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Abstract We consider multistage bidding models where several types of
risky assets (shares) are traded between two agents that have different in-
formation on the liquidation prices of traded assets. These random prices
depend on ”a state of nature”, that is determined by the initial chance move
according to a probability distribution that is known to both players. Player
1 (insider) is informed on the state of nature, but Player 2 is not. The bids
may take any integer values. The n-stage model is reduced to a zero-sum
repeated game with lack of information on one side of Player 2. We show
that, if liquidation prices of shares have finite variances, then the sequence
of values of n-step games is bounded. This makes it reasonable to consider
the bidding of unlimited duration. We give the solutions for corresponding
infinite games. Analogously to the case of two risky assets (see Domansky
and Kreps (2013)) the optimal strategy of Player 1 generates a random walk
of transaction prices. The symmetry of this random walk is broken at the
final stages of the game.

Keywords: multistage bidding, asymmetric information, price fluctuation,
random walk, repeated game, optimal strategy.

1. Introduction

Regular random fluctuations in stock market prices are usually explained by effects
from multiple exogenous factors subjected to accidental variations. The work of De
Meyer and Saley (2002) proposes a different strategic motivation for these phenom-
ena. The authors assert that the Brownian component in the evolution of prices on
the stock market may originate from the asymmetric information of stockbrokers
on events determining market prices. ”Insiders” are not interested in the immediate
revelation of their private information. This forces them to randomize their actions
and results in the appearance of an oscillatory component in price evolution.

De Meyer and Saley demonstrate this idea on a model of multistage bidding
between two agents for risky assets (shares). The liquidation price of a share depends
on a random ”state of nature”. Before the bidding starts a chance move determines
the ”state of nature” and therefore the liquidation price of a share once and for
all. Player 1 is informed on the ”state of nature”, but Player 2 is not. Both players
know the probability of a chance move. Player 2 knows that Player 1 is an insider.

At each subsequent step t = 1, 2, ..., n both players simultaneously propose their
prices for one share. The maximal bid wins and one share is transacted at this price.
If the bids are equal, no transaction occurs. Each player aims to maximize the value
of his final portfolio (money plus liquidation value of obtained shares).

⋆ This study was partially supported by the Russian Foundation for Basic Research,
project 13-01-00462-a
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In this model Player 2 should use the history of Player 1’s moves to update his
beliefs about the state of nature. Thus Player 1 must maintain a delicate balance
between taking advantage of his private information and concealing it from Player
2.

De Meyer and Saley consider a model where a share’s liquidation price takes
only two values and players may make arbitrary bids. They reduce this model to
a zero-sum repeated game with lack of information on one side, as introduced by
Aumann and Maschler (1995), but with continual action sets. De Meyer and Saley
show that these n-stage games have the values (i.e. the guaranteed gains of Player
1 are equal to the guaranteed losses of Player 2). They find these values and the
optimal strategies of players. As n tends to infinity, the values infinitely grow up
with rate

√
n. It is shown that Brownian Motion appears in the asymptotics of

transaction prices generated by these strategies.

The same result was demonstrated in De Meyer (2010) for models with perfectly
general trading mechanisms. The thesis of Gensbittel (2010) contains analogous
results for a model with two risky assets and with arbitrary bids.

It is more natural to assume that players may assign only discrete bids propor-
tional to a minimal currency unit. De Meyer and Marino (2005), Domansky and
Kreps (2005), Domansky (2007) analyze a bidding model with the same mechanism
of the game as in the model of De Meyer and Moussa-Saley (2002), and where mar-
ket makers have to post prices within a discrete grid. The n-stage games Gm

n (p) are
considered with two possible values of liquidation price, 1 with probability p and 0
with probability 1− p, and with admissible bids being multiples of 1/m.

The results of De Meyer and Marino (2005), Domansky and Kreps (2005), Do-
mansky (2007) show that, unlike the model of De Meyer and Saley, the sequence of
values V m

n (p) of the games Gm
n (p) is bounded from above and converges as n tends

to ∞. The authors calculate its limit Hm, that is a continuous, concave, and piece-
wise linear function with m domains of linearity [k/m, (k+1)/m], k = 0, . . . ,m−1,
and the values at peak points Hm(k/m) = k(m− k)/2m.

The proof in Domansky and Kreps (2005) differs in essential ways from the proof
in De Meyer and Marino (2005). The first proof is more concise due to exploiting a
”reasonable” strategy of Player 2. In fact, this is his optimal strategy for the game
with infinite number of steps.

As the sequence V m
n (p) is bounded from above, it is reasonable to consider

the games Gm
∞
(p) with infinite number of steps. We do this in Domansky (2007).

The games Gm
∞
(p) are infinitely repeated, non-discounted games with non-averaged

payoffs that differs from the classical model of Aumann and Maschler (1995).

We believe that the model is consistent and tractable with an endogenous ran-
dom time for information disclosure that happens when a posterior probability takes
the value 0 or 1. But the model with infinite number of steps does not allow to de-
termine an exogenous time for information disclosure that is a base for the notion
of liquidation value in the works of De Meyer. At time T, each player should be
able to sell his shares of the risky asset at this liquidation price.

The infinite game may be reinterpreted in the following way, that allows us to
conserve the exogenous time of disclosure T . The sequential stages tn, n = 1, 2, . . .
of the game occur on the interval [0, T ) having an accumulation point at the point
T . This means that transactions become more and more frequent as the disclosure
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of information approaches. For example, one can take tn = T (1 − αn) for some
α ∈ (0, 1).

Unlike the case of n < ∞, the existence of a value for the games Gm
∞
(p) has to

be proved. We prove it by constructing explicitly the optimal strategies. We show
that the value V m

∞
is equal to Hm, that is the limit of the sequence of values V m

n (p).

We construct the optimal strategy of Player 1 that provides him the maximal
possible expected gain 1/2m per step (the fastest optimal strategy). For this strat-
egy the posterior probabilities perform a simple symmetric random walk over the
admissible bids l/m, l = 0, . . . ,m, with absorbing extreme points 0 and 1. The
absorption of posterior probabilities means revealing of the true value of share by
Player 2. For the initial probability k/m, the expected duration of this random
walk before absorption is k(m−k). The bidding terminates almost surely in a finite
number of steps, and the expected number of steps is also finite. This random time
of absorption is a time for disclosure of information. The game terminates naturally
when the posterior expectation of liquidation price coincide with its real value.

The set of all optimal strategies of Player 1 for Gm
∞
(p) consists of the described

fastest strategy obtained in Domansky (2007) and its slower modifications. In San-
domirskaia (2014b) it is shown that the constructed fastest optimal strategy of
Player 1 for the infinitely repeated game Gm

∞
(p) is an ε-optimal strategy of Player

1 for any finitely repeated game Gm
n (p) of length n, where ε = O(cosn π/m). This

is not so for slower optimal strategies of Player 1.

The results of Domansky (2007) cannot be extended to a general transaction
mechanism introduced by De Meyer (2010). As mentioned in the last paper, the
discretized mechanism does not satisfy axioms of shift- and scale-invariance. Note
that in practice a grid of possible bids is not shift- and scale-invariant simultane-
ously.

A more realistic model is studied in Sandomirskaia (2014a). It is analogous
to the model considered in Domansky (2007), but equipped with a more general
transaction mechanism. Namely, the agents fix different stakes for buying and selling
a share.

In Domansky and Kreps (2009) we consider a model where the share liquidation
price may take any integer values according to a probability distribution p. Any
integer bids are admissible. This n-stage model is reduced to a zero-sum repeated
game Ḡn(p) with countable state and action spaces. The games considered in Do-
mansky (2007) can be presented as particular cases of these games corresponding
to probability distributions with two-point supports and with payoffs rescaling (the
payoff for the game Gm

n (p) is multplied by m).

We show that if the liquidation price of a share has a finite expectation, then
the values of n-stage games exist. If its variance is finite, then, as n tends to ∞,
the sequence of values is bounded from above and converges. The limit H̄ is a
continuous, concave, piecewise linear function with a countable number of domains
of linearity. For distributions with integer mean values the function H̄ is equal to
the half of the liquidation price variance.

As the sequence of n-stage game values is bounded from above, it is reasonable
to consider the games Ḡ∞(p) with an infinite number of steps. We show that the
value V̄∞(p) is equal to H̄(p). We explicitly construct the optimal strategies for
these games. To construct the optimal strategies of Player 1 we exploit symmetric
representations of univariate probability distributions with given mean values as
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convex combinations of extreme points of corresponding sets, i.e. distributions with
the same mean values and with supports containing at most two points.

The insider optimal strategy generates a symmetric random walk of posterior
expectations over the one-dimensional integer lattice with absorption. For distribu-
tions with integer mean values the expected duration of this random walk is equal
to the variance of the liquidation price of a share. The value of infinite game is equal
to the expected duration of this random walk multiplied by the constant one-step
gain 1/2 of informed Player 1.

In the paper Domansky and Kreps (2013) we consider multistage bidding models
where two types of risky assets are traded. We show that, if expectations of share
prices are finite, then the values Vn(p) of n-stage bidding games Gn(p) exist. The
value of such a game does not exceed the sum of values of games modeling the
bidding with one-type shares. This means that the simultaneous bidding of two
types of risky assets is at most so profitable for the insider as the separate bidding
of one-type shares. This is explained by the fact that the simultaneous bidding
leads to revealing more insider information, because the bids for shares of each type
provide information on shares of the other type.

We show that, if both share prices have finite variances, then the values of n-stage
bidding games do not exceed the function H(p) that is the smallest piecewise linear
function equal to the one half of the sum of share price variances for distributions
with integer expectations of both share prices.

In the present paper we consider multistage bidding models where several types
of risky assets (shares) are traded between two agents that have different information
on the liquidation prices of traded assets. These random prices depend on ”a state
of nature”, that is determined by the initial chance move according to a probability
distribution that is known to both players. Player 1 (insider) is informed on the
state of nature, but Player 2 is not. The bids may take any integer values. The
n-stage model is reduced to a zero-sum repeated game with lack of information
on one side of Player 2. We show that, if liquidation prices of shares have finite
variances, then the sequence of values of n-step games is bounded. This makes it
reasonable to consider the bidding of unlimited duration. We give the solutions
for corresponding infinite games. Analogously to the case of two risky assets (see
Domansky and Kreps (2013)) the optimal strategy of Player 1 generates a random
walk of transaction prices. The symmetry of this random walk is broken at the final
stages of the game.

In Russian the results are published in Domansky and Kreps (2014).

2. Repeated games modeling multistage bidding with several types of
risky assets

We consider repeated games Gn(p) with incomplete information on one side (see
Aumann and Maschler (1995)) modeling the bidding with several types of risky
assets.

Two players with opposite interests have money and shares of m types. The
random liquidation price of a share of every type may take any integer values.

At stage 0 a chance move determines the ”state of nature” and therefore the
liquidation prices of shares (z1, z2, . . . , zm) for the whole period of bidding according
to the known to both Players probability distribution p over the m-dimensional
integer lattice Zm.
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Player 1 is informed about the result of chance move, Player 2 is not. Player 2
knows that Player 1 is an insider.

At each subsequent stage t = 1, . . . , n both Players simultaneously propose
their bids, meaning prices for one share of each type, (i1(t), . . . , im(t)) ∈ Zm for
Player 1 and (j1(t), . . . , jm(t)) ∈ Zm for Player 2. The bids are announced to both
Players before proceeding to the next stage. The maximal bid wins and one share
is transacted at this price. Therefore, if ir(t) > jr(t), Player 1 gets one share of
type r from Player 2 and Player 2 receives the sum of money ir(t) from Player 1. If
ir(t) < jr(t), Player 2 gets one share of type r from Player 1 and Player 1 receives
the sum jr(t) from Player 2. If ir(t) = jr(t), then no transaction of shares of type
r occurs. Each player aims to maximize the value of his final portfolio (money plus
the liquidation value of obtained shares).

This n-stage model is described by a zero-sum repeated game Gn(p) with in-
complete information for Player 2, with countable state space S = Zm, and with
countable action spaces I = Zm, J = Zm. The one-step gain a(z, i, j) of Player 1
corresponding to the state z = (z1, z2, . . . , zm) and the actions i = (i1, i2, . . . , im),
j = (j1, j2, . . . , jm) is given with the sum a(z, i, j =

∑m

r=1 ar(zr, ir, jr), where

ar(zr, ir, jr) =











jr − zr, for ir < jr;

0, for ir = jr;

−ir + zr, for ir > jr.

At the end of the game Player 2 pays to Player 1 the sum

n
∑

t=1

a(z, i(t), j(t)),

where z is the result of a chance move. This description is a common knowledge of
both Players.

At the step t it is enough for both Players to take into account the sequence
(i1, . . . , it−1) of Player 1’s previous actions only. A behavioral strategy σ for in-
formed Player 1 depends on the result of a chance move. But a strategy τ for
uninformed Player 2 does not depend. Formal description for randomized strate-
gies of both players, for payoff functions Kn(p, σ, τ) and for recursive structures of
strategies and payoffs is given in Aumann and Maschler (1995) and in Domansky
(2007).

Note that we consider non-discounted games with non-averaged payoffs that
differs from the classical model of Aumann and Maschler (1995).

We also consider the infinite games G∞(p). For certain pairs of strategies (σ, τ),
the payoff function K∞(p, σ, τ) may be indefinite. If we restrict the set of Player 1’s
admissible strategies to strategies with positive one-step gains against any action
j of Player 2, then the payoff function of the game G∞(p) becomes completely
definite (may be infinite). Player 1 has many strategies, ensuring him a positive
one-step gain against any action of Player 2. In fact, any reasonable strategy of
Player 1 should possess this property.

For probability distributions p with finite supports, the games Gn(p), being
games with finite state and action spaces, have values Vn(p). The functions Vn are
continuous and concave in p. Both players have optimal strategies σ∗

n(p) and τ∗n(p).
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The value of such game does not exceed the sum

m
∑

r=1

Vn(p
r)

of values of games modeling the bidding with one-type shares, where pr, r =
1, . . . ,m, are the marginal distributions of the distribution p. This follows from
the fact that Player 2 can guarantee himself the loss that does not exceed this sum
exploiting the direct combination of optimal strategies τ∗n(p

r) for the single asset
games Gn(p

r) as a strategy for the game Gn(p) with m risky assets.
Let M1(Zm) be the set of probability distributions p over the m-dimension

integer lattice Zm with finite first moments m1[pr], 1 ≤ r ≤ m. For p ∈ M1(Zm)
the liquidation prices of all types of shares have finite expectations Ep[zr] = m1[pr].

The payoff of the game Gn(p) with p ∈ M1 can be approximated using the
payoffs of games Gn(pk) with probability distributions pk having finite support.
The next theorem follows immediately from this fact.

Theorem 1. If p ∈ M1, then the games Gn(p) have values Vn(p). The values
Vn(p) are positive and do not decrease, as the number of steps n increases.

3. Upper bounds for values Vn(p)

Here we consider the setM2(Zm) of probability distributions p over them-dimension
integer lattice Zm with finite second moments m2[pr], 1 ≤ r ≤ m. For p ∈ M2(Zm)
the liquidation prices of all types of shares have finite variances Dp[zr] = m2[pr].

The main result of this section is that, for p ∈ M2(Zm) the sequence Vn(p)
of values remains bounded as n → ∞. To prove this, we define the set of infinite
strategies of Player 2, suitable for the games Gn(p) with arbitrary n.

Let kr be the integer part of expectation Ep[zr] of liquidation price of a share of
type r, r = 1, . . . ,m. Define the set of Player 2’ strategies τ (k1,...,km), (k1, . . . , km) ∈
Zm, by the following way.

The first move τ
((k1,...,km))
1 is the action (k1, . . . , km). For t > 1, the r-th com-

ponent of the move τ
(k1,...,km)
t , r = 1, . . . ,m, depends on the last observed pair of

r-th components of actions (irt−1, j
r
t−1) for both players:

jrt =











jrt−1 − 1, if irt−1 < jrt−1 ;

jrt−1, if irt−1 = jrt−1;

jrt−1 + 1, if irt−1 > jrt−1.

Thus, for each asset r, r = 1, . . . ,m, strategy τ (k1,...,km) independently repro-
duces the optimal strategy of Player 2 τkr for single type bidding game of infinite
duration (see Domansky and Kreps (2009)).

Proposition 1. If all share prices have finite variances Dp[zr] < ∞, r = 1, . . . ,m,
then for the game Gn(p) strategy τ

(k1,...,km) ensures the Player 1’ gain, not exceeding
H(p) that is the smallest piecewise linear function equal to the one half of the sum
of share price variances for distributions with integer expectations of all share prices

H(p) =
1

2

m
∑

1

Dp[zr],
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for
Θ(k1, . . . , km) = {p : Ep[zr] = kr, r = 1, . . . ,m}.

The proof is analogous to the case m = 2 (see Domansky and Kreps (2013)).
Thus if all share prices have finite variances, then the values V aln(p) of n-

stage bidding games do not exceed the function H(p). This makes it reasonable to
consider games G∞(p) of infinite duration.

Below we formulate the main result.

Theorem 2. If all share prices have finite variances Dp[zr] < ∞, r = 1, . . . ,m,
then
a) the game G∞(p) has the value

V al∞(p) = H(p);

b) the strategy of Player 2 τ (k1,...,km), where kr is the integer part of price expectation
of r-th asset, r = 1, . . . ,m, is Player 2’ optimal strategy;
c) there exists Player 1’ strategy σ∗(p) that ensures him the gain H(p).

4. Insider’s optimal strategies for elementary games.

In Domansky and Kreps (2009) it is shown that the Player 2’ strategy τkr is his
optimal strategy for the infinite bidding game with one risky asset of type r. For
distribution with integer expectation the strategy ensures him the loss equal to one
half of the variance of random price of asset of type r.

As the Player 2’ strategy τ∗(p) = τ (k1,...,km) is the independent combination of
strategies τkr , r = 1, . . . ,m, we get that for distribution with integer expectations
the strategy τ∗(p) ensures him the loss equal to one half of the sum of variances of
random prices of assets of all types.

To prove theorem 2 for arbitrary distribution p with integer variances we should
construct a Player 1’ strategy σ∗(p) that guarantees him the gain H(p).

It is sufficient to show that for distribution with integer expectations the strategy
σ∗(p) guarantees him the payoff equal to one half of the sum of variances of random
prices of assets of all types.

It follows that the strategies σ∗(p) and τ∗(p) are optimal strategies for Player
1 and Player 2.

For m > 2, analogously to the two-dimensional case (m = 2), we begin with
constructing Player 1’s optimal strategies for ”elementary” games that is games
G∞(p) with distributions p having k + 1-point supports z1, . . . , zk+1 ∈ Rm, where
k ≤ m. The support points belong to a k-dimensional hyperplaneHyp(z1, . . . , zk+1).
Such a hyperplane is determined by the set of m − k unit vectors {e1, . . . , em−k},
that are pairwise orthogonal and orthogonal to the hyperplane.

At this hyperplane the points z1, . . . , zk+1 determine a simplex △(z1, . . . , zk+1).
Its points w ∈ △(z1, . . . , zk+1) correspond to distributions over (z1, . . . , zk+1),
namely, vector w gives expectations of random prices of assets

w =
k+1
∑

u=1

P (zu|w) · zu,

where P (zu|w) are corresponding probabilities of the points of the simplex.
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On the other hand for point w ∈ △(z1, . . . , zk+1) the probability distribution
P (·|w) is given by the following equalities

P (zu|w) =
det[z1, . . . , zu−1, zu+1, . . . , zk+1, e1, . . . , em−k]

∑k+1
v=1 det[z

1, . . . , zv−1, zv+1, . . . , zk+1, e1, . . . , em−k]
,

where det[·] is determinant of matrix [·].
For any k-dimensional hyperplane Hypk of Rm its points with at least k integer

coordinates form a discrete lattice Latk. Define a lattice Lat(△(z1, . . . , zk+1)) over
the simplex △(z1, . . . , zk+1) by the following way. For the interior of the simplex
△(z1, . . . , zk+1) it is the lattice Latk. For its boundary, that is for any simplex of
dimension less than k it is an analogous lattice of corresponding dimension.

Proposition 2. Let w = (w1, . . . , wm) be an interior point of the lattice
Lat(△(z1, . . . , zk+1)). For the initial expectation vector w Player 1 has optimal
strategy σ∗(w) generating a random walk of posterior probabilities over the points
of the lattice Lat(△(z1, . . . , zk+1)).

Proof. By definition the point w has at least k integer coordinates. Without loss of
generality we assume that its first k coordinates w1, . . . , wk are integer.

To proof the proposition we use the following lemma.

Lemma 1. The point w = (w1, . . . , wm) is corresponded by (k + 1)-tuple of points
{w1, . . . ,wl}, l ≤ k+ 1 of the lattice Lat(△(z1, . . . , zk+1)) with the following prop-
erties:

1. The point w is the convex hull of points {w1, . . . ,wl}, l ≤ k + 1:

w =

l
∑

i=1

qiw
i,

where coefficients qi > 0 and
∑l

i=1 qi = 1.
2. If a coordinate wj of the vector w is integer (in particular, if j < k + 1),

then for all 1 ≤ i ≤ k + 1 the coordinate wi
j of vector wi belongs to the interval

[wj−1, wj+1]. If a coordinate wj of the vector w is not integer, that is wj = kj+αj,
where kj is the integer part of wj and αj > 0, then wi

j belongs to the interval
[kj , kj + 1].

3. For integer coordinate wj of vector w put σi
j = wj if wi

j > wj , put σ
i
j = wj−1

if wi
j < wj and put σi

j = wj or σi
j = wj − 1 if wi

j = wj. For non-integer coordinate

wj = kj + αj put σi
j = kj.

It is possible to determine vectors σi such that σi 6= σi′ if i 6= i′.

For vector w of posterior share price expectations

w =

k+1
∑

u=1

P (zu|w) · zu,

where P (zu|w) are corresponding probabilities of the points of the simplex. For the
first step Player 1 chooses the actions σi, 1 ≤ i ≤ l with total probabilities qi such
that action σi generates posterior expectations (·|σi) = wi,

wi =

k+1
∑

u=1

P (zu|wi) · zu,
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where P (zu|wi) are corresponding probabilities of the points of the simplex.
Thus for the state zu Player 1 chooses his action σi with probability

P (σi|zu) = P (σi ∩ zu)

P (zu|w)
=

P (zu|wi)qi
P (zu|w)

.

Analogously to the two-dimensional case (m = 2) m = 2 (see Domansky and
Kreps (2013)), we get that the martingale of posterior expectations generated by
optimal strategy of Player 1 σ∗(w) for game with (m+1)-point distribution repre-
sents symmetric random walks over points of integer lattice lying within the simplex
spanned across the support points of distribution. The symmetry is broken at the
moment when the walk hits the simplex boundary. From this moment the game
turns into one of games with distributions having not more m-point supports.

5. Symmetric representation of probability distributions p over Z
m

In this section we construct symmetric representation of probability distributions p
over Zm with given mean values as probability mixtures of distributions with the
same mean values and with supports containing at most m+1 points (”elementary”
distributions).

This representation allows us for general distribution to construct Player’s opti-
mal strategy σ∗(p) for infinite game G∞(p) as convex combinations of his optimal
strategies for ”elementary” games.

Here we use an other approach for constructing representation of multivariate
probability distributions than the approach elaborated for the case m = 2 in Do-
mansky (2013).

Without loss of generality we assume that p ∈ Θm(0), where Θm(0) is the set
of probability distributions p over Zm with zero mean values (centered probability
distributions). Denote

∆m(0) = {(z1, . . . , zm+1) : 0 ∈ △(z1, . . . , zm+1)},

where △(z1, . . . , zk) is the convex hull of points z1, . . . , zk belonging to Zm.
The centered distribution p0

z1,...,zm+1 with support (z1, . . . , zm+1) ∈ ∆m(0) is
given by the formula

p0
z1,...,zm+1 =

∑m+1
i=1 det[zi+1, . . . , zi+m] · δzi
∑m+1

j=1 det[zj+1, . . . , zj+m]
,

where δx is the degenerate distribution with the point x in its support and
det[zi+1, . . . , zi+m] is determinant of square coordinate matrix. All arithmetical
operations with subscripts are fulfilled in modulo m+ 1.

Note that if det[zi+1, . . . , zi+m] = 0, then 0 ∈ △ det[zi+1, . . . , zi+m].
We say p ∈ Θm(0) does not contain (free of) k-point distributions, if there is no

k-point set (z1, . . . , zk) with p(zi) > 0 and 0 ∈ △(z1, . . . , zk).

Theorem 3. Let distribution p ∈ Θm(0) does not contain k-point distributions
with k < m+ 1. Then

p =
∑

∆m(0)

V (z1, z2, . . . , zm+1)p(z1)p(z2) . . .p(zm+1)
∑

∆m(0) V (t1, t2, . . . , tm+1)p(t1)p(t2) . . .p(tm+1)
p0
z1,z2,...,zm+1 , (1)
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where

V (z1, z2, . . . , zm+1) =

∑m+1
j=1 det[zj+1, . . . , zj+m]

m!
(1)

is m-dimensional volume of corresponding simplex.

Proof. Clarify the structure of denominator in formula 1.
With each z ∈ Zm we associate the set of unordered collections (z1, z2, . . . , zm):

∆m(0, z) = {(z1, z2, . . . , zm), zi 6= (0) : (z1, z2, . . . , zm, z) ∈ ∆m(0)}.

We accept that points z1, z2, . . . , zm are indexed so that

det[z1, z2, . . . , zm] > 0.

Put
Φ(p, z) =

∑

∆m(0,z)

det[z1, z2, . . . , zm]p(z1)p(z2) . . .p(zm+1) =

=
1

m!

∑

z∈Supp p

Φ(p, z)p(z).

The next theorem provides a base for constructing symmetric representation of
centered probability distributions p over Zm.

Theorem 4. Let distribution p ∈ Θm(0) does not contain k-point distributions
with k < m + 1. Then Φ(p, z) does not depend on z, i.e. Φ(p) is an invariant of
distribution p.

Remark 1. This result is m-dimensional analog of the equality

∞
∑

t=1

t · p(t) =
∞
∑

t=1

t · p(−t),

holding for centered probability distributions p over Z1.

Corollary 1. For any centered probability distributions p over Zm not containing
k-point distributions with k < m+1, Φ(p) has the following invariant representation:

Φ(p) =
∑

∆m(0)

m
∑

j=0

det[zj+1, . . . , zj+m]p(z1) . . .p(zm+1) =

m!
∑

∆m(0)

V (z1, . . . , zm+1)p(z1) . . .p(zm+1).

For constructing decomposition of arbitrary centered probability distribution p
over Zm we elaborate a procedure that allows us step by step to eliminate distri-
butions with supports containing less than m+ 1 points.

We start with deleting the atom at the point 0. Denote the rest distribution by
p1. There exists not more than countable number of one-dimensional subspaces R1

l

with a rest positive measure (we enumerate these subspaces by an index l). Of each
obtained subspace we delete a centered probability distribution p1

l such that the rest
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distribution is concentrated on a half-line. We denote p2 the final rest distribution
that is a centered distribution over Zm. It does not contain any two-point centered
distribution.

There exists not more than countable number of two-dimensional subspaces R1
l

with positive measure p2 concentrated on more than a half-line. Of each such sub-
space we delete a centered probability distribution p2

l such that the rest distribution
is concentrated on a half-plane. We denote p3 the final rest distribution that is a
centered distribution over Zm. It does not contain any three-point centered distri-
bution. And so on . . .

Theorem 5. Any centered distribution p over Zm may be represented as a proba-
bility mixture

p = p(0)δ0 +

m−1
∑

k=1

∞
∑

l=1

αk
l p

k
l + αmpm, (2)

where pk
l (0 < k < m) is centered probability distributions with integer supports

over k-dimensional subspaces Rk
l of Rm, not containing r-point distributions with

r < k + 1. The last distribution pm is a centered probability distribution over Zm

and it contains no k-point distributions with k < m+ 1.

Remark 2. Any distribution pk
l may be represented as a convex combination of

(k + 1)-point distributions. Distribution pm may be represented as a convex com-
bination of (m+ 1)-point distributions.

6. Constructing Player 1’ optimal strategy for arbitrary distribution p

In this section we terminate the proof of theorem 2. Namely with help of the obtained
in section 5 decomposition of distribution p we construct Player 1’ optimal strategy
σ∗(p), that ensures him the gain

∑m

r=1 Dp[zr]/2 for the game G∞(p). It proves the
paragraph c) of theorem 2.

We construct the strategy σ∗(p) by the following algorithm. As before without
loss of generality we consider centered probability distributions p.

a) If the state chosen by chance move coincides with the zero vector of expected
prices, then Player 1 stops the game. In this case he cannot get any profit from his
informational advantage.

b) Let the state chosen by chance move z 6= 0. Then Player 1 makes a choice
among distributions pk

l and pm by means of a lottery with the probabilities

αk
l p

k
l (z)

p(z)
,

αmpm(z)

p(z)
.

Here pk
l and pk

l are elementary distributions of decomposition 2 and αk
l , α

m are
corresponding coefficients.

c) If distribution pk
l is chosen, then Player 1 chooses k points z1, . . . , zk by means

of a lottery with the probabilities

det[z1, . . . , zk] · pk
l (z1) . . .p

k
l (zk)

Φ(pk
l )

and he plays his optimal strategy σ∗(·|z) for in (k+1)-point game G(p0
z,z1,...,zk

) the
state z.
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d) If distribution pm is chosen, pm, then Player 1 chooses m points z1, . . . , zm

by means of a lottery with the probabilities

det[z1, . . . , zm] · pm(z1) . . .pm(zm)

Φ(pm)

and he plays his optimal strategy σ∗(·|z) in (m + 1)-point game G(p0
z,z1,...,zm

) the
state z.

It is sufficient to prove paragraph c) of theorem 2 for distributions
p ∈ Θ(k1, . . . , km).

In Section 4 for k-point game with p ∈ Θ(0) we demonstrated that the strat-
egy σ∗ ensures for Player 1 the payoff equal to one half of the sum of variance
components

∑m

r=1 Dp[zr]/2.
Note that the sum of variance components is a linear function over Θ(0) ∩M2,

where M2 is the set of distributions with finite second moments. Thus with help
the decomposition of section 5 we get that the depicted above compound strategy
of Player 1 ensures him the gain

∑m
r=1 Dp[zr]/2 in game G∞(p) for any distribution

p ∈ Θ(0) ∩M2.
It terminates the proof of theorem 2.
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