substitution of (2)-(3) into (4) yields:

ρW2 −W2
f(t)

F (t)
=

∂W2

∂t
+max

u2

{

∂W2

∂x
G+ h2

}

. (5)

We now state and prove a verification result that ensures that (1) and (5) solve
effectively the game we are concerned with.

Theorem 4. Let (u∗

1, u
∗

2) ∈ Π1 ×Π2 be defined as follows:

u∗

1(t) := argmax
u1

{

∂W1

∂x
(x, t)G(u1, u2) + h1(x, u1, u2)

}

, (6)

u∗

2(t) := argmax
u2

{

∂W2

∂x
(x, t)G(u1, u2) + h2(x, u1, u2)

}

. (7)

If Assumptions 1 and 2 hold, and there exist differentiable functions W1 and W2

that meet (1) and (5), respectively, and e−ρrW1(x(r), r) → 0, e−ρrW2(x(r), r) → 0
as r ↑ ∞, then

(i) The pair (u∗

1, u
∗

2) is a Nash equilibrium (see Definition 1).
(ii) The functions W1 and W2 are the optimal values of the game for each player,

i.e., W1(x, t) = K1(x, t, u
∗

1, u
∗

2), and W2(x, t) = K2(x, t, u
∗

1, u
∗

2).

Proof.

(i) The fact that W1(t, x) ≥ K1(t, x, u1, u
∗

2) for each u1 ∈ Π1 is quite standard (it
can be consulted, for instance, in (Fleming and Soner, 2005 Theorem I.7.1)).
We will include it here, however, for the sake of completeness. Consider any
admissible pair of strategies (u1, u2) ∈ Π1 × Π2. Using multivariate calculus
and the dynamic programming equation (1) we obtain:

W1(x(r), r)e
−ρr

= W1(x, t)e
−ρt +

+

∫ r

t

e−ρs

[

∂W1

∂t
(x(s), s)− ρW1(x(s), s) +

∂W1

∂x
(x(s), s)G(u1(s), u2(s))

]

ds

≤ W1(x, t)e
−ρt −

∫ r

t

e−ρsh1(x(s), u1(s), u2(s))ds for r ≥ t.

Now we let r ↑ ∞ to obtain

W1(t, x) ≥

∫

∞

t

e−ρ(s−t)h1(x(s), u1(s), u2(s))ds = K1(x, t, u1, u2) (8)

for every admissible pair (u1, u2) ∈ Π1×Π2. We can mimic this argument (with
F (t)W2(x, t)e

−ρt in lieu of W1(x, t)e
−ρt; and (5) instead of (1)) to get

W2(t, x) ≥
1

F (t)

∫

∞

t

e−ρ(s−t)F (s)h2(x(s), u1(s), u2(s))ds = K2(x, t, u1, u2)

(9)
for every admissible pair (u1, u2) ∈ Π1 ×Π2.
Take u∗

2 (as in (7)) in (8) and u∗

1 (as in (6)) in (9) to see that the pair (u∗

1, u
∗

2) ∈
Π1 ×Π2 is a Nash equilibrium.
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(ii) To see that the functions W1 and W2 are the optimal values we are after, we
let (u∗

1, u
∗

2) ∈ Π1 ×Π2 be such that (6) and (7) hold. This yields W1(T0, x) =
K1(x, T0, u

∗

1, u
∗

2) and W2(T0, x) = K2(x, T0, u
∗

1, u
∗

2). This concludes the proof.
⊓⊔
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